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Abstract: Phonon-assisted hopping o f carriers between spatially distinct locations is the basic transport 
mechanisms in low-mobility solids (weakly doped or strongly compensated semiconductors, amorp
hous solids, glasses, organic solids, transition metal oxides, superionic conductors). In the present paper 
we consider the electron transport close to the Fermi level. The calculation o f the current-field 
characteristics in random hopping systems for arbitrary strength o f the electric field is a rather 
complicated task. It involves simplified methods such as percolation theory or effective medium 
approximation (EMA). or requires a purely numerical treatment. A short review of our recent work 
within the letter approach is presented below. In particular, we discuss the dependence of the 
current-field, and differential conductivity-field characteristics on: 1) the amount o f the off-diagonal 
disorder; 2) the system dilution; 3) the degree o f the macroscopic-scale spatial non-uniformity of the 
hopping centre density.

1. Introduction
Phonon-assisted hopping of particles between spatially distinct locations is one 

of the basic transport mechanisms in solids [1-3]. The hopping mechanism dominates 
in low-mobility systems. In particular, the mechanism is active in a great variety of 
materials such as weakly doped or strongly compensated semiconductors, amorphous 
solids, glasses, organic solids, transition metal oxides, superionic conductors. In the 
present work we concentrate ourselves on the electron transport close to the Fermi 
level.

A theoretical study of the charge carrier hopping transport starts from a model 
Hamiltonian that takes into account all the essential features of the specific system.
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The Hamiltonian must describe electron subsystem, phonon subsystem, electron- 
phonon interaction, and the interaction with external fields. The electric current can 
be expressed by the diagonal elements of the density matrix. In the case of hopping 
at the Fermi level the one-electron approximation is obviously not sufficient, and at 
least the Hartree-Fock decoupling should be performed in order to get the proper 
density matrix equation of motion. For crystalline systems, because of their transla
tional symmetry, a great deal of analytical work can be done. On the other hand, the 
calculation of the current-field characteristics in random hopping systems involves 
simplified methods such as percolation theory [4-9] or effective medium approxima
tion (EM A) [ 10-12], or requires a purely numerical treatment [13-18]. A short review 
of our recent [18] work within the letter approach is presented below.

The paper is organised as follows. In Section 2 the electron hopping problem is 
formulated, and the general physical theory of this section is translated to the 
numerical problem in Section 3. Some exemplary results are presented and discussed 
in Section 4. Section 5 contains concluding remarks.

2. General formalism
It is assumed [1], that electron transitions between different levels of an atom 

do not effect the charge transport. Consequently, each atom is assumed to have only 
a single energy level. The one-electron wave function, T(r), is written as a superpo
sition of the atomic electron wave functions cp,„:

T (r) = c/„,(p„,(r-R), O

where (pm(r-R„,) is the solution of:
r — f r  a (2)
|_ ^   ̂ (T IT;) J tPm (I* k  — £m (pm (r—R „,) .

Here t/,„(r-R,„) is the electron potential at the m-th atom located at R,„, me is the mass 
of the electron, and A is the Laplace operator.

2.1. Hamiltonian

As mentioned in the introduction the full Hamiltonian //suitable for the study 
of the hopping transport contains components describing electron subsystem He, 
phonon subsystem //,,/„ electron-phonon interaction //,.,,/„ and interactions with the 
external electric field He- In particular, the Hamiltonian components are constructed 
as follows:
a) electron subsystem Hamiltonian,

/ /  —  ^ ^  £ / / i  a „ ,a m  T  ^  Jm 'm  Orn'Orn ,  ^

m m'm
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where dl„ and am are the creation and annihilation operators of the electron in the state 
cp,„(r-R„;), respectively, zm is the electronic energy of the /H-th atom, and is the 
resonance integral between the neighbouring sites:

Em — <tp»i( r-R/n)\He\(p„,( r-R „)),

Jm'm = (qv(r-R„-)|//.|<Pm(r-R„)) ; (4)
b) phonon subsystem Hamiltonian,

Hph = ^ (b \b „  +1 / 2 ) ,  (5)

where ooq is the frequency of the phonon with the wave vector q, whereas bq , and 
bq are the phonon creation, and annihilation operators, respectively;
c) electron-phonon interaction,

