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Abstract: A new tessellation technique is applied to the structural analysis of the MD-simulated
materials. The main point of the method is a suitable manipulation of the contracted simplices network.
Algorithms for contraction of simplices network. as well as for radical tessellation. are presented. The
contraction algorithms utilise the local atom arrangement recognition technique. An exemplary
application of the new technique to MD-simulated nickel samples is described.

1. Introduction

Stochastic geometry methods are a useful technique for the study of geometrical
properties of molecular dynamics (MD) simulated systems. They provide much more
information about the sample structure then the analysis based only on the strigth-
forward interpretation of angular distribution functions (ADF) and radial distribution
functions (RDF), especially in the case of amorphous or multiphase materials. The
most widely used techniques of the structural analysis are: common neighbours
analysis (CNA) [1,2], SO3 invariants analysis [3-7] and various tessellation techni-
ques [8-13].

The CNA method can be used to determine the abundance of inherent structures
in a sample. Each pair of atoms from the first or the second RDF peak is described
by a sets of indexes. The indexes determine to which peak a given pair does belong,
the number of common nearest-neighbours, the number of pairs of the first neighbours
in the set of common neighbours, etc. The CNA is very efficient in the study of the
nearest order in computer simulated amorphous materials. However, the method can
give merely partial and ambiguous information about the types of crystalline phases
in the analysed samples. In particular, the pairs with the same sets of indexes can
belong to different phases (e.g. both the face-centred (fcc), and the hexagonal-close-
packed (hcp) structures contain identically indexed pairs).
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The SO3 invariants analysis is based on the construction of certain sets of the
SO(3) invariants for local structure (local order or bond order parameters). The
comparison between such sets allows us to distinguish between some predefined
reference patterns. The sets of invariants suitable for the identification of the fcc, hep
and icosahedral structures are well known [5], but the extension of the method to
other geometries is rather difficult: due to a limited number of invariants the
conclusions about the local structure are not necessarily unambiguous. A similar
method was used for the investigation of a non-local order [3]: the bond order
parameters were constructed for all the atoms in the sample, making it possible to
draw out some conclusions about the orientational order.

The tessellation method consists in the division of the total volume of the
simulation box into an array of subvolumes belonging to the atoms. A number of
various constructions is known. The most difused one is the partition into the Voronoi
polyhedra (VP). VP is defined as the minimal polyhedron whose planar faces bisect
at right angles the lines joining an atom to its neighbours; a pedantic definition is
given by Brostow and co-workers [11]. However, one can use more general tessel-
lation, based on radical planes [9]. In this case each atom from the array is charac-
terised by an additional parameter, which can be interpreted as the atom radius.
Vertex of a radical polyhedron (RP) is such a point in the space, that the vertex-tan-
gent distances to four neighbouring atomic spheres are equal. It is obvious that when
all atomic radii are equal, the radical-plane tessellation is identical to the Voronoi
partition. Thus, all the properties of RPs are valid for the VPs. The RP diagram
(alternatively RP network or RP graph), i.e. the set of RPs constructed for all the
atoms in the sample, is rigorous; it splits in a unique manner the total sample volume
into the zones owned by each atom. Radical simplices (RSs) are geometrically dual
polyhedra to RPs; that is, a vertex of an RP is the central site of the corresponding
RS, and each atom (centre of a RP) is a vertex of the corresponding RS. One can
assign each vertex of the former lattice to the elementary units of the latter one. The
faces of RSs intersect the edges of RPs, and the faces of RPs intersect the edges of
RSs. In the case of the Voronoi partition the simplices are called Delunay simplices
(DS). RP and RS (VP, and DS, respectively) networks contain a full information
about the structure of the analysed sample.

The purpose of this paper is to present some applications of the tessellation
methods for the analysis of geometrical properties of MD-simulated materials. Since
contemporary computers allow to carry out the MD simulations for systems compo-
sed of hundreds thousands of particles, one needs an efficient tessellation algorithm
(Section 2). The methodology of the networks treatment, developed here, differs from
the ones presented earlier by other authors, where each RP in the sample was
constructed and analysed independently from other RPs. Thus, each vertex of the RP
network was constructed four times (in the non-degenerated case). Our new algorithm
determines each vertex only once. In Section 3 we describe the algorithm of the RP
network contraction. The contraction eliminates an influence of atomic position
perturbation of the network. These perturbations originate from thermal motions or
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can be totally incidental (finite precision of the coordinates storage). Section 4
contains some examples of application of the technique, and Section 5 concluding
remarks.

