
TASK QUARTERLY 4 No 4 (2000), 531–553

A NEW PROGRAM FOR RADICAL TESSELLATION

CONSTRUCTION AND ANALYSIS

ROBERT LASKOWSKI

Department of Solid State Physics,

Faculty of Technical Physics and Applied Mathematics,

Technical University of Gdansk,

Narutowicza 11/12, 80-952 Gdansk, Poland

rolask@mif.pg.gda.pl

(Received 26 June 2000; revised manuscript received 4 September 2000)

Abstract: The purpose of this work is to describe usage of computer program SIMPL designed for construc-

tion and analysis of radical tessellations of any computer simulated sample. The radical polyhedra (RP) [Gel-

latly B J and Finney J L 1982 J. Non-Cryst. Solids 50 313] can be considered as a generalization of the

Voronoi polyhedra more widely used in literature. RP is a minimal polyhedron whose faces are sets of

such points that distances from the points to tangent points of two neighboring atomic spheres are equal.

The tessellation technique is a very efective tool for structural analysis of computer simulated samples,

giving a great amount of easily accessible information. SIMPL allows to construct RP network for defined

system and analyze shape, composition and mutual geometrical relation of radical polyhedra and radical

simplices. Implemented capabilities give, for example, the posibility to recognize atomic environments’

shape and investigate the non-local order in computer simulated materials. The pattern recognition tech-

nique [Laskowski R et al. 1997 TASK Quart. 1 96] is based on analysis of the shape of the radical polyhedra,

and contraction of short edges and small faces of the polyhedra. Non-local order analysis involves geometric

relations between tessellation simplices.
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1. Introduction

Stochastic geometry methods are a useful technique for the study of geometrical

properties of computer simulated systems. They provide more information about the

structure of the sample than the analysis based only on the straightforward interpretation of

the angular distribution functions (ADF) and radial distribution functions (RDF), especially

in the case of amorphous or multiphase materials. The most widely used techniques of

the structural analysis are: common neighbors analysis (CNA) [1, 2], SO(3) invariants

analysis [3–7] and various tessellation techniques [8–13].

The CNA method can be used to determine the abundance of inherent structures

in a sample. Each pair of atoms from the first or the second RDF peak is described by

sets of indexes. These sets determine to which peak a given pair belongs, the number

of common nearest-neighbors, the number of pairs of the first neighbors in the set of
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common neighbors, etc. The CNA is very efficient in the study of the nearest order in

computer simulated amorphous materials. However, the method can give merely partial and

ambiguous information about the types of crystalline phases in the analyzed samples. In

particular, the pairs with the same sets of indexes can belong to different phases (e.g. both

the face-centered (fcc), and the hexagonal-close-packed (hcp) structures contain identically

indexed pairs).

The SO(3) invariants analysis is based on the construction of certain sets of the SO(3)

invariants for local structure (local order or bond order parameters). The comparison of

values of these invariants calculated for analyzed sample allows one to distinguish some

predefined reference patterns. The sets of invariants suitable for the identification of the

fcc, hcp and icosahedral structures are well known [5], but the extension of the method to

other geometries is rather difficult: due to a limited number of invariants the conclusions

about the local structure are not necessarily unambiguous. A similar method was used for

the investigation of a non-local order [3]: the bond order parameters were constructed for

all the atoms in the sample, making it possible to draw out some conclusions about the

orientational order.

The tessellation method consists in the division of the total volume of the simulation

box into an array of subvolumes belonging to the atoms. A number of various constructions

is known. The most popular one is the partition into the Voronoi polyhedra (VP). VP is

defined as the minimal polyhedron whose planar faces bisect at right angles the lines joining

an atom to its neighbors; a pedantic definition is given by Brostow and co-workers [11].

