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Abstract: A new tessellation technique is applied to the structural analysis of the MD-simulated 
materials. The main point of the method is a suitable manipulation of the contracted simplices network. 
Algorithms for contraction of simplices network, as well as for radical tessellation, are presented. The 
contraction algorithms utilise the local atom arrangement recognition technique. An exemplary 
application of the new technique to MD-simulated nickel samples is described.

1. Introduction
Stochastic geometry methods are a useful technique for the study of geometrical 

properties of molecular dynamics (MD) simulated systems. They provide much more 
information about the sample structure then the analysis based only on the strigth- 
forward interpretation of angular distribution functions (ADF) and radial distribution 
functions (RDF), especially in the case of amorphous or multiphase materials. The 
most widely used techniques of the structural analysis are: common neighbours 
analysis (CNA) [1,2], S03 invariants analysis [3-7] and various tessellation techni
ques [8-13].

The CNA method can be used to determine the abundance of inherent structures 
in a sample. Each pair of atoms from the fu st or the second RDF peak is described 
by a sets of indexes. The indexes determine to which peak a given pair does belong, 
the number of common nearest-neighbours, the number of pairs of the fust neighbours 
in the set of common neighbours, etc. The CNA is veiy efficient in the study of the 
nearest order in computer simulated amorphous materials. Flowever, the method can 
give merely partial and ambiguous information about the types of crystalline phases 
in the analysed samples. In particular, the pairs with the same sets of indexes can 
belong to different phases (e.g. both the face-centred (fee), and the hexagonal-close- 
packed (hep) structures contain identically indexed pairs).
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The S03 invariants analysis is based on the construction of certain sets of the 
SO(3) invariants for local structure (local order or bond order parameters). The 
comparison between such sets allows us to distinguish between some predefined 
reference patterns. The sets of invariants suitable for the identification of the fee, hep 
and icosahedral structures are well known [5], but the extension of the method to 
other geometries is rather difficult: due to a limited number of invariants the 
conclusions about the local structure are not necessarily unambiguous. A similar 
method was used for the investigation of a non-local order [3]: the bond order 
parameters were constructed for all the atoms in the sample, making it possible to 
draw out some conclusions about the orientational order.

The tessellation method consists in the division of the total volume of the 
simulation box into an array of subvolumes belonging to the atoms. A number of 
various constructions is known. The most difused one is the partition into the Voronoi 
polyhedra (VP). VP is defined as the minimal polyhedron whose planar faces bisect 
at right angles the lines joining an atom to its neighbours; a pedantic definition is 
given by Brostow and co-workers [11]. However, one can use more general tessel
lation, based on radical planes [9], In this case each atom from the array is charac
terised by an additional parameter, which can be interpreted as the atom radius. 
Vertex of a radical polyhedron (RP) is such a point in the space, that the vertex-tan- 
gent distances to four neighbouring atomic spheres are equal. It is obvious that when 
all atomic radii are equal, the radical-plane tessellation is identical to the Voronoi 
partition. Thus, all the properties of RPs are valid for the VPs. The RP diagram 
(alternatively RP network or RP graph), i.e. the set of RPs constructed for all the 
atoms in the sample, is rigorous; it splits in a unique manner the total sample volume 
into the zones owned by each atom. Radical simplices (RSs) are geometrically dual 
polyhedra to RPs; that is, a vertex of an RP is the central site of the corresponding 
RS, and each atom (centre of a RP) is a vertex of the corresponding RS. One can 
assign each vertex of the former lattice to the elementary units of the latter one. The 
faces of RSs intersect the edges of RPs, and the faces of RPs intersect the edges of 
RSs. In the case of the Voronoi partition the simplices are called Delunay simplices 
(DS). RP and RS (VP, and DS, respectively) networks contain a full information 
about the structure of the analysed sample.