2. Tessellation algorithm

As it was mentioned in the introduction, the RP network is constructed in such
a way that each vertex is determined only once. To make our algorithm more general,
the array of atoms is decomposed into two arrays: the centres array, and the
neighbours array. The centres array contains the atoms, for which RPs are to be
determined. The neighbours array contains all the neighbours of the atoms of the
centres array. The neighbours array can include atoms of the centres array. For
instance, in SiO> sample we can chose Si atoms as centres and all atoms as neighbours.
Thus, we determine the RP for Si atoms only. The geometrical neighbours of Si atom
could be either other silicon atoms, or oxygen atoms. If the two arrays are equal, we
deal with the classical partition.

Let us introduce some auxiliary definitions, usefull in our description of the
construction algorithms of the networks. An open centre is a centre that is actually
not contained in any of just constructed simplices. Two simplices are contiguous if
they share a common face. Let open simplex be a simplex that has no contiguous
simplices in the set of already constructed simplices. An open face is a face of a
simplex, that contains some centres and the face is not shared with any simplices
already constructed (all the faces that do not contain any centre are never open). The
algorithm can be summarised as follows:

1. Create list of open centres.

2.Choose an open centre C form the open centres list. If the open centres list is empty,
go to step 7, else go to the next step.

3. Construct the first simplex that contains C and three atoms from the neighbours
array (an exact description of the construction is given below). Add this simplex to
the simplices list. Remove C from the open centres list.

4. Choose simplex S which has an open face. If such a simplex does not exist, go to
step 0, else go to the next step.

5. Construct a new simplex contiguous to S (for an exact description see below). The
simplices must share the open face considered in step 4. A new fourth atom of S must
be taken from the neighbours array. If it belongs simultaneously to the centre array,
remove it from the open centres list. Add S to the simplices list, and go to step 4.

6. Go to step 2.
7. The end of the RS construction procedure.

Steps 2 and 4 do not require any comments. The construction of the first simplex
and the next simplices in steps 3 and 5 is more complicated. In our realisation we
adopted the routine proposed by Tanamura and co-workers [10]. Since their algorithm
was written only for the Voronoi tessellation, we have generalised it on the case of
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the radical tessellation. The changes have been made in all the steps, were the
distances between the atoms, and the vertices or the positions of faces, are calculated.
The suitable modifications base on the equation for the RP network vertices given
by Gellatly and Finney [9]. At this stage it is convenient to introduce a routine of the
degeneration detection, making the algorithm more stable. Degeneration occurs when
one can construct more then one simplex (by adding an atom to three atoms defining
simplex face) that have the same RP vertex coordinations. It is possible to construct
an algorithm that can work with degenerated systems, but because the degeneration
does not occur in practice, it would be computationally inefficient. In the case of
degeneration we simply disturb the positions of atoms by a small fraction of the
nearest-neighbour distance (of order 10™"), and then we start the procedure from the
beginning. The positions of atoms are restored after the procedure ends. In view of
the considerations of Section 3, the perturbation of atomic positions does not have
any influence on the final conclusions about the structure of the analysed sample.
Realisation of step 5 is similar to the last step of the construction of the first simplexes
(¢f [10]). We know the face (in this case it is an open fuce) and we have to build a
new simplex by adding an atom to this face. Care must be taken at selection of
candidates for this fourth atom. We have to choose an atom which is placed on the
opposite side of the face (in respect to the fourth atom of the simplex from step 4).
After executing steps 1-7 described above we have the complete list of simplices of
the analysed sample. If centres array and neighbours array are identical, we have a
full RS graph, else we have only its subgraph. In both cases, we can determine the
set of radical polyhedra for all centres, utilising only information contained in the
simplices list.

The determination of the RS graph is only a preliminary step of our tessellation
method. At this stage the RPs are rather complex polyhedra, containing many faces
and vertices. Their topology does not allow to draw out any unambiguous conclusion
on the structure. It is clear that the basic information about the local structure at any
atom is carried mainly by big faces and long edges. The small faces and short edges
have only inconspicuous meaning. To utilise the RPs efficiently we contract short
edges and small faces of the RP graph.

