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Abstract: Monte Carlo study of nonradiative excitation energy transport in binary disordered systems 
is presented. Two methods of simulations are employed and tested. The results for emission anisotropy, 
quantum yield and fluorescence decay are compared with those of self-consistent diagrammatic model 
(SCDM).

I. Introduction
Nonradiative excitation energy transport (NEET) in disordered systems has 

been a subject of intensive theoretical and experimental studies for several decades 
[1,2]. The reason is not only still remaining strong interest in this phenomenon, but 
first of all its numerous applications in different areas of science and technology. The 
NEET process occurs in various biological systems, plays a very important role in 
photosynthesis, photographic industry, affects the parameters of dye lasers to name 
only a few.

Recently, rapid progress has been made in the theoretical treatment of the NEET 
in binary donor - acceptor systems by taking into account not only forward (D* —> 
D. D* —> A), but also reverse nonradiative energy transport (RNET) (A* —> A, A* 
—» D) [3-8]. Theoretical investigations of this latter process have been carried out 
within the frameworks of so called hopping [3-5] and diagrammatic models [6-8]. 
The hopping model, though quite straightforward in practical applications seems to 
be mostly oversimplified. The diagrammatic model represents a more systematic 
approach and its results are more general than those predicted by other theories.

By now, only several experimental papers dealing with comparison to analytical 
theories are known [9-11], The reason is not only the novelty of the RNET pheno­
menon, but also serious experimental difficulties concerning selection of appropriate
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systems in which the “pure” effect can be observed as well as the demand for high 
sensitivity of the experimental setup.

Having this in mind, Monte - Carlo simulation seems to be a perfect tool to gain 
profound insight into the mechanism of the RNET. Specifically, the consistency of 
any NEET theory can be verified and possible reasons responsible for disagreement 
between the theory and experiment can easier be identified.

The aim of this paper is to fill partly this gap and to provide more information 
on the mechanism of the RNET through the Monte-Carlo simulation (MC) method. 
Two different MC techniques will be presented in detail and evaluated. A comparison 
of the MC results to those of the SCDM will be presented.

II. The master equation and Green function
In this paper we will restrict the theoretical part only to the necessary conside­

rations required for comparison with the results of Monte Carlo simulations. Let us 
consider a system of volume Q in which energy can be transferred incoherently 
between N donors (D) and M acceptors (traps) (A) randomly distributed with number 
density po and Pa, respectively. Each molecular configuration 9v of the system is 
characterized by the locations (n, r i , ..., rN+M) of the molecules. The donor molecules 
are labelled 1 through N, and the acceptor molecules N+l through N+M. The 
probability that the excitation is on the j-th molecule at time t, p,(t) , for the fixed 
molecular configuration obeys the following master equation [6]:

Z < v r  Z
k~l,j*k

N+M N+M

"CP; +
k = N+l k=N+l

Z < Pk-  P, / *0 1 £  j  £ N.

( 1)

d p  N N N+M N+M
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The distance dependent transfer rate from they-th X molecule to the /-th Y 
molecule ((x,ye {D,A}) is denoted by wif1 (w'f' is defined to be zero). x0d and x0a are 
the lifetimes of donor and acceptor molecules, respectively, measured in the absence 
ofthe intermolecular transfer. For the sake of simplicity we shall assume the absence 
of the diagonal disorder. Under this assumption, the transfer rates w ^  = w*x, 
x e {D,A} are symmetric. The coherence and volume effects are also neglected.

Master equation in the compact matrix notation can be given by:

dPQK.t)
dt

W ° P(tK, t), (2)

where P(9?,t) is a vector with components pi(t), p2( t ) , ,..., pn+m (0 and 'W  is the N+M 
matrix defined as:
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N

- s Jk + Z < A- 1/,' I'OD » j £ N, k £ N.

Wjk = W °\ N + 1 Sj 5 N. tsN,

Wjk = Wjk , jSN. N + 1 Sk £ N + M. (3)

In the case of the dipole-dipole interaction the transfer rate is given by :

XV , x.y*{d.a],
T0X v r'j ,

and Tox denotes the actual lifetime of X molecule for the concentration of Y 
molecules py —» 0, R?Y denotes the critical radius for the energy transfer which can 
be determined from the experimental data.