The purpose of this paper is to present some applications of the tessellation 
methods for the analysis of geometrical properties of MD-simulated materials. Since 
contemporary computers allow to carry out the MD simulations for systems compo
sed of hundreds thousands of particles, one needs an efficient tessellation algorithm 
(Section 2). The methodology of the networks treatment, developed here, differs from 
the ones presented earlier by other authors, where each RP in the sample was 
constructed and analysed independently from other RPs. Thus, each vertex of the RP 
network was constructed four times (in the non-degenerated case). Our new algorithm 
determines each vertex only once. In Section 3 we describe the algorithm of the RP 
network contraction. The contraction eliminates an influence of atomic position 
perturbation of the network. These perturbations originate from thermal motions or
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can be totally incidental (finite precision of the coordinates storage). Section 4 
contains some examples of application of the technique, and Section 5 concluding 
remarks.

2. Tessellation algorithm
As it was mentioned in the introduction, the RP network is constructed in such 

a way that each vertex is determined only once. To make our algorithm more general, 
the array of atoms is decomposed into two arrays: the centres array, and the 
neighbours array. The centres array contains the atoms, for which RPs are to be 
determined. The neighbours array contains all the neighbours of the atoms of the 
centres array. The neighbours array can include atoms of the centres array. For 
instance, in SiCL sample we can chose Si atoms as centres and all atoms as neighbours. 
Thus, we determine the RP for Si atoms only. The geometrical neighbours of Si atom 
could be either other silicon atoms, or oxygen atoms. If the two arrays are equal, we 
deal with the classical partition.

Let us introduce some auxiliary definitions, usefull in our description of the 
construction algorithms of the networks. An open centre is a centre that is actually 
not contained in any of just constructed simplices. Two simplices are contiguous if 
they share a common face. Let open simplex be a simplex that has no contiguous 
simplices in the set of already constructed simplices. An open face is a face of a 
simplex, that contains some centres and the face is not shared with any simplices 
already constructed (all the faces that do not contain any centre are never open). The 
algorithm can be summarised as follows:
1. Create list of open centres.
2. Choose an open centre Cform the open centres list. I f the open centres list is empty, 
go to step 7, else go to the next step.
3. Construct the first simplex that contains C and three atoms from the neighbours 
array (an exact description of the construction is given below). Add this simplex to 
the simplices list. Remove C from the open centres list.
4. Choose simplex S  which has an open face. If such a simplex does not exist, go to 
step 6, else go to the next step.
5. Construct a new simplex contiguous to S (for an exact description see below). The 
simplices must share the open face considered in step 4. A new fourth atom of A must 
be taken from the neighbours array. If it belongs simultaneously to the centre array, 
remove it from the open centres list. Add S  to the simplices list, and go to step 4.
6. Go to step 2.
7. The end of the RS construction procedure.

Steps 2 and 4 do not require any comments. The construction of the first simplex 
and the next simplices in steps 3 and 5 is more complicated. In our realisation we 
adopted the routine proposed by Tanamura and co-workers [10], Since their algorithm 
was written only for the Voronoi tessellation, we have generalised it on the case of
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the radical tessellation. The changes have been made in all the steps, were the 
distances between the atoms, and the vertices or the positions of faces, are calculated. 
The suitable modifications base on the equation for the RP network vertices given 
by Gellatly and Finney [9]. At this stage it is convenient to introduce a routine of the 
degeneration detection, making the algorithm more stable. Degeneration occurs when 
one can construct more then one simplex (by adding an atom to three atoms defining 
simplex face) that have the same RP vertex coordinations. It is possible to construct 
an algorithm that can work with degenerated systems, but because the degeneration 
does not occur in practice, it would be computationally inefficient. In the case of 
degeneration we simply disturb the positions of atoms by a small fraction of the 
nearest-neighbour distance (of order 10"5), and then we start the procedure from the 
beginning. The positions of atoms are restored after the procedure ends. In view of 
the considerations of Section 3, the perturbation of atomic positions does not have 
any influence on the final conclusions about the structure of the analysed sample. 
Realisation of step 5 is similar to the last step of the construction of the first simplexes 
( t f  [10]). We know the face (in this case it is an open face') and we have to build a 
new simplex by adding an atom to this face. Care must be taken at selection of 
candidates for this fourth atom. We have to choose an atom which is placed on the 
opposite side of the face (in respect to the fourth atom of the simplex from step 4). 
After executing steps 1-7 described above we have the complete list of simplices of 
the analysed sample. If centres array and neighbours array are identical, we have a 
full RS graph, else we have only its subgraph. In both cases, we can determine the 
set of radical polyhcdra for all centres, utilising only information contained in the 
simplices list.