He-ph = amam ~b^q [wm(q)^q + Wm(q)/?q] ,

where
m, q

Mm(q) =
1

V2jV
y„,(q) exp(-/qR ,), (7)

and y»,(q) is the electron-phonon coupling constant, and JV is the total number of sites 
in the system;
d) interaction with external electric field,

H ,; = -  DE, (8)
where D is the operator of the dipole moment,

11 — c^  dnfm OmCim, d/«'/» — {tpm'(r— R);/r|ijtpm(r—R,i)), ^
m,m

and e is the electron charge.
The total Hamiltonian for the hopping system is the sum of the above contribu

tions:
H = H C + Hllh + He-I>h + H,; . (10)

In amorphous materials Rm, £m and Jm’m (4) are random variables, and rpm(r-Rm) is 
interpreted as a localised state centred at R,„.

2.2. Electric current

The electric current j is related to the dipole moment D by the expression

j( /)  =
1 cJD(t) 

Q  cJt ’
(11)

where Q. is the volume of the system, and
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D(0 = I f  U) D U(t) , 
with the time-evolution operator

U(t) = exp[ -  t /  H (t')dt'] . 
"  o

Approximating D by

h  Rff; am(in

( 12)

(13)

(14)

which corresponds to the neglecting of the non-diagonal elements in respect to the 
site indices, one obtains

i « ) = § l R „
III

r/p „,(/) 
dt ’

(15)

where p,„ is the w-th diagonal element of the density matrix, and describes the 
thermodynamically averaged concentration of the charge carriers at the m-th hopping 
centre. The average concentrations p,„ are given by [1]

Tr\e-,H~-*l>,/‘rir(l)ala<l6>

where p is the chemical potential, and ^  is the particle number operator, 

$ =  ^  cimUm , and in the Markovian limit obey:
m

dpm(f)
~~dt~ £  !P«<0(1- PnMWn,'m{t) -  p«(/)(l- Pn,i‘)W„,„it)\

where Wm;n are the symmetrised jump probabilities.
(17)

3. Numerical model for the dc conductivity
The bulk density of the dc hopping current is given by

j = d " ) , (' 18*

where
i(jn',m) = eWnim j^p„,'(l-p,„) exp(pF„,'m/2 )  -  p„,(l-p„,') exp(-PF„,',„/2)j . (19)

Here Vm<m = Vm< - V,„, Vm = p,„+ eum, where p,„ is the energy of the m-th centre, is
the external field potential at the point R,„, P= k l\ pm is the occupation probability 
of the /77-th centre, and Wm'„, is the symmetrised jump probability [1]:
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W„/,„ = J  dt'cos( ,

=-h~2\.Jm'n,\2exp(-2Si(m\ m))x

( 20)

(21)

S,{ni,m) = —  £  |y(q)|2[ 1 —cos (q(ROT-R OT))] coth(-//COq(3/2).
q

7In the limit of strong electron-phonon interaction, |y(q)|_ »  1, the expression for 
W„„„' is dominated by the square of the resonance integral,

Wni'm — Ifo ■ exp( 2a|I^„',„|). (23)

where IV0 weakly depends on the external field, if only eE(R,„'- R,„)A- is smaller then 
a typical barrier height between the centres m and m'.

For each centre m, m = 1 JV, the Kirchhoff law applies.

where suitable periodic boundary conditions must be taken into account. The above 
system of equations is being solved numerically under the following normalisation 
condition:

where N is the total number of localised states in volume, and n is the average electron 
concentration.

The algorithm can be summarised as follows. Let p/,...,p, denote the occupation 
probabilities of the centres belonging to the contacts, and p,+/,..., p.v - occupation 
probabilities of the bulk centres. According to the model the following system of 
equations is obeyed:

£/(/«',/;/) = 0 , (24)

(25)

m

N

F i(P) = X  P'"'-  N n  = 0 ’
(26)
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Fw(P) Pm - l(l Pm)CXp( (3E//j)

Pm( 1 P/w-i)cxp( PE/w-l) — 0 , m 2 , r
(27)