Information concerning the excitation energy transport in the system considered 
can be obtained from the time and distance-dependent ensemble averaged density ol 
excitations:

The solution to Eq. (2) can be expressed using the Green function [6-8,12,13] 
d?(r, r', t), defined by the following relation:

or it can be obtained from the Monte Carlo simulation.
If the initial probability distribution function is determined by the spatia 

distribution of the excitation pulse, and if we assume that no acceptors are excited a 
time t = 0, then the Green function is given by:

r . t )= 5(rj - r ) p jCJt,t) Jdr,...JdrN+M - r ) p j(9t,t). (5]

(6;

a :
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The Green function lias the physical meaning of the averaged conditional 
probability density of the excitation being found at a position r at a time /, if it has 
been created at the initial time moment (t -  0) at the origin r'.

The Green function can be portioned into the diagonal part <y D(r,r',t), which 
represents the density of the initial site survival probability (it can be measured in the 
fluorescence depolarization experiment), and the non-diagonal parts, ^ D(r.r',t) and 
l£UA(r,r',t), representing the probability densities of the excitation being found on a 
donor other than the initially excited one, and on an acceptor, respectively (they are 
related to the mean square displacement and to the decay function).

5?(r,r ',t)=^5D(r,r'>t) + ^ DD(r,r',t) + ^ DA(r,r',t) , (8)

where
^ SD(r,r'>t ) -5 (r -r ' ){ (ex p (tW )) li) , (9)

3?DD(r.r',t) = ( N - ] ) ( 8 ( r l2- r  + r')(exp(tW))2i) , (10)

f DA(r>r',t) = M(S(rl.Ntl- r  + r'Xexp(tW))N+u) . (11)

Forward and Reverse Excitation Energy’ Transport

To take into account the reverse excitation energy transfer the Green functions 
^ A(r,r',t), d /^ r .r '. t )  and d/AD(r,r',t) should additionally be introduced. This is in 
connection with the process of energy transfer in the presence of energy migration 
in the acceptor ensemble.

III. Fluorescence observables
The nature of energy transport at long times and high concentrations can 

conveniently be investigated by performing the Fourier-Laplace transform ot the 
Green function <P{r.r\t) :

CO

^(k, e) = J dt exp(-e t ) |  d|r -  r'|exp(i k |r -  r'|)^(|r -  r'|, t) (12)
0 R1

If we define the quantity:

^ D(k ,e ) = ^ SD(E) + ^ DD(k ,e ) (13)

as the Fourier-Laplace transform of the probability density that the excitation is being 
found in the donor ensemble, then by inverting it for k = 0:

O D(t) = ^ ' ( ^ D(k = 0,e)), (14)
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we obtain the donor fluorescence decay Oo(t). In other words, the fluorescence decay 
curve describes the relative number o f excited donor molecules at time t after 
excitation.

Moreover, the function d/°(k, £) is strictly connected with the steady-state 
fluorescence observables, like, the relative quantum yield and the emission anisotro­
py. The donor relative quantum yield, TId/FIod , the ratio o f emitted and absorbed 
quanta by donors, can be expressed as:

ifo ! Îod ~ 0  / T0D) ^ D(k = 0,£ -  0) (15)

and the relative quantum yield of initially excited donors:

n i / n o o = ( i / O f D(£ = °)- 0 6)
If a sample of randomly oriented molecule is excited by a short pulse of linearly 

polarized light, the emission anisotropy of observed light can be written as

r(t) = In(t )+2Ii (t)'
(17)

where In(t) and li( t)  denote the paralell and perpendicular fluorescence intensity 
components to the direction of the polarization vector of the exciting pulse, respec­
tively. The fluorescence emission anisotropy can be calculated from the relation:

r D ^ r0D — ’H i  ^ t | d  0 ® )

which can be veiy easy exploited in the Monte Carlo simulations.
If we write out the formulas for Fourier-Laplace transform of the investigated 

Green functions 4 /^ (k , £) X.Y e {D,A} explicitly, then a series of products of w*v 
factors is obtained. Next, to determine the resulting Green functions, we have to sum
up all of these products (n —> °°). An excellent tool for this purpose is the 
diagrammatic technique [3,4,10-12].