The determination of the RS graph is only a preliminary step of our tessellation 
method. At this stage the RPs are rather complex polyhedra, containing many faces 
and vertices. Their topology does not allow to draw out any unambiguous conclusion 
on the structure. It is clear that the basic information about the local structure at any 
atom is carried mainly by big faces and long edges. The small faces and short edges 
have only inconspicuous meaning. To utilise the RPs efficiently we contract short 
edges and small faces of the RP graph.

To motivate the need of the contraction, let us consider the influence of small 
perturbations of atomic positions in an arbitrary crystalline lattice on their RP 
networks. A characteristic feature of certain crystalline networks (e.g. fee or hep) is 
the existence of degenerate vertices and edges in their RP graphs. Degenerate 
neighbours corresponding to such vertices or edges have been defined by Brostow 
and co-workers [ 11 ]. A degenerate vertex is common to more than four edges, while 
a degenerate edge is common to more than three faces of the RP graph. As discussed 
previously [II], we also have so called indirect neighbours: there is a common face, 
but the midpoint of the line connecting the atoms does not belong to that face. If the 
midpoint belongs to the common face, we have the simplest case of direct neighbours. 
Here, direct and indirect neighbours will not be distingueshed, and they will be called 
geometric neighbours. It is obvious that an arbitrary small displacement of atoms in
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the crystalline structure removes the degeneracy. In the place of a degenerate vertex, 
a small face or a short edge will appear, and degenerate edges will become small 
elongated faces. The local arrangement is practically the same in perturbed and in 
unperturbed structures, but the topology of radical polyhedra is much more compli
cated in the former case. Thus, eliminating short edges and small faces from the VP 
network (by contracting them to vertices or edges), we remove the effects due to the 
perturbations and simplify the polyhedra topology. The same result could be achieved 
by suitable displacements of the atoms. However, since we have no information about 
the individual fluctuations of the atoms in the sample, such a procedure cannot be 
realised in practice. In a structure in which the degenerate vertices are absent (e.g. 
bcc lattice), a small perturbation of the position does not change the topology of the 
network. Thus, the analysis of such structures can be performed going directly to the 
next stage of the procedure, described in Section 4.

3. Graph contraction algorithm
To proceed with the graph contraction one needs to find the set of edges that are 

to be contracted. This can be done directly by computing all edges lengths and 
selecting all the edges shorter than a certain predefined threshold value. The threshold 
can be determined on the basis of the edge length distribution. The typical edge length 
distribution for the face centred structure is presented in Figure 1. As it is seen, it is 
difficult to establish the threshold value, because the large peak of longer edges can 
not be separated from the peak of shorter edges. To avoid the difficulty we propose 
an algorithm which is able to analyse sub graphs of the RS network. Each of simplices 
belonging to any of these subgraphs should contain a specified central atom. Con
traction of the whole RS network is performed subsequently in each subgraph. After