N

F,„(P) = ^  W„,'m [ p,„'( 1 -p,„)exp(P K 2) -
m'=l

(28)
-  p»,( 1 -  p,„')exp(- (3 Vm',„/2)\ = 0 , m = r + I ,... N,

Twhere p = [p/,p2,...,p;v] • Equations (26)-(28) are solved using the following iteration 
procedure:

* p * - k " M p )
aP |p

-,-1

n p (i)) , k=  1,2,...,
(29)

where k denotes the number of the successive iteration, and F(p) = [^/(p), 
^(pJ^.-.F/^p)] . The algorithm has been highly optimised [16] taking advantage of 
a partial sparseness of the matrix

d/'Cp), T 1
~ a r lp(0) •

due to a particular form of the equations for the near-contact centres. Both singular 
decomposition and Gauss elimination methods were applied. After calculations 
within the modified Newton relaxation method several iterations with the standard 
Newton method (/ = 1) were performed. On this stage the norm of the functional F 
was being controlled, and so the best result was accepted. Finally, the solution of the 
system

M E )
dE

dF{p) | 1 ‘ dF
dp 'p(0) d E

was being corrected by iterative relaxation methods. Our modifications of the original 
Bottger and Bryksin algorithm [13] allowed a significant increase of the solution 
accuracy. The CPU time necessary to calculate onej - E characteristic for 1000 centres 
in the simulation box was 4-6 hours on the SGI workstation with the R 10000
processor.
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For hopping systems with a translational symmetry, the j-E  characteristics can 
be calculated almost analytically. In particular, the small polaron transport can be 
described starting from the equation

P"it } -  X  [ p -  P,„(/)ftW(/)]
tri

(30)

In the case of time-independent electric fields, the Wmm' coefficients are constant, and 
the Laplace transform of (30) reads:

•̂ P/ziC*) ~fm , ^P//i'( )̂ P/w(̂ )Wmm' 
m

(31)

where/,, = p,„(/)|/=o. Taking now the Fourier transform we get from (3 1)

P (M  = /k )  /[.v + W(0) -  tT(k)] (32)

where:

p(k,.v) = X  Pm(i) exp(/'kR,„), (33)

(T(k) = ^  Wm- m+m- exp(/kR,„), (34)

/ k )  = Y j f m exp(/kH„) - (35)

On the other hand the general expression for the current density (15), submitted to 
the Laplace and Fourier transformations, after taking into account equation (32) 
becomes:

j(s) = “  / k) v kftWlk = o , (36)Lis

and returning to the original /-variable

j(0 = e n ^ J R ^  -  R,n W m m' , (37)

m,m
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where for /(0) the total number of the carriers in the system, N  = X,„ f„, has been 
substituted. As expected, the final expression for the current density is time-inde
pendent. The simplicity of (37) implies that in the special case of periodic systems 
the CPU charge is reduced to few seconds.

4. Current-field and conductivity-field characteristics - 
results and discussion

The numerical model presented in the previous section has been implemented 
over ten years ago by Bottger and co-workers [13-15]. These early works describe 
rather preliminary results, limited to an extremely low range of the system parame
ters. In particular, in [13] only a special case of highly diluted system with no 
on-diagonal disorder is considered, and totally random but spatially uniform on the 
macroscopic scale distributions of the hopping centres is used. The results of [13] 
suggest that the differential conductivity a  decreases (down to its negative values) 
with increasing external field E in the low-field region, whereas in the high-field 
region the conductivity rapidly increases with increasing field, in agreement with the 
predictions of the effective medium theory [1]. Such a field dependence of the 
conductivity is quite different from the conductivity field-dependence in systems 
with translational symmetry, where a  increases monotonously with increasing field. 
We have performed extensive calculations in order to study the transition between 
the two types of the current-field characteristics (Sections 4.1 to 4.3). Furthermore, 
the influence of the degree of the macroscopic-scale non-uniformity of the centre 
spatial distribution was investigated (Sec. 4.4).