However, one can use more general tessellation, based on radical planes [8]. In this case each

atom from the array is characterized by an additional parameter, which can be interpreted as

the atom radius. Vertex of a radical polyhedron (RP) is such a point, at which distances from

the vertex to tangent points of four neighboring atomic spheres are equal. It is obvious that

when all atomic radii are equal, the radical-plane tessellation is identical to the Voronoi

partition. The RP diagram (alternatively RP network or RP graph), i.e. the set of RPs

constructed for all the atoms in the sample, is rigorous; it splits in a unique manner the

total sample volume into the zones owned by each atom. Radical simplices (RSs) are

geometrically dual polyhedra to RPs; that is, a vertex of an RP is the central site of the

corresponding RS, and each atom (center of a RP) is a vertex of the corresponding RS.

One can assign each vertex of the former lattice to the elementary units of the latter one.

The faces of RSs intersect the edges of RPs, and the faces of RPs intersect the edges

of RSs. In the case of the Voronoi partition the simplices are called Delaunay simplices

(DS). RP and RS (VP and DS, respectively) networks contain a huge amount of information

about the structure of the analyzed sample. The difference between these two descriptions

is in the access to this information. The shape of a RP reflects the arrangement of all

the neighbors of the given atom. RSs represent the structure of clusters composed of four

adjacent atoms. In the amorphous structures, RSs are disordered tetrahedrons, whereas

RPs are more complex polyhedra [5]. The VP technique was applied to the analysis of the

structure of the close packed [5, 12, 11, 10], and continuous network materials [13, 14] in

a rather simple way; only some statistics on the geometric properties of the polyhedra were

given. A more systematic and direct approach to the usage of the tessellation methods was

proposed in [15, 16].

The purpose of this paper is to describe the usage of the computer program SIMPL,

designed for the construction and analysis of radical tessellations. The core techniques
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implemented in SIMPL were first described by Laskowski et al. in [15] and also applied

in [16]. In order to make this work more comprehensive, the description of tessellation

algorithm and the methodology of the networks treatment are presented in Section 2.1.

Section 3 describes, how to set up and run SIMPL program. Section 4 gives examples of

SIMPL applications. Section 5 contains final remarks.

2. Core techniques

2.1. Tessellation algorithm

In order to construct a network of radical polyhedra for a given atomic structure, two

arrays of atoms should be defined: the centers array, and the neighbors array. The centers

array contains the atoms, for which the RPs are to be determined. The neighbors array

contains all the neighbors of the atoms of the centers array. The neighbors array can include

atoms of the centers array. This initial decomposition makes the algorithm more flexible.

For instance, in SiO2 sample we can chose Si atoms as centers and all (O and Si) atoms as

neighbors. Thus, we determine the RP for Si atoms only. The geometrical neighbors of Si

atom could be either other silicon atoms, or oxygen atoms. If the two arrays are equal, we

deal with the classical partition.

Let us introduce some auxiliary definitions, useful in further discussion. An open

center is a center that is actually not contained in any of already constructed simplices.

Two simplices are contiguous if they share a common face. Let open simplex be a simplex

that has no contiguous simplices in the set of already constructed simplices. An open face

is a face of a simplex that is not shared with any simplices already constructed (all the

faces that do not contain any center are never open). The algorithm can be summarized as

follows:

1. Create list of centers, list of neighbors, and empty list of simplices. Copy the centers

list to an open centers list.

2. Choose an open center C from the open centers list. If the open centers list is empty,

go to step 7, else go to the next step.

3. Construct the first simplex that contains C and three atoms from the neighbors array

(an exact description of the construction is given below). Add this simplex to the

simplices list. Remove C from the open centers list.

4. Choose from the simplices list a simplex S which has an open face. If such a simplex

does not exist, go to step 6, else go to the next step.

5. Construct a new simplex D contiguous to S (for an exact description see below). The

simplices must share the open face considered in step 4. A new fourth atom of D

must be taken from the neighbors array. If it belongs simultaneously to the center

array, remove it from the open centers list. Add D to the simplices list, and go to

step 4.

6. Go to step 2.

7. The end of the RS construction procedure.

Steps 2 and 4 do not require any comments. The construction of the first simplex and

the next simplices in steps 3 and 5 is more complicated. In our realization we adopted the

routine proposed by Tanamura and co-workers [10]. Since their algorithm was written only

for the Voronoi tessellation, here it is generalized on the case of the radical tessellation.