To motivate the need of the contraction, let us consider the influence of small
perturbations of atomic positions in an arbitrary crystalline lattice on their RP
networks. A characteristic feature of certain crystalline networks (e.g. fcc or hep) is
the existence of degenerate vertices and edges in their RP graphs. Degenerate
neighbours corresponding to such vertices or edges have been defined by Brostow
and co-workers [11]. A degenerate vertex is common to more than four edges, while
a degenerate edge is common to more than three faces of the RP graph. As discussed
previously [11], we also have so called indirect neighbours: there is a common face,
but the midpoint of the line connecting the atoms does not belong to that face. If the
midpoint belongs to the common face, we have the simplest case of direct neighbours.
Here, direct and indirect neighbours will not be distingueshed, and they will be called
geometric neighbours. It is obvious that an arbitrary small displacement of atoms in
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the crystalline structure removes the degeneracy. In the place of a degenerate vertex,
a small face or a short edge will appear, and degenerate edges will become small
elongated faces. The local arrangement is practically the same in perturbed and in
unperturbed structures, but the topology of radical polyhedra is much more compli-
cated in the former case. Thus, eliminating short edges and small faces from the VP
network (by contracting them to vertices or edges), we remove the effects due to the
perturbations and simplify the polyhedra topology. The same result could be achieved
by suitable displacements of the atoms. However, since we have no information about
the individual fluctuations of the atoms in the sample, such a procedure cannot be
realised in practice. In a structure in which the degenerate vertices are absent (e.g.
bece lattice), a small perturbation of the position does not change the topology of the
network. Thus, the analysis of such structures can be performed going directly to the
next stage of the procedure, described in Section 4.

3. Graph contraction algorithm

To proceed with the graph contraction one needs to find the set of edges that are
to be contracted. This can be done directly by computing all edges lengths and
selecting all the edges shorter than a certain predefined threshold value. The threshold
can be determined on the basis of the edge length distribution. The typical edge length
distribution for the face centred structure is presented in Figure 1. As it is seen, it is
difficult to establish the threshold value, because the large peak of longer edges can
not be separated from the peak of shorter edges. To avoid the difficulty we propose
an algorithm which is able to analyse sub graphs of the RS network. Each of simplices
belonging to any of these subgraphs should contain a specified central atom. Con-
traction of the whole RS network is performed subsequently in each subgraph. After
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Figure 1. Edge lengths distribution for the Voronoi graph of a perturbed fce structure. The ideal nodal
positions are shifted by 0.15 of the nearest neighbour distance in random direction. Edge lengths are
measured in the unit of the average edge length.
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each step the RS network is updated, and the subgraphs are recalculated. The
algorithm can be summarised as follows:

1. Take centre C from the centres list, C not considered previously. If it is not possible
go to step 7.

2. Select subgraph S of the RS network. All simplices from the subgraph must contain
C. With no degeneration the set of atoms constituting .S is an atomic polyhedron
related to C. Else, it contains in addition all degenerated neighbours.

3. Determine radical polyhedron P of centre C, using the subgraph S (in this step care
must be taken in the selection of vertices, because not all vertices associated with
simplices from S are included in P; see the text below). Evaluate edge lengths of this
polyhedron.

4. Select set E of the edges of P, that are not contained in the previously contracted
polyhedra. It can be done simply by checking a composition of the simplices which
define the vertex of the edges. If the simplices associated to both vertices of the edge
contain the centre considered previously, the edge is not being selected.

S. Contract subgraph S, using list £ (for exact description see below), and update the
RS network.

6. Go to step 2.
7. The network is contracted. End of the procedure.

Some of the above steps should be elucidated. In step 3 we determine a
polyhedron using a subgraph of the RS network. This can be done by examining the
geometrical relations between the simplices from S. The vertices associated to these
simplices constitute the polyhedron. Two mutually contiguous simplices in S define
the edges of a polyhedron. The faces are defined by a set of simplices that contain
the central atom, and its geometrical neighbours. Because the RS network is now
after several contractions of the subgraphs determined for other centres, it is possible
that some vertices on the polyhedron constructed in such a way are topologically
incorrect. There may occur vertices in which only two edges meet. Topologically
correct situation is when three and more edges of a polyhedron meet in a vertex.
Taking it into account one must reconstruct the polyhedron removing all the incorrect
vertices and change the geometrical relation between the simplices. The simplices
that are contiguous to incorrect vertex became contiguous to each other, but only for
the moment in which the polyhedron is being constructed. In step 5 we utilise our
previous technique of Voronoi polyhedra contraction [14]. The algorithm applied
here allows for a very careful contraction of subgraph S, by an appropriate selection
of contracted edges and permanent control of polyhedron shape during the process.
Let us itemise the main points of this technique:

1. For the RP under consideration contract all the edges shorter than a certain fraction
x of the average edge length.

2. Find the shortest edge.
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3. If the edge is shorter then a fraction y (v > x) of the average edge, check the shape
of the polyhedron (for description see below). If the shape belongs to the set of the
predefined patterns, take the next polyhedron, and go to step 1; otherwise contract
the edge under consideration, and go to step 2.