4.1. The influence of the degree of the off-diagonal disorder

In order to investigate the influence of the off-diagonal disorder on the current- 
field characteristics, the calculations have been performed for the sequence of the 
centre distributions obtained as distorted simple-cubic lattices. In particular, the nodal 
positions were shifted at random within a cube of the edge equal to pa , where a is 
the cubic lattice constant, andp  = 0.1,0.2,..., 0.9, 1.0. Figure 1 shows the current-field 
characteristics calculated for systems with no on-diagonal disorder, for various 
degrees of the off-diagonal disorder, and for various dilutions a, where a  is defined 
as the ratio of the average distance between centres to the centre localisation radius. 
Figure 2 shows the corresponding field dependencies of the differential conductivity. 
In both Figures the normalised field E' is defined as E' = qEHakT. As it is seen, 
although the influence of increasing off-diagonal disorder (increase ofp)  is qualitati
vely similar for each dilution, there are significant quantitative differences. In 
strongly diluted systems the current values increase by several orders of magnitude 
for/; increasing from 0 to 1. Such a behaviour is related to the fact, that in more 
distorted systems the carriers find more easily an extremely effective percolation 
cluster which dominates all other paths. In dense systems the dispersion between the
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conductivities of different current paths is lower, and the changes of the current values 
in the function of p  in much smaller. The plots of the differential conductivity (Figure 
2) reveal the appearance of the conductivity minima for sufficiently disordered 
systems. At given dilution a  the minimum appears at higher fields in more disordered 
samples (greater/^), whereas at fixed value of the p  parameter the field corresponding 
to the conductivity minimum is higher for less diluted centre distributions.

Figure 1. Current-field characteristics calculated for systems with no on-diagonal disorder for various 
degrees p  o f the off-diagonal disorder, and for various dilutions . A: a  = 5.0: curve a: centres in nodal 
positions o f a simple cubic lattice (j> = 0); curve b: p  = 0.5; curve c: p -  1.0; curve d: totally random 
centre distribution; B: a  = 15.0; curve a: p  = 0; curve b: p = 0.2; curve e: p  = 0.4; curve d: p  = 0.6; 
curve e: p  = 0.8; curve f: p  = 1.0; curve g: totally random centre distribution.

Figure 2. Field dependence o f the differential conductivity calculated for the curves o f Figure 1. A; a  
= 5.0; B: a =  15.0.

4.2. The influence of the system dilution

Current-field characteristics calculated for regular systems (simple cubic lattice) 
in their dependence on the dilution are shown in Figure 3, whereas the corresponding 
conductivity-field characteristics are presented in Figure 4. At low fields the Ohm
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law is obeyed, and the extension of the ohmic range shrinks on increasing a. The 
values of fields, at which the conductivity deviates by 1% from its values at E = 0 
are shown in Figure 6, curve a. In the medium-, and high-field region the current is 
proportional to exp(aE) (Figure 3A), and the coefficient a strongly depends on the 
system dilution. The extension of the ohmic region in random systems is smaller then 
in the regular ones for dense distribution of centres, whereas for diluted centre 
distributions a reversed relation holds (Figure 6). Moreover, on increasing off-diago
nal disorder the width of the ohmic region becomes less sensitive to the system 
dilution. As far as the shape of the current-field characteristics is concerned, in 
random systems the relation j  ~ exp(aE) is also obeyed in the high field region.

Figure 3. Current-field characteristics for regular (simple cubic lattice) hopping centre distribution in 
their dependence on dilution . A: lin-Iog scale; B log-log scale. Curves a: a  = 2.5; curves b: a  = 5.0; 
curves c: a  = 10.0; curves d: a  = 15.0.

Figure 4. Field dependence o f the differential conductivity calculated from characteristics o f  Figure 3. 
Curves a: a  = 2.5; curves b: a  = 5.0; curves c: a  = 10.0; curves d: a =  15.0.
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However, in contradistinction to the regular centre distribution the a coefficient 
shows rather marginal dependence on a  (Figure 5 A). Figure 5B shows the appearance 
of the differential conductivity minimum in sufficiently diluted samples (. Figure 2).

Figure 5. Current-field characteristics (A), and conductivity-field characteristics (B) for random 
hopping centre distribution in their dependence on dilution . Curves a: a  = 2.5: curves b: a  = 5.0; curves 
c : a =  10.0: curves d: a  15.0.