t----------->-----------1----------->-----------1----------->-----------r

edge length
Figure I. Edge lengths distribution for the Voronoi graph of a perturbed fee structure. The ideal nodal 
positions are shifted by 0.15 of the nearest neighbour distanee in random direction. Edge lengths are 
measured in the unit of the average edge length.
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each step the RS network is updated, and the subgraphs are recalculated. The 
algorithm can be summarised as follows:
1. Take centre Cfrom the centres list, C not considered previously. If it is not possible 
go to step 7.
2. Select subgraph S'of the RS network. All simplices from the subgraph must contain 
C. With no degeneration the set of atoms constituting S  is an atomic polyhedron 
related to C. Else, it contains in addition all degenerated neighbours.
3. Determine radical polyhedron P of centre C, using the subgraph A (in this step care 
must be taken in the selection of vertices, because not all vertices associated with 
simplices from S  are included in P\ see the text below). Evaluate edge lengths of this 
polyhedron.
4. Select set E of the edges of P, that are not contained in the previously contracted 
polyhedra. It can be done simply by checking a composition of the simplices which 
define the vertex of the edges. If the simplices associated to both vertices of the edge 
contain the centre considered previously, the edge is not being selected.
5. Contract subgraph S, using list E (for exact description see below), and update the 
RS network.
6. Go to step 2.
7. The network is contracted. End of the procedure.

Some of the above steps should be elucidated. In step 3 we determine a 
polyhedron using a subgraph of the RS network. This can be done by examining the 
geometrical relations between the simplices from S. The vertices associated to these 
simplices constitute the polyhedron. Two mutually contiguous simplices in S define 
the edges of a polyhedron. The faces are defined by a set of simplices that contain 
the central atom, and its geometrical neighbours. Because the RS network is now 
after several contractions of the subgraphs determined for other centres, it is possible 
that some vertices on the polyhedron constructed in such a way are topologically 
incorrect. There may occur vertices in which only two edges meet. Topologically 
correct situation is when three and more edges of a polyhedron meet in a vertex. 
Taking it into account one must reconstruct the polyhedron removing all the incorrect 
vertices and change the geometrical relation between the simplices. The simplices 
that are contiguous to incorrect vertex became contiguous to each other, but only for 
the moment in which the polyhedron is being constructed. In step 3 we utilise our 
previous technique of Voronoi polyhedra contraction [14], The algorithm applied 
here allows for a very careful contraction of subgraph S, by an appropriate selection 
of contracted edges and permanent control of polyhedron shape during the process. 
Let us itemise the main points of this technique:
1. For the RP under consideration contract all the edges shorter than a certain fraction 
x of the average edge length.
2. Find the shortest edge.



102 R. Laskowski, J. Rvbicki and M. Chybicki

3. If the edge is shorter then a fraction y  (y > x) of the average edge, check the shape 
of the polyhedron (for description see below). If the shape belongs to the set of the 
predefined patterns, take the next polyhedron, and go to step 1; otherwise contract 
the edge under consideration, and go to step 2.
4. If the edge is longer then a fraction y  of the average edge end the procedure.

Detailed tests of the algorithm efficiency accomplished for monatomic metallic 
MD-simulated samples allowed to establish the optimal values of the parameters ,v 
and y  to be 0.3, and 0.5, respectively, x < 0.3 results in switching on the shape 
recognition procedure sooner; if the shape of a given polyhedron is undefined, there 
are no consequences except the slowing down of computations. On the other hand, 
y > 0.5 for an undefined shape leads to too many contractions, leaving eventually a 
polyhedron with only few edges and faces.

Let us turn to the problem of the polyhedron shape recognition. The shape of 
an arbitrary polyhedron can be described by certain sets of integers, as F = (f?, ft, 
f>,...), V = (V3, V4, vs ...), E = (e<t, es, er„...). Here f, is the number of the i-edged faces 
in the polyhedron; v, is the number of the vertices, from which exactly i edges 
originate. In the case of a non-degenerated VP, only vj do not vanish, hence i - 3 
equals to the degeneration degree. Finally, Ci is the number of edges for which i equals 
to j + k + 4, where j and k are the degrees of degeneration of both vertices associated 
to the edge. It is not complicated to introduce more sets like these (e.g. in the form 
of two or three dimensional array), but our experience shows, that the sets F, V, and 
E, defined above suffice to perform an efficient structural analysis. Two polyhedrons 
are said to have the same topological structure if they have the same F, V, and E sets. 
Thus, we can compare all the conctructed polyhedra with an arbitrary set of reference 
polyhedra. For instance, the fee polyhedron has F = (0, 12), V = (8, 6), E = (0, 24), 
and the hep polyhedron has F = (0, 12), V = (8, 6), E = (3, 18, 3).