As it was shown in our previous paper [11] the Green functions d/°D(k, £) in 
the k = 0 limit fulfill the following self-consistent equation:

(e +1 / Tod) [ f  °(e) + ^ DD(k = 0,6)] + (e +1 / T0A) ^ DA(k = 0,8) = 1 (19)
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Substituting the explicit formulas of the Green functions ^ v,x,Y 6  {da} into 
Eq.( 19) leads to the following equations:

1 X
----- 1---------

PxEx^
1 - -

PyF
e YXXY 

ex Px
1+ -

< N P y  f t
= 0, X. Y £ (D.A) (20)

Equation (20) is the basis for the self-consistent approximation procedure 
applied to the fluorescence observables. Let us review the consecutive steps of this
procedure. & (£) and £/ (£) are assumed to be the unknown functions. Next, we 
partially sum the diagrammatic series for functions X , X.Y G {d.a} . When these 
approximations are inserted into coupled nonlinear Eq.(20), the resulting equations 
involve only unknown functions f r D(Z) and , ^ A(£) and they can be solved. Then 
after substituting these solutions into the partially summed series for X XY one finally 
obtains the expressions for the considered Green functions d/*Y.

Pa)The function & (k, £) can be calculated from Eq.(13) using Eq.(20) with the 
result:

r (21)

i -
Pd t D PD PA t Dt A(l -  ̂  I  Pa! SA)

This equation enables to obtain the donor fluorescence decay by its numerical 
invertion.

/A
Moreover, by inserting the explicit form [1 1-12] of the Green functions d/ into 

Eqs.( 13) and (18) (versus the variables X XY, ^*D(£) and ,!/*A(£ )) we obtain:

and

TId ( hoD ~~
1 +

T*0D **____ /_Ioa_Pd
e = 0 (22)

rD  ̂r0D “ 1
j*DD DA ^  AD

Pd ~ PD PA £ SD£ SA( l - X AA /pAf A) '
0. (23)

A X Y .( i*od is the donor emission anisotropy, when p,\ —> 0; X ' are the diagrammatic
Pkyseries appearing in the definition of the Green functions S/ (k, £)).

One can see from Eq.(23) that in the presence of the RNEET the emission 
anisotropy decreases due to the excitation energy transfer from the excited acceptors 
to unexcited donors (X AU F- 0). In the presence of the energy migration in the acceptor



ensemble (X AA *  0), a decrease in the relative donor quantum yield and emission 
anisotropy is expected.

The formulas for fluorescence obserwables presented above form our theoreti­
cal basis for the so-called self-consistent diagrammatic model (SCDM), predictions 
of which will be compared to the results of Monte Carlo simulations.

IV. Monte Carlo simulation of the donor fluorescence
obserwables

In a simulation. N donors of concentration CDand M acceptors of concentration 
Ca, are randomly distributed in a three-dimensional cube ( Cx is the number of
molecules X in volume f2). The dynamics of the system considered is described bv 
Eq.(l). The effect of the finite size of generated system is reduced by introducing 
periodic boundary conditions (the cube is surrounded by replicas of itself) with 
minimum image convention (the molecule interacts with another molecule or with 
its periodic image).

The concentration course of the quantities of interest is obtained by rescaling 
critical radii for energy transfer and keeping the length of the cube edge equal to 1. 
The pseudo-random number generator (mixed congruential generator with the period 
of 2 '2), which passed several statistical tests was also verified by checking the 
simulated statistical clusters concentration against the analytically expected value.

The simulated configurations were sampled until the relative variance of the 
luminescent observables attained less then 0.1 %.

IV.l.Steady-state obserwables

The formal solution to Eq.(2) is
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P(t) = exp(t W) ° P(t = 0) (24)

The matrix ^ ( t)  = exp(tW) is the Green function which elements g,,(t) are 
conditional probabilities that the i-th molecule is excited at time t if at time t=0 the 
/-lh molecule was excited.

Asymptotic behaviour (steady-state values) of such observables as quantum 
yield and fluorescence anisotropy can be conveniently monitored performing the
Laplace transform of matrix exp(t W). The resulting matrix ( dz(t)) = ( s i  + W ) 1 
for 8 = 1 / T od, leads to the following expressions for steady state observables:
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where the symbol < ... > denotes the average over all possible configurations of
molecules, 1 is an identity matrix. The inverse matrix of 1 + Tod Wcannot be 
calculated analytically, but it can be exploited very well in the Monte-Carlo simula­
tion. The matrix 1 +  Tod 'W is not symmetric and it is defined as positive. This 
non-symmetric matrice was inverted by the Gauss procedure which was tested to 
show whether a system with no acceptors gives a quantum yield equal to unity. For 
N up to 600, the observed deviations were very small for all experimentally accessible 
concentrations (maximal error less then 0.01 %). Then, after a suitable number of 
simulated runs, averaged quantities of interest are calculated. The number of mole­
cules N for individual simulation runs is limited by the CPU time consumption and 
numerical stability. After performing several convergence tests, N = 500 was chosen 
as a sufficient number of molecules. The number of necessary simulated configura­
tions depends on molecular concentration. Therefore, at low concentrations smaller 
number of runs were sampled (e.g. 5000) than for intermediate concentrations. At 
very high concentrations, because of a strong dependence of the emission anisotropy 
on the number of molecules, much more runs with higher number of molecules is 
indespensable.

