
A REDUNDANCE AWARE ALGORITHM
FOR THE RING PERCEPTION PROBLEM

GIORGIO MANCINI

Dipartimento di Matematica a Fisicct,
Universitd di Camerino, Madonna dalle Carceri, 62032 Camerino. Italia

inancini@task.gda.pl

Abstract . Following the guidelines proposed by R. Balducci and R. Pearlman [1] for an efficient exact
solution of the Ring Perception Problem, a new approach based on 'prc-filtcring' technique is introduced
to perceive rings in structures represented by 2-connected graphs. The resulting algorithm has proved
to reduce both resources allocation and redundant information processing when dealing with chemical
cases. Actual computing times have constantly shown a conspicuous reduction with respect to methods
using hash-tables 12.3] to treat redundant information. Furthermore no user intervention to 'tune'
effectiveness is required (e.g. hash-table dimensioning).

1. Introduction
The detection and analysis of cyclic structures is of interest in various fields.

Obviously the most effective approach is to get the least possible amount of data
needed to describe the structures under study; the identification of a minimal basis
of the ring space (a Smallest Set of Smallest Rings) of a structure meets the
requirement.

No doubt the work by Balducci and Pearlman has represented a major achieve
ment in exact determination of SSSR's. Following their guidelines to implement a
ring perception algorithm for chemical cases, the flow of operation has been restated
and a new approach (dubbed pre-filtering) to information propagation has resulted
in an original way to handle and reduce redundant information processing obtaining
an efficient algorithm using less resources and demanding no user intervention to
'tune' parameters in order to balance resources and performance.

Given a graph of N nodes and E edges, Balducci and Pearlman's algorithm
(BPA) performs two basic tasks:

(1) identification of a superset of a minimal basis of rings;
(2) selection of a set of R = E - N + 1 rings to form the required SSSR.
The original idea in BPA is the simulation of a synchronous communication

network in which each node represents a transceiver and each edge a communication

mailto:inancini@task.gda.pl

90 G. Mancini

channel. All nodes simultaneously receive and then simultaneously send 'path-mes
sages’ through communication channels from/to adjacent nodes in such a way that
any message received by a node n from a node m is forwarded to all nodes adjacent
to n. but m. The union of the paths traversed by two different path-messages
originating from a common source and reaching a common node (colliding on that
node) represents a ring in the structure.

BPA is designed such that all 'path-messages' have the same length, this length
being increased each time a message is transmitted, so that rings are identified and
processed in increasing length order to build up an SSSR.
Basically the whole process consists of four phases:

(a) network initialisation;
(b) messages sending;
(c) messages receiving;
(d) rings selection;

and develops cycling over b through d until a SSSR is obtained.
On the base BPA a model has been developed and implemented for chemical

cases (structures represented by 2-connected graphs for which N « E).

2. The underlying model
Adjacency matrix. The upper diagonal part of the adjacency matrix of the

structure is represented by an array of variable-length integer arrays such that the
lesser the degree of a node the shorter the representing array. The adjacency matrix
is used for nodes-to-edge and conversion together with connection checking throug
hout the process.

Path-messages. Each path message is represented by a structure made up of four
Helds:

(1) an integer recording the node that originated the message (nfirst);
(2) an integer recording the first edge traversed by the message (efirst);
(3) an integer recording the last node traversed by the message (nlast);
(4) a dynamically allocated integer array (DIA) keeping track of all nodes

traversed, save the first and the last.
The length of a path-message is the number of edges traversed by the message; each
path is reconstructed by means of a function indices_to_cdge() operating on the
couples:

(nfirst; DIA[I j), (I)IA[\]; DIA[2]), . . . , (DIA[n]; nlast), (nlast; current node).
Such a representation of path-messages (see [1] for comparison) has proved very
effective in saving memory resources.

The Redundance Aware Algorithm 91

Collisions. The collisions of two path-messages p, and p, ofthe same length / received
by the same node are classified as follows:

(1) no collision: nfirstj * nfirstj and efirst, ^ efirstj

[two path-messages originating from distinct nodes get to a common receiver:
the union of the two paths does not form a ring];

(2) node collision: nfirstj = nfirstj and efirst, ^ efirstj

[two path-messages originating from the same transmitter get to a common
receiver. If the paths are entirely separate, their union gives a ring of size 21,
otherwise their union contains at least two shorter rings];

(3) inverse-edge collision: nfirstj ^ nfirstj and efirst, = efirstj

[two path-messages originating from distinct transmitters traverse a common
edge in opposite directions and get to a common receiver. If the paths are entirely
separate save the first edge, their union gives a ring of size 2/ - 1, otherwise their
union contains at least two shorter rings];

(4) direct-edge collision: nfirstj ^ nfirstj and efirstj = efirstj

[two path-messages originating from the same transmitter and traversing the
same edge as the first one get to a common receiver; the union of the two paths
contains a ring of size at most 2(/-l)].

3. Pre-filtering
Perceived rings must undergo a linear independence test against the previously

identified elements of the SSSR in order to enter it or be discarded. Since the same
ring of size I may close on all of its nodes, a new technique - pre-filtering - has been
developed to exploit such behaviour (referred to as fu ll formation in the following):
having previously processed the rings formed on nodes I - I, while operating
on the n-tli, we can skip testing (pre-filter) all rings closing on it after passing through
a node in < n - since they have been already handled while processing node in.
Obviously full formation requires that all path-messages colliding on any node be
propagated. As a matter of fact the pre-filtering approach only requires that any ring
of length / passing through m and closing on n be a linear combination of a ring of
length / closing on in and some of the identified elements of the SSSR. It then suffices
to propagate just one of all the paths-messages originating from a common nfirst
involved in a node-collision [4],

92 G. Mane ini

Such a propagated path-message (a path-message in general), in its ramification
process, may eventually originate one or more collapsing path-messages (i.e. re
aching again a node previously traversed); this event is prevented during messages
sending phase.