4. If the edge is longer then a fraction y of the average edge end the procedure.

Detailed tests of the algorithm efficiency accomplished for monatomic metallic
MD-simulated samples allowed to establish the optimal values of the parameters x
and y to be 0.3, and 0.5, respectively. x < 0.3 results in switching on the shape
recognition procedure sooner; if the shape of a given polyhedron is undefined, there
are no consequences except the slowing down of computations. On the other hand,
y > 0.5 for an undefined shape leads to too many contractions, leaving eventually a
polyhedron with only few edges and faces.

Let us turn to the problem of the polyhedron shape recognition. The shape of
an arbitrary polyhedron can be described by certain sets of integers, as F = (f3, fi,
f5,...), V.=(v3, v4, vs ...), E = (e4, €5, €, ...). Here fi is the number of the i-edged faces
in the polyhedron; v; is the number of the vertices, from which exactly i edges
originate. In the case of a non-degenerated VP, only vi do not vanish, hence i - 3
equals to the degeneration degree. Finally, ; is the number of edges for which i equals
toj + k+ 4, where j and k are the degrees of degeneration of both vertices associated
to the edge. It is not complicated to introduce more sets like these (e.g. in the form
of two or three dimensional array), but our experience shows, that the sets F, V, and
E, defined above suffice to perform an efficient structural analysis. Two polyhedrons
are said to have the same topological structure if they have the same F, V, and E sets.
Thus, we can compare all the conctructed polyhedra with an arbitrary set of reference
polyhedra. For instance, the fcc polyhedron has F = (0, 12), V = (8, 6), E = (0, 24),
and the hcp polyhedron has F = (0, 12), V =(8, 6), E = (3, 18, 3).

At this stage one can use the contracted network to establish geometrical
properties of the analysed structure in many various ways. A particular realisation
depends on the questions one asks. In the subsequent section we show some
applications of our method. ’

4. Exemplary application of the technique

Let us concentrate on the geometrical properties of individual elementary units
of the RS, and RP networks, as well as on spatial correlations between the units.
Elementary units of the RS network are radical simplices. In general, they are rather
simple polyhedra, and in order to recognise their shape it is enough to count the
polyhedra-forming atoms. In the case of four-atom simplices we can measure their
shapes using the Medvedev and Naberukhin [15] thetrahedricity parameter 7,

2(11 - //) ?
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where /; is the length of the i-th simplex edge, and is the average edge length of the
simplex. Spatial correlations can be investigated easily by analysing the properties
of the cluster of simplices connected by a face, a vertex, or an edge (by a cluster we
mean the connected subgraph of the graph). Elementary units of RP networks are
radical polyhedra. Their shapes are much more complicated then of the RS's, but we
can still utilise the shape recognition technique of the previous Section, defining a
sufficiently large set of the predefined patterns. The cluster structure provides an
immediate evidence of the existence of distinct crystalline phases in an MD-simulated
material.

We will apply the described techniques to the study of two MD-simulated nickel
(Ni) samples. In both cases simulation box contains 500 atoms interacting by a model
potential based on tight-binding calculations; the parametrisation has been performed
using experimental cohesive energy, bulk modulus and elastic constants as constra-
ints [16]. The simulations were performed in the microcanonical ensemble. The
samples were prepared initially as well equilibrated melts at 5000 K and density 8500
kg/m' (the samples are slightly rarefied, density of nickel at normal conditions is
about 8908 kg/m“). The liquids were equilibrated for 10° time steps (At = 10"s). The
first sample has been quenched directly to 1 K (fast cooling). The second one has
been cooled down to | K passing the equilibrium states at 2500, 1250, 600, 300, and
150 K (slow cooling).