When applying the method of inverting relaxation matrix, the steady-state 
obserwables depend on the number of molecules N. This dependence is especially 
strong in the case of one-component system, as it is illustrated in Figure 1. For very 
high donor reduced density the relative emission anisotropy tends to the value 1/N. 
Therefore, to avoid this error one should perforin Monte Carlo run with the number 
of molecules as high as possible. Of course, the CPU time consumption stands as a 
barrier for increasing N. Fortunately, a careful analysis of one-component system 
leads to the conclusion that the correct values of emission anisotropy can be obtained 
throughout the whole density range, if the limiting value 1/N is subtracted from the 
simulated values obtained in the Monte Carlo simulation for a given N [19]. For 
two-component system strong dependence of luminescent obserwables on N is not 
observed. Compared to other Monte Carlo techniques this method is very efficient 
for one component system and for small acceptor concentrations in the case of 
two-component system. The time of individual simulation run increases with N ’ , 
where N is the number of molecules in the simulation.
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Fig. 1. Donor fluorescence emission anisotropy ro / tod versus the reduced donor concentration. Yd. 
for one component system. Solid curve represents the theoretical results [2], Squares (■). full circles 
( • ) .  up triangles (A), down triangles (T ) and diamonds (♦). denote the results of the Monte Carlo 
simulation for different number of molecules in the system, respectively. As seen from the figure the 
relative donor emission anisotropy decreases with concentration. This is due to the fact that energy 
migration increases with molecular concentration which diminishes the probability of fluorescence 
emission by primarily excited donor (see also Eq. 18).

IV.2. Step by step Monte Carlo method

The “step by step” Monte Carlo simulation method [14,15] consists in the 
employment of the random-number generator for the cyclic formulation of answers 
to two questions: when any of the preset luminescent processes will take place in the 
simulated system, and what kind of process it will be. This method was applied to 
investigate such phenomena as the concentration depolarization of fluorescence , the 
quantum yield and the shape of the decay curves.

The simulation algorithm include the following steps:
1 °the coordinates of a primarily excited molecule are determined (using random 

number generator). This molecule can be deactivated through the following proces­
ses:

(Pi) process 1: D* —> D, photon emission or nonradiative energy conversion, with
the ratel / Tod ;

(P2) process 2: D* + D —> D + D*, energy migration (energy transfer to the molecules
of the same kind), with the transfer rate wff5;
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(P3) process 3: D* + A —> D + A* nonradiative energy transfer from the excited
donor to an acceptor, with the transfer rate wyA;

2° If i-th donor molecule is excited, the values of the following total transfer
rates

N N+M

c ,i= l/ T 0D, C21= c3,= (27)
j = l . i* j  j=N + l

have to be calculated. Otherwise, when i-th acceptor is excited, the values of:

N+M N

2 > r .
j=N + l,i*j j='

(28)

are calculated.
3° The time at which any of the investigated processes occur (cp. step l11) is 

calculated by inverting the distribution function of the probability, p, (t, Pk)dt, that if 
at time t the i-th molecule is excited, then the process Pk appears in the time interval 
(t, t+dt):

where

3
p,(t) = Z p ( t-pJ  = c , exp ( - c ii) (29)

k=l

= c „ + c 2j+ c5l (30)

For this purpose a random number ru is generated and the time at which any 
process takes place is obtained by inverting the distribution function of the probability
p,(t, Pk),

'i
JPj(t)dt = rh , i.e. tj = - ( l / a i) lnrlj (31)
0

The same procedure can be applied to the excited acceptor. In this case all 
constants Cj, should be replaced by c'y, j = 1,2,3