4. Path-message functions
Path messages are operated on by a set of functions:

- indices_to-edgc(): see above;
- pushQ: appends 11/asl to DIA and updates nla.st with the sending node;
- merge(): selects a path-message to be propagated out of a set of mutually

direct-edge colliding messages;
- join(): given a pair of node/inverse-edge collided paths of length /, checks

paths for passage through one of the nodes already processed and for paths
intersectiomif the check fails an ordered sequence of edges is returned
identifying a ring of length 2//2/-1.

5. Transceivers
Each transceiver node (Tnode) is represented by a structure made of a receive

and a send buffer consisting in two variable length array of path-messages. Path-mes
sages in the receive buffer are processed by function receive() that identifies rings,
submits them to a ring selection process, moves messages to be propagated into the
send buffer, resets the receive buffer to the empty state. Path-messages in the send
buffer are processed by function send() that forwards an updated copy of each to the
receive buffers of adjacent nodes in such a way as not to collapse them.

6. Network Initialisation
The receive buffer of each Tnode n is set to the empty state and the send buffer

contains d„ (being d„ the degree of the node) distinct path-messages of length /. Each
path-message having nfirst and nla.st set to the same Tnode n, adjacent to n, efirst set
to the edge connecting n to n, and an empty DIA.

7. Send() algorithm
The send() function operates on the path-messages stored in the send buffers as

follows:
For each Tnode n(n= \ , . . . , N):

{
for each path-message p„ (/ =1, . . . , M) of length / in the send buffer of n:

The Redundance Aware Algorithm 93

{
for each Tnode in adjacent to n :

{
if in p„ results in * nfirst, DIA[1], . . . , DIA[1 -1], nlasl:

<
\

make a copy //„ of p„

push() n on //„

put p'„ in the receive buffer of in

delete //„
\1

}
delete pn }

}

8. Receive() algorithm
The receive() function operates on the path-messages stored in the send buffers

as follows (see [1] for comparison and for an efficient collision detector algorithm):

(1) [odd-sized l ings processing]

For each Tnode n (n = 1, . . . , N - 1):
(a) merge() into a single message any group of path-messages involved in a

direct-edge collision with each other
(b) join() any pair of path-messages [in the set identified by merge()] involved

in an inverse-edge collision and forward the resulting ring, if any, to the
ring selector

(2) [cven-lengthed rings processing]

For each Tnode n (n =1, . . . , jV-1)
(a') join() any pair of path-messages [in the set identified by merge()]

originating from Tnodes in > n involved in a node collision and forward the
resulting ring, if any, to the ring selector

(b') move any non collided path-message considered in (a) to the send buffer
(c) merge() into a single message any group of two or more path-messages

involved in a node collision and move the resulting messages to the send
buffer

(d) reset the receive buffer to the empty state.

94 G. Muncini

9. Ring selector
Supposing rc < E - N + 1 rings of the SSSR have been previously selected, the

ring selector operates as follows on a forwarded ring:

for / =1, . . . r, if the ring is not a linear combination of the rc rings previously
selected

(a) the ring enters the SSSR
(b) rc is increased by 1
(c) if/\ = E - N + 1 then SSSR determination process is stopped.

Linear independence of rings is tested using a conceptual Gaussian elimination
procedure: noting that a linear combination of two set of edges amounts to their
symmetric difference, the Gaussian matrix (maintained in upper echelon form) is
represented as a variable-length array of variable-length integer arrays and the
elimination process is carried out in a 'quasi-formal' manner as follows:

(a) according to the permutations array associated to the Gaussian matrix, build
the resulting set {Eo} of edges out of the edges of the ring to be tested (e.g.
if the ring is individuated by the set of edges {2,4,6} and the permutation
arrays contains {2,1,4,5,3,6,7,8,. . .} then Eo = {1,3,6})

(b) append {Eo) to the Gaussian matrix
(c) for i = I,..., rc:

{
carry out any new formal permutation required and perform linear combi
nation of rows i and c + 1 of the Gaussian matrix
if an empty set is obtained then: discard the incoming ring, remove row
t'+l, break cycle.

(d) if an empty set is not obtained then add the ring to SSSR.

10. Process driving
Finally, the overall process of SSSR perception is performed as follows:

(1) initialise the network
(2) set the iteration counter c to one
(3) increment c by one
(4) call send() for each node
(5) call receive() for each node
(6) cycle over steps 3 - 5 until E - N + 1 linearly independent minimal rings

are identified.

The Redundance Aware Algorithm 95

11. Conclusions
The algorithm described in the present paper has been implemented and tested

over a large number of chemical structures on different platforms /machines (VMS,
Linux, Irix, AIX. . . / Digital alpha, Pentium pc, SGI, IBM...) and to my best
knowledge it has been the first implementation of an algorithm following BAP
guidelines.

References

[1] R. Balducci and R. S. Pearlman. Efficient Exact Solution of the Ring Perception
Problem, J. Chem Inf. Comput. Sci. 1994, 34, 822-83 1

[2] Knut, D. E. Soiling and Searching. The Art of Computer Programming, Addison-Wes-
ley: Reading, MA, 1973; Vol. 3.

[3] Sedgewick, R. Algorithms in C. Addison-Wesley; Reading, MA,1990
[4] Horton, J. D. A Polynomial-Time Algorithm to Find the Shortest Cycle Basis ofa Graph.

SIAM J. Comput. 1987, 16, 358-366