The changes have been made in all the steps, were the distances between the atoms, and
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the vertices or the positions of faces, are calculated. The suitable modifications base on the

equation for the RP network vertices given by Gellatly and Finney [8]. At this stage it is

convenient to introduce a routine of the degeneration detection, making the algorithm more

stable. Degeneration occurs when one can construct more then one simplex (by adding an

atom to three atoms defining simplex face) that have the same RP vertex coordinations. It

is possible to construct an algorithm that can work with degenerated systems, but because

the degeneration rarely occurs in practice, it would be computationally inefficient. In the

case of degeneration we simply disturb the positions of atoms by a small fraction of

the nearest-neighbor distance (of order 10−5), and then we start the procedure from the

beginning. The positions of atoms are restored after the procedure ends. In view of the

further treatment of RP network, the perturbation of atomic positions does not have any

influence on the final conclusions about the structure of the analyzed sample. Realization

of step 5 is similar to the last step of the construction of the first simplexes. We know the

face (in this case it is an open face) and we have to build a new simplex by adding an atom

to this face. Care must be taken at selection of candidates for this fourth atom. We have to

choose an atom which is placed on the opposite side of the face (in respect to the fourth

atom of the simplex from step 4). After executing steps 1–7 described above we have the

complete list of simplices of the analyzed sample. If centers array and neighbors array are

identical, we have a full RS graph, else we have only its subgraph. In both cases, we can

determine the set of radical polyhedra for all centers, utilizing only information contained

in the simplices list.

The determination of the RS graph is only a preliminary step of our tessellation

method. At this stage the RPs, which are geometrically dual do RSs, are rather complex

polyhedra, containing many faces and vertices. Their topology does not allow to draw out

any unambiguous conclusion on the structure. It is clear that the basic information about the

local structure at any atom is carried mainly by big faces and long edges. The small faces

and short edges have only inconspicuous meaning. To utilize the RPs efficiently we should

first contract short edges and small faces of the RP graph. In RSs graph this contraction

results in amalgamation of strongly distorted simplexes associated to vertices that are the

ends of the contracted edge.

2.2. Graph contraction algorithm

To motivate the need of the contraction, let us consider the influence of small

perturbations of atomic positions in an arbitrary crystalline lattice on their RP networks. In

practice the source of this perturbation can be for example thermal motion of atoms about

equilibrium lattice positions. A characteristic feature of certain crystalline networks (e.g. fcc

or hcp) is the existence of degenerate vertices and edges in their RP graphs. Degenerate

neighbors corresponding to such vertices or edges have been defined by Brostow and co-

workers [11]. A degenerate vertex is common to more than four edges, while a degenerate

edge is common to more than three faces of the RP graph. It is obvious that an arbitrary

small displacement of atoms in the crystalline structure removes the degeneracy. In the place

of a degenerate vertex, a small face or a short edge will appear, and degenerate edges will

become small elongated faces. Figure 1 and Figure 2 demonstrate this concept. Figure 1

presents a distribution of face areas in a distorted hcp lattice; fcc leads to similar results.

Positions of points in the ideal structure are shifted by a certain distance (perturbation

displacement) at a random direction. The displacements are scaled to the nearest neighbor
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distance. It is seen that the faces of polyhedra can be grouped together into two sets,

which contain only small and only large faces. We can assume that small faces are of the

perturbative origin. Figure 2 presents distribution of edge lengths for a distorted hcp lattice

after the face elimination. It is seen that also the edges can be divided into two subsets,

and the short ones are of perturbative origin. The local arrangement is practically the same

in perturbed and in unperturbed structures, but the topology of radical polyhedra is much

more complicated in the former case. Thus, eliminating short edges and small faces from

the RP network (by contracting them to vertices or edges), we remove the effects due to

the perturbations and simplify the polyhedra topology. The same result could be achieved

by suitable displacements of the atoms. However, since we have no information about the

individual fluctuations of the atoms positions in the sample, such a procedure cannot be

realized in practice. In a structure in which the degenerate vertices are absent (e.g. bcc

lattice), a small perturbation of the position does not change the topology of the network.