4° In this step it is determined which process took place at time tj. By generating 
next random number, iwj, such a value of index k can be found for which the following 
inequality is satisfied:

k-l k
Z CJ. <f2.C. ^ Z Cj, ’ k = l-2-3 (32)H j=i

If k=l, then the activated molecule is quenched by a photon emission or 
nonradiative excitation energy conversion and it means that this pass of simulation 
is finished. If k=2 or k=3, the energy migration or energy transfer process takes place,
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and it is necessary to determine which molecule will be now activated. For this reason 
the third random number, r3i is generated and the value of index n is found which 
fulfill one of the inequalities:

Z WT  < T (cu + c3i)^ Z WT  >f°r n < N (33)
j= l J=1

or

Z wr + z < A<r.i(c,i+c« ) ^ wr + i > r . f°rn>N  <34>
j-1 j=N+1 j - l  j=N+l

where n is the number of next activated donor or acceptor molecule. Then, after 
inserting the value of n for the index i, the simulation goes to step 2° .The simulation 
run is finished when after several migration or transfer energy acts the process with 
k=l occurs in step 4U (photon emission or nonradiative energy conversion). After that 
new simulation can run (i.e. for a new donor and acceptor spatial configuration).

In the case when an acceptor is excited, the number of the next excited molecule 
,n, is determined from the relations:

Z < < r ll(cl1 + c t)
j=N+1

is  i<
j= N+ |

, for n < N + M (35)

N+M n-1 N+M n

z < + Z <  < a (c;, + c;, F Z w r + Z w r , f b r n < N (36)
j=N+l H j=N+l j=1

The relative donor quantum yield is calculated by dividing the number of 
simulation runs finished with the donor emission by the number of all runs. The 
relative donor emission anisotropy is calculated from the relation rD / r0D = T|, /T |D,
where T), is the quantum yield of initially excited donors and 1)0 is the total donor 
quantum yield, i.e., dividing the number of simulation runs finished with primarily 
excited donor emission by the total number of runs.

The donor decay curve is obtained in a way similar to the real experiment, i.e.,
the time scale (e.g. [0, 3 Too]) is divided into appropriate number of intervals (e.g. 
2048) and, if photon emission at the time tj is “observed”, then the number of photons 
is increased in the respective “channel”. Finally, the normalized decay curve (histo­
gram) is obtained using a simple formula:

f  t  k _zVj=i j=i z

it * nwx

° d K ) = > -  Z n j / Z n j  > A t k ^ k / k ^ J t (37)



where nk denotes the number of photons in the k-th channel, kma\ is the total number 
of all channels.

The steady-state values of relative emission anisotropy for the system of 
rhodamine 6G (donor) and rhodamine B (acceptor) in glycerol solution obtained 
using the “step by step” Monte Carlo simulation are presented in Figure 2.
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Fig. 2. Donor fluorescence emission anisotropy rn / tod versus the acceptor concentration. Ca . at fixed 
donor concentration in the presence of forward and reverse energy transfer. Solid theoretical curves 
are calculated in the framework of the SCDM model [11.12], Triangles (A), full circles ( • )  and squares 
(■) denote the results of the Monte Carlo simulation.

Figure 2 shows the results obtained for low' and high donor concentrations. 
Simulation data for the emission anisotropy were obtained for different acceptor 
concentrations at fixed concentration of the donor. Theoretical curves are denoted by 
solid lines; full circles and squares and triangles denote the results of the Monte Carlo 
simulation. As seen the theoretical curves are in a very good agreement with the 
results of Monte Carlo simulation nearly for all the acceptor concentrations, which 
indicates the consistency of the SCDM method.

The step-by-step Monte Carlo method is generally a very efficient and complete 
method and it can be applied to a w'ide variety of investigated systems. The CPU time 
consumption necessary for a simulation run is lower then in other methods.

IV.3. Monte Carlo simulation of the donor fluorescence decay

The fluorescence decay profile 0 D(t) can be described in terms of eigenvectors 
and eigenvalues [16-18] in the following way:

Let us assume that the matrix D is the diagonal matrix the main diagonal of 
which contains the eigenvalues of matrix W and that matrix Z is the matrix of right 
eigenvectors of matrix W. In matrix Z, the eigenvector corresponding to the
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eigenvalue Z, is located in the i-th column of matrix Z. Thus, the donor and acceptor 
fluorescence decay profile are given by