At this stage one can use the contracted network to establish geometrical 
properties of the analysed structure in many various ways. A particular realisation 
depends on the questions one asks. In the subsequent section we show some 
applications of our method.

4. Exemplary application of the technique
Let us concentrate on the geometrical properties of individual elementary units 

of the RS, and RP networks, as well as on spatial correlations between the units. 
Elementary units of the RS network are radical simplices. In general, they are rather 
simple polyhedra, and in order to recognise their shape it is enough to count the 
polyhedra-forming atoms. In the case of four-atom simplices we can measure their 
shapes using the Medvedev and Naberukhin [15] thetrahedricity parameter T.,

I«- o1



Applications o f Tessellation Techniques 103

where /; is the length of the ;-th simplex edge, and is the average edge length of the 
simplex. Spatial correlations can be investigated easily by analysing the properties 
of the cluster of simplices connected by a face, a vertex, or an edge (by a cluster vve 
mean the connected subgraph of the graph). Elementary units of RP networks are 
radical polyhedra. Their shapes are much more complicated then of the RS's, but we 
can still utilise the shape recognition technique of the previous Section, defining a 
sufficiently large set of the predefined patterns. The cluster structure provides an 
immediate evidence of the existence of distinct crystal line phases in an MD-simuIated 
material.

We will apply the described techniques to the study of two MD-simulated nickel 
(Ni) samples. In both cases simulation box contains 500 atoms interacting by a model 
potential based on tight-binding calculations; the parametrisation has been performed 
using experimental cohesive energy, bulk modulus and elastic constants as constra
ints [16]. The simulations were performed in the microcanonical ensemble. The 
samples were prepared initially as well equilibrated melts at 5000 K. and density 8500 
kg/m3 (the samples are slightly rarefied, density of nickel at normal conditions is 
about 8908 kg/nf). The liquids were equilibrated for 10̂  time steps (At = 10"l:,s). The 
first sample has been quenched directly to I K. (fast cooling). The second one has 
been cooled down to 1 K passing the equilibrium states at 2500, 1250, 600, 300, and 
150 K (slow cooling).

0.0 0 2 0 4 0 <; 0 8 10 12

Figure 2. Distribution of tetrahedricity parameter.
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We deal with a monatomic system (all atomic radii are equal), thus the radical 
tessellation is equivalent to the Voronoi partition. The simplices network has been 
contracted with the parameters x = 0.1 and y  = 0.4 (see Section 3). The distribution 
of the tetrahedricity parameter in both samples is shown in Figure 2. More detailed 
analysis reveals that only the simplices with a large value of the tetrahedricity 
parameter are converted into degenerated units during the contraction of the RS 
network (formally, a simplex is a polyhedron composed on D+l vertices, where D 
is the dimension of the space; in three dimensional space only disordered tetrahedra 
can be called simplices; but here we will use notion simplices to describe all 
elementary units of RS network underlining their origin). Statistics of the simplices 
size for both samples is presented in Table 1. It is seen that the number of simplices 
is about 10% higher in the quickly cooled sample than in the slowly cooled one. In 
both cases the RS networks are composed mainly of four-atom simplices, but also a 
significant amount of the octahedral RS network units is detected. This can mean that 
the sample contains certain zones of fee or hep ordering. Because none of monatomic 
ideal crystalline networks contains 5-atom simplices, their appearence in the samples 
results from a local crystallisation. Tables 2 and 3 contain the cluster properties of 
4-, and 6- atom simplices, respectively. In the fast cooling case almost all 4-atom 
simplices form a single cluster, exactly as in the rep or bcc structures. Figures 3 and 
4 present spatial distributions of 4-, and 6-atom simplices in slowly cooled sample. 
Points are placed in the centres of the simplices, and sticks between them indicate 
that they share a face. As it is seen, the clusters have an arrangement that does not 
appear in the quickly cooled sample, where the whole simulation box is filled by a
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sim plex sizes
4 5 6

slow cooling 
fast cooling

79.4%
77.7%

4.9%
14.8%

15.6%
7.3%

Table 1. Simplex size statistics 
simplices. respectively.