Figure 6. Extension of the ohmic range o f the 
j-E  characteristics in the function of system 
dilution . E'%1 is the field, at which the diffe
rential conductivity goes away from its initial 
value (at E' = 0.0) by 1%. Curve a: regular 
centre distribution, curve b: random centre 
distribution.

4.3. The influence of the centre co-ordination

In two previous Sections the results obtained for reppresentative model spatial 
centre distributions (distorted simple cubic lattice, and totally random centre distri
bution) were discussed. In the present subsection we consider the spatial hopping 
centre distribution obtained from realistic molecular dynamics structural simulations. 
As an example let us consider one of the materials revealing a small polaron transport, 
a binary oxide glass of composition .vViOsO-vjPiOs. It is known [19] that in 
vanadate-phosphate glasses electrons jump between the vanadium ions V 4 and V ", 
The radial distribution function V-V shows a sharp narrow first peak, the position of 
which only weakly depends on the glass composition. At the same time the V-V
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coordination number depends obviously significantly on the glass stoichiometry. 
Thus, strong spatial correlations do exist in the glass. No such a correlation appears 
in random site distribution.

In order to investigate the influence of the average centre co-cordination on the 
j-E, and a-E characteristics vve have performed a series of classical molecular 
dynamics (MD) simulations of the jcViOsO-ĵ P iOs glass with .v = 40%, 50%, 60% 
and 70%. The MD simulation were performed in isobaric-isoenthalpic (Npll) [20], 
and microcanonical ensambles for samples containing 2000-K3000 atoms. Interatomic 
interactions were written in a two-body form (repulsive short range Born-Mayer 
potential, and long range Coulomb interactions calculated with the aid of the standard 
Ewald method). The V-0 interaction parameters were obtained using the ab initio 
molecular cluster method [21], Other interaction parameters were taken from [22]. 
A typical thermal history of the MD-simulated glass consisted in: 1. preparation of 
well equilibrated melt at high temperature (3000K), 2. stepwise cooling down to 
300K., passing equilibrium states at 2000K and 1000K. At each temperature the 
system was thermalised during 2-^4-104 femptosecond time-steps, whereas the struc
tural information was collected during further ln-2104 time-steps. The V-V radial 
distribution functions for* = 40%, 50%, 60% and 70% are shown in Figure 7. The 
corresponding V-V coordination numbers are 2.5,3.1,3.6, and 4.2, respectively. The 
final equilibrium distributions of vanadium ions in the glass were then used to 
calculate the j-E, and a-E curves. Within the present model the experimental field 
dependences of the normal conductivity (j/E) are well reproduced for a  = 2.5-C3.0. 
Note, that the value of a  determined from the AC measurements [19, 23] is about 
2.75. Thus, since the average distance between hopping centres (vanadium ions) is 
almost the same for each x, and only the average centre co-ordination is.Y-dependent, 
the dependence of the j-E  characteristics on the vanadium-phosphate glass stoichio
metry can be explained in terms of the variations of the average V-V co-ordination.

Figure 8 shows the differential conductivitiy in its dependence the applied 
external field for two values o f, both much higher then in xViOsfl-iOPiOs glasses.

Numerical Studies in non-Ohmic Hopping Conditions

Figure 7. The first peak of the V-V pair radial 
distribution function for,vV2 0 s(l-.rJI^Os glas
ses. Curve a: x = 70%. curve b: .v = 60%; curve 
c: x = 50%; curve d :x  = 40%.

r|nm]
0

0.30 0.35 0.40
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for various average centre co-ordinations. It means that the curves in Figure 8 do not 
correspond any more to the real vanadium-phosphate glass, but rather to a model 
glass-like spatial distributions of centres, characterised by an approximately constant 
inter centre distance with various average co-ordinations. As it is seen, the conduc
tivity minima can readily appear in glassy systems even with marginal dispersion in 
inter centre distances. The minima are deeper for low co-ordination systems, and the 
depth decreases with increasing value of the ratio between the average inter centre 
distance and the centre localisation radius. For sufficiently dense systems (small 
enough ) the conductivity minima are absent, and the conductivity increases mono- 
toneously with the field for each x. The increase of is then more rapid for highly 
co-ordination systems than for low co-ordination systems.