N N N+M

MO = k„2p,(0 - 2(«'"), p,(o) = ̂  2 2  2(z-,)»zl, . m
i=l i= l j= l i=l j= l k=l

N + M N+M N+M tr N+M N N+M

M O  = 2  P.(0 = k „  2  2 ( « " ) ,  p,(0) = %  2  2  2 ( z - |),1z >J =-■■■ (39)
i=N+l i=N+1 j=l = N+I j= I k=l

where ki-o and ki A are the rate constants for the donor and acceptor fluorescence, 
respectively. The eigenvectors and eigenvalues of real nonsymmetric matrix W were 
computed as follows: first, the matrix was balanced; second, accumulating orthogonal 
similarity transformations were used to reduce the balanced matrix to a real upper 
Hessenberg matrix; third, the shifted QR algorithm was used to compute the eigen­
vectors and eigenvalues of this Hessenberg matrix. The inverse matrix to matrix Z 
was calculated using the standard numerical Gauss procedure.

The fluorescence acceptor and donor decay profiles 0 A(t), Ch^t) obtained in 
terms of eigenvectors and eigenvalues of the relaxation matrix W for two-component 
system are presented in the Figures 3 and 4, respectively.

Fig. 3. Acceptor fluorescence decay 0 A(t), versus the time t. at fixed donor concentration for various 
acceptor concentration in the presence of forward and reverse energy transfer. Solid theoretical curves 
are calculated in the framework of the SCDM model [11,12]. Full circles ( • ) ,  squares (■). triangles 
up( ▲) and down (T). denote the results of the Monte Carlo simulation.
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Fig. 4. Donor fluorescence decay O d(I) versus the time t. at fixed donor concentration for various 
acceptor concentrations in the presence of forward and reverse energy transfer. Solid theoretical curves 
are calculated in the framework of the SCDM model [ 11,12], Full circles ( • ) .  squares (■). triangles 
up (A) and down (T). denote the results of the Monte Carlo simulation.

Figure 3 shows the acceptor fluorescence decay obtained for high fixed donor 
and several acceptor concentrations. This figure is particularly interesting, since it is 
not possible to measure directly the acceptor fluorescence observables in the experi­
ment of interest. It is seen from the figure that shortly after pulse excitation the number 
of fluorescing acceptors increases, then attains its maximum followed by a rapid 
depopulation of the excited state. Such a character of this temporal course is 
determined by the relation between the effective rate of energy transfer between 
donor and acceptor species and the rate of spontaneous emission and differs visibly 
from that of donors. The reason is that at time t=0 there are no excited acceptors, but 
only donors which absorb the excitation energy. At times t > 0 acceptors receive 
nonradiatively the excitation energy from donors and their number in the excited state 
increases. From now on they start to emit fluorescence and return the excitation 
energy to the donor ensemble. These donors can either emit fluorescence or transfer 
the excitation energy again to the acceptor set. These processes can repeat an arbitrary 
number of times. The correctness of the decay kinetics predicted by the SCDM is 
confirmed by the MC results.

Figure 4 shows the donor fluorescence decays obtained for the same systems. 
The monotoneous character of the donor decay can be seen in this figure. It results 
from the fact that at t=0 donors are excited by the pulse of light (acceptors are 
unexcited) and from now on the depopulation of their excited state starts either 
through the fluorescence or nonradiative transfer to acceptors, the latter process being 
somewhat slowed down by the back transfer to the donors. As seen theoretical curves
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are in a very good agreement with the results of Monte Carlo simulation nearly for 
all the acceptor concentrations, which again confirms the consistency of the SCDM.

Final remarks

Nonradiative excitation energy transport was investigated using two different 
MC methods, namely step by step and relaxation matrix method. Both methods 
equally well describe the properties energy transport and the agreement between the 
SCDM theory and MC results is excellent independently of the method used. 
However, step by step method is straightforward and more efficient, especially in the 
case of complex systems due to lower CPU time consumption. The Monte Carlo 
method based on the eigenvectors and eigenvalues of relaxation matrix also seems 
to be very efficient due to parallelising the computer code. Of course, the CPU time 
consumption of standard vector algebra algorithms is proportional to N \ where N is 
the number of molecules (dimension of investigated matrix). Therefore this method 
is particularly good when applied to one component systems.

The excellent agreement between the SCDM and MC leads to the conclusion 
that the theory of interest can be used in description of real physical systems. Further 
developments taking into account also the effect of direct light absorption by 
acceptors occurring mostly in real physical systems as well as time - resolved and 
steady - state experiments are in preparation.
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