slow cooling

200

100

fast cooling

Cumulative Counts

00 0.2 04 0.6 08 1.0 1.2
Tetrahedricity

Figure 2. Distribution of tetrahedricity parameter.
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We deal with a monatomic system (all atomic radii are equal), thus the radical
tessellation is equivalent to the Voronoi partition. The simplices network has been
contracted with the parameters x = 0.1 and y = 0.4 (see Section 3). The distribution
of the tetrahedricity parameter in both samples is shown in Figure 2. More detailed
analysis reveals that only the simplices with a large value of the tetrahedricity
parameter are converted into degenerated units during the contraction of the RS
network (formally, a simplex is a polyhedron composed on D+1 vertices, where D
is the dimension of the space; in three dimensional space only disordered tetrahedra
can be called simplices; but here we will use notion simplices to describe all
elementary units of RS network underlining their origin). Statistics of the simplices
size for both samples is presented in Table 1. It is seen that the number of simplices
is about 10% higher in the quickly cooled sample than in the slowly cooled one. In
both cases the RS networks are composed mainly of four-atom simplices, but also a
significant amount of the octahedral RS network units is detected. This can mean that
the sample contains certain zones of fcc or hep ordering. Because none of monatomic
ideal crystalline networks contains S-atom simplices, their appearence in the samples
results from a local crystallisation. Tables 2 and 3 contain the cluster properties of
4-, and 6- atom simplices, respectively. In the fast cooling case almost all 4-atom
simplices form a single cluster, exactly as in the rcp or bee structures. Figures 3 and
4 present spatial distributions of 4-, and 6-atom simplices in slowly cooled sample.
Points are placed in the centres of the simplices, and sticks between them indicate
that they share a face. As it is seen, the clusters have an arrangement that does not
appear in the quickly cooled sample, where the whole simulation box is filled by a

simplex sizes

4 5 6
slow cooling 79.4% 4.9% 15.6%
fast cooling 77.7% 14.8% 7.3%

Table 1. Simplex size statistics in slowly and quickly cooled samples, containing 1973, and 2114
simplices. respectively.

number number of number of size of the
of clusters | isolated simplices | simplices in couples | biggest cluster
slow cooling 24 6.1% 19.1% 74.3%
fast cooling 32 1.4% 0.6% 97.6%

Table 2. Propertics of clusters composed of 4-atom simplices.

number number of number of size of the
of clusters | isolated simplices | simplices in couples | biggest cluster
slow cooling 110 9.7% 15.6% 2.7%
fast cooling 82 30.6% 24.2% 6.4%

Table 3. Properties of clusters composed of 6-atom simplices.
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Figure 3. Spatial distribution of 4-atom simplices in the slowly cooled Ni sample. Points indicate the
centres of the simplices, and sticks join the face-sharing simplices.

Figure 4. Spatial distribution of 6-atom simplices in the slowly cooled Ni sample.
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number of polyhedra number of faces

2.8% 11

slow cooling - 45.4% 12
45% 13

6.8% 14

6.6% 11

31.2% 12

fast cooling 36.2% 13
20% 14

5.2% 15

Table 4. Numbers of faces in the polyhedra.

single cluster of 4-atom simplices. It is evident that the volume of the slowly cooled
sample is occupied by two distinct phases. One of them is composed of 4-, and 6-atom
simplices. 4-atom simplices appear mainly in pairs, whereas the 6-atom simplices
form much longer linear clusters. The pairs and the linear clusters have the same
orientation. Exactly the same properties characterise the hcp structure. The second
of the detected phases contains only 4-atom simplices, and the following analysis of
the RP network will show that this is a bec phase.

Radical polyhedra have been determined directly from the contracted RS
network. Statistics of numbers of faces in the polyhedra is collected in Table 4. In
the slowly cooled sample more then 90% of atoms have 12- or 14-faced polyhedra,
whereas in the quickly cooled sample, polyhedra with 13 faces are most frequent.
Using the shape recognition technique we can say that 31% of atoms in the slowly
cooled sample have the first co-ordination shells as in a hep crystal, 42% as in a bee
crystal, and only 6.2% as in a fcc crystal. The applied technique does not give so
good results in the quickly cooled sample. Almost 95% of atoms have unrecognised
neighbourhood structure, and 3% of them have an icosahedral local arrangement.
Figures 5 and 6 present spatial arrangements of bce-, and hep-surrounded atoms in
the slowly cooled sample. The Figures confirm our former conclusions about the
existence of the hep and bece phases in the sample.

5. Concluding remarks

In this contribution we have described an effective way of utilising the tessel-
lation method in structural analysis of MD simulated materials. Each radical diagram
constructed for any sample contains some excess information concerning meanin-
gless fluctuation of atomic position. In order to extract only uscful data, we have
applied a suitable graph contraction technique. The main point of the contraction
algorithm is a careful removing of the short edges from the radical graph. We have
achieved this by subsequent contractions of the subgraph related to each central atom.
Proceeding in this way we have had under control an essential criterion of the short
edges selection. It depends on the local subgraph structure, whether an edge is
qualified as short or not. We have applied our technique in the analysis of structure
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Figure 6. Spatial arrangement of hep-surrounded atoms in the slowly cooled Ni sample.
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slowly and quickly cooled Ni. It has been shown that both RS and dual RP networks
contain a lot of useful information, and that the RP network is particularly convenient
to perform the recognition of the type of local atom arrangement.
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