Figure 8. Field dependencies o f  normalised differential conductivity in their dependence on the avarage 
co-ordination number and on the system dilution . flic conductivities calculated for the centre 
distribution is topologically equal to the distribution o f vanadium atoms in MD simulated samples. 
Figure A: a  = 5.0; Figure B: a  = 10.0. Curves a: average centre co-ordination 4.2; curves b: 3.6; curves 
c: 3.1.

4.4. The influence of the macroscopic-scale spatial non-uniformity 
of the centre density

An exponential dependence of the hop probability on the distance between the 
neighbouring centres should lead also to a strong influence of the macroscopic-scale 
variations of the centre density on the current-field, and conductivity-field charac
teristics. In order to investigate this phenomenon a series of calculations for expo
nentially changing concentration of centres were performed. In particular, the total 
centre concentration N/, was assumed to depend on the distance from the injecting 
contact as

N h exp ( -  x/D), (38)
whereas the energetic centre distribution J{t) was constant over the layer thickness. 
Figure 9 shows the current field characteristics of samples containing always the same 
number of states (1000), distributed along the field direction according to (38) for
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various degrees of spatial non-uniformity L/D, where L is the layer thickness. The 
LID ratio ranged from 0.0 (spatially uniform system) to 3.0, and the calculations were 
repeated for various dilutions . The curves obtained for spatially non-uniform layers 
with LID = 1 .0  + 3.0, for sufficiently high dilutions (Figures 9B, 9C, 9D) have an 
N-like shape, i.e. the current reaches its maximum value at relatively low fields 
(Figure 11, curves a, and b), then decreases to its minimum value, and finally 
increases exponentially at higher fields. Both the position and the depth of the current 
minima depend strongly on the degree of the spatial non-uniformity of the centre 
concentration. With increasing L/D ratio the minimum values of the current become 
lower, and appear at higher fields (Figure 11, curves c-e). Figure 10 shows differential 
conductivity o(E '), normalised to a ( f '=  0), calculated from the characteristics of 
Figure 9. As it is seen, the curves corresponding to L/D > 1.0 are all almost identical 
each to other, at least for sufficiently diluted systems. It means that in relatively 
diluted systems the relative changes of the differential conductivity do not depend

Numerical Studies in non-Ohmic Hopping Conditions

Figure 9. Current-field characteristics calculated for various layer non-uniformity parameters L/D. 
Figure A: a  = 2.5; Figure B:a = 5.0; Figure C; a  = 10.0; Figure D: a  = 15.0. Curves a; L/D = 0.0; 
curves b: L/D = 0.5; curves c: L/D = 1.0; curves d: L/D = 1.5; curves e: L/D = 2.0; curves f: L/D = 2.5; 
curves g: L/D = 3.0.
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I'igure 10. Field dependencies o f the differential conductivity calculated for systems o f  Figure 9. Figure 
A: a  = 2.5; Figure If: a  = 5.0; Figure C: a  = 10.0; Figure D: a=  15.0. Curves a; L/D = 0.0; curves b: 
UD  = 0.5; curves c: L/l) = 1.0; curves d: UD = 1.5; curves e: UD  = 2.0; curves f: UD  = 2.5; curves g: 
L/D = 3.0.

Figure 11. The dependence o f  E’max-cur (a-b) 
and £  min-cur (c-e) on the layer non-uniformity 
parameter L/D. Curve a: a  = 15.0; curve b; 
a =  10.0; curvec: a =  15.0; curve d: a =  10.0; 
curve e: a  = 5.0.

Figure 12. The dependence o f £'»,in-cmJ on the layer 
non-uniformity parameter LID. Curve a: a  = 15.0; 
curve b: a =  10.0; curve c: a  = 5.0; curve d: a  = 2.5.
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significantly on the degree of the spatial non-uniformity of the layer LID, if only the 
latter exceeds some critical value, and the dependence of a  on ^'assumes an universal 
characteristic shape. The minimal (and negative for sufficiently diluted systems) 
value of the conductivity, weakly dependent on the L/D ratio, appears at a field E'mm 
dependent on the system dilution a  (Figure 12). With further increase of the field the 
conductivity increases, and at E'sat assumes a small positive saturation value, constant 
over a wide range of external fields. E'sat only weakly depends on the non-uniformity 
parameter L/D for a fixed value of the dilution a. On the other hand E'sat depends 
significantly on a  (E'sat amounts to 0.2, and 0.14 for a  equal to 10.0, and 15.0, 
respectively).