in slowly and quickly cooled samples, containing 1973. and 2114

num ber num ber o f num ber o f size o f  the
o f clusters isolated simplices simplices in couples biggest cluster

slow cooling 24 6.1% 19.1% 74.3%
fast coolim; 32 1.4% 0.6% 97.6%

Table 2. Properties of clusters composed of 4-atom simplices.

number num ber o f number o f size o f  the
o f clusters isolated simplices simplices in couples biggest cluster

slow cooling 110 9.7% 15.6% 2.7%
fast cooling 82 30.6% 24.2% 6.4%

Table 3. Properties o f clusters composed of 6-atom simplices.
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Figure 3. Spatial distribution of 4-atom simplices in the slowly cooled Ni sample. Points indicate the 
centres of the simplices. and sticks join the face-sharing simplices.

Figure 4. Spatial distribution of 6-atom simplices in the slowly cooled Ni sample.
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num ber o f  polyhedra num ber o f  faces
2.8% 11

slow cooling 45.4% 12
45% 13
6.8% 14
6.6% 11

31.2% 12
fast cooling 36.2% 13

20% 14
5.2% 15

Table 4. Numbers of faces in the polyhedra.

single cluster of 4-atom simplices. It is evident that the volume of the slowly cooled 
sample is occupied by two distinct phases. One of them is composed of 4-, and 6-atom 
simplices. 4-atom simplices appear mainly in pairs, whereas the 6-atom simplices 
form much longer linear clusters. The pairs and the linear clusters have the same 
orientation. Exactly the same properties characterise the hep structure. The second 
of the detected phases contains only 4-atom simplices, and the following analysis of 
the RP network will show that this is a bee phase.

Radical polyhedra have been determined directly from the contracted RS 
network. Statistics of numbers of faces in the polyhedra is collected in Table 4. In 
the slowly cooled sample more then 90% of atoms have 12- or 14-faced polyhedra, 
whereas in the quickly cooled sample, polyhedra with 13 faces are most frequent. 
Using the shape recognition technique we can say that 31% of atoms in the slowly 
cooled sample have the first co-ordination shells as in a hep crystal, 42% as in a bcc 
crystal, and only 6.2% as in a fee crystal. The applied technique does not give so 
good results in the quickly cooled sample. Almost 95% of atoms have unrecognised 
neighbourhood structure, and 3% of them have an icosahedral local arrangement. 
Figures 5 and 6 present spatial arrangements of bcc-, and hep-surrounded atoms in 
the slowly cooled sample. The Figures confirm our former conclusions about the 
existence of the hep and bcc phases in the sample.

5. Concluding remarks
In this contribution we have described an effective way of utilising the tessel

lation method in structural analysis of MD simulated materials. Each radical diagram 
constructed for any sample contains some excess information concerning meanin
gless fluctuation of atomic position. In order to extract only useful data, we have 
applied a suitable graph contraction technique. The main point of the contraction 
algorithm is a careful removing of the short edges from the radical graph. We have 
achieved this by subsequent contractions of the subgraph related to each central atom. 
Proceeding in this way we have had under control an essential criterion of the short 
edges selection. It depends on the local subgraph structure, whether an edge is 
qualified as short or not. We have applied our technique in the analysis of structure
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Figure 5. Spatial arrangement of bee-surrounded atoms in the slowly eooled Ni sample.

Figure 6. Spatial arrangement of hep-surrounded atoms in the slowly cooled Ni sample.
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slowly and quickly cooled Ni. It lias been shown that both RS and dual RP networks 
contain a lot of useful information, and that the RP network is particularly convenient 
to perform the recognition of the type of local atom arrangement.
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