The existence of a wide field range of a negative differential conductivity in 
sufficiently diluted spatially non-uniform systems is the most important result of the 
present section. The effect is absent in spatially uniform systems, where the conduc
tivity has a minimum, but its values remain positive in the whole field range. In order 
to explain the difference between uniform, and non-uniform systems, the histograms 
of the average occupation probabilities / ’(/), ; = 1,..., 10 in ten subsequent slices of 
the layer along the field direction were plotted. Figures 13-15 show such histograms 
in their dependence on E' for L/D = 0.0, 1.5 i 3.0 in a strongly diluted sample with 
= 15.0. The histograms A in Figures 13-15 correspond to a very low Held strength, 
E'= 0.005. For the spatially uniform layers the average occupation numbers in the 
successive LI 10 - thick slices do not differ significantly from their equilibrium values 
at zero field, and the field E'=  0.005 falls well into the ohmic region (Figure 13A). 
However, for the non-uniformity parameter L/D equal to 1.5 and 3.0 (Figures 14A, 
and 15A, respectively) the value E' = 0.005 lays in the non-ohmic region, and the 
deviations from the equilibrium zero-field occupation n = 0.5 are significant. Now
here over the layer thickness the average occupation is close to 1.0, and the value E' 
= 0.005 falls into the region of positive differential conductivity for all values of L/D. 
Increasing field leads to remarkable changes in P{i) probabilities. In particular, within 
the sample emerges a region with the average occupation probability close to 1.0. 
The field interval in which only few of the P(i)’s effectively approaches this maximum 
value corresponds to a subohmic portion of each current-field characteristic, i.e. to 
the decay of differential conductivity to zero. For higher fields the extension of the 
region with P(i) close to 1 augments, for more non-uniform structures covering 
practically the whole bulk of the sample. This field range corresponds to the portions 
of decreasing current with increasing field, i.e. to the regions of the negative 
differential conductivity. Finally, the increasing field is again able to enforce the 
effective carrier motion, and the current begins to increase slightly, so that the 
conductivity assumes small positive values: in this field interval the spatial extention 
of the /*(/)= 1 region begins to shrink. The exponential conductivity increase at high 
fields, expected for macroscopically uniform systems [24-29], is not observed for the 
investigated non-uniform systems. It means, that the sample non-uniformity shifts 
the region of the exponential current increase to the fields values, which could not 
be consistent with the assumption of constant carrier concentration.
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Figure 13.1 listograms of the average site occupation in ten subsequeunt slices o f the spatially uniform 
layer o f thickness L. Figure A: E'= 0.005; Figures B.C: E'= 0.5 for two different random distributions 
o f hopping centres.

Figure 14. Histograms of the average site occupation in ten subsequeunt slices o f the spatially 
non-uniform layer o f thickness L and the non-uniformity parameter L/D = 1.5. Figure A: £ ' = 0.005; 
Figure B: E' = 0.2; Figure C: E'=  0.4.

Figure 15. Histograms o f the average site occupation in ten subsequeunt slices o f the spatially 
non-uniform layer of thickness I. and the non-uniformity parameter L/D = 3.0. Figure A; E'=  0.005; 
Figure 13: E'= 6.2; Figure C: £ '= 0 .8 .

5. Concluding remarks
The model of hopping transport reminded in Sections 2 and 3 is rather difficult 

to be treated numerically. In order to obtain fully realistic results one should perform 
calculations involving - as results from our tests - at least 10J hopping centers in the 
simulation box. For such a number of centres one could claim to obtain the results 
free not only of box-size effects, but also independent of the random generation of 
the localised centre positions. Unfortunately, the increased remarkably number of 
sites in the simulation box, in addition to increase strongly the difficulty of operating 
numerical methods, would demand extremely long CPU times, and thus such 
calculations are practically impossible. We think, however, that even somewhat 
oversimplified numerical results, obtained for merely 10’ hopping sites, reveal 
qualitative behaviours of real physical systems.
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