Thus, the analysis of such structures can be performed without any contraction.

To proceed with the graph contraction one needs to find the set of edges that are to be

contracted. This can be done directly by computing all edges lengths and selecting all the

edges shorter than a certain predefined threshold value. The threshold is to be determined

on the basis of the edge length distribution. The same can be done with the faces, but in

this case special attention should be paid to contraction of elongated faces, which originate

from degenerate edges. As it is seen in Figure 1 and Figure 2 the contraction threshold is

equal to 0.25 in the case of faces, and 0.5 or more in the case of edges.
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Figure 1. The distribution function of the face areas, averaged for all RPs, plotted for a perturbed

hcp lattice. The numbers on the lines represent the average number of faces. The points in the structure

are shifted by the perturbation displacement in a random direction. The displacements are scaled to the

nearest neighbor distance, and face areas are expressed in units of the average face area. Because in this

case the lattice is monoatomic, the RPs are simply the Voronoi polyhedra

In the case of large perturbation, as it is seen in Figure 2, it is difficult to establish

the threshold value, because the large peak of longer edges can not be separated from the
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Figure 2. The distribution of the edge lengths, averaged for all RP, plotted for a perturbed hcp lattice

after the elimination of small faces. The numbers on the lines represent the average number of edges. The

edge length is scaled to the average edge length. Because in this case the lattice is monoatomic, the RPs

are simply the Voronoi polyhedra

peak of shorter edges. To avoid the difficulty SIMPL uses an algorithm which is able to

analyze subgraphs of the RS network. Each of the simplices belonging to any of these

subgraphs should contain a specified central atom. Contraction of the whole RS network is

performed subsequently in each subgraph. After each step the RS network is updated, and

the subgraphs are recalculated. The algorithm can be summarized as follows:

1. Take a center C from the centers list. C should not be considered previously. If it is

not possible go to step 7.

2. Select a subgraph S of the RS network. All simplices from the subgraph must

contain C. The set of atoms constituting S is an atomic polyhedron related to C,

in the case of no degeneration. Else, it contains in addition all degenerated neighbors.

3. Determine the radical polyhedron P of center C, using the subgraph S (in this step

care must be taken for the selection of vertices, because not all vertices associated

with simplices from S are included in P; see the text below). Evaluate edge lengths

of this polyhedron.

4. Select a set E of the edges of P, that are not contained in the previously contracted

polyhedra. It can be done simply by checking a composition of the simplices which

define the vertex of the edges. If the simplices associated to both vertices of the edge

contain the center considered previously, the edge is not being selected.

5. Contract the subgraph S, using the list E (for exact description see below), and update

the RS network.

6. Go to step 2.

7. The network is contracted.

Some of the above steps should be elucidated. In step 3 we determine a polyhedron

using a subgraph of the RS network. This can be done by examining the geometrical relations
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between the simplices from S. The vertices associated to these simplices constitute the

polyhedron. Two mutually contiguous simplices in S define the edges of a polyhedron. The

faces are defined by a set of simplices that contain the central atom, and its geometrical

neighbors. Because the RS network is now after several contractions of the subgraphs

determined for other centers, it is possible that some vertices on the polyhedron constructed

in such a way are topologically incorrect. There may occur vertices in which only two edges

meet. Topologically correct situation is when three or more edges of a polyhedron meet in a

vertex. Taking it into account one must reconstruct the polyhedron removing all the incorrect

vertices and changing the geometrical relation between the simplices. The simplices that are

contiguous to incorrect vertex become contiguous to each other, but only for the moment

in which the polyhedron is being constructed. In step 5 we utilize our previous technique

of Voronoi polyhedra contraction [17]. The algorithm applied here allows for a very careful

contraction of subgraph S, by an appropriate selection of contracted edges and permanent

control of polyhedron shape during the process. Let us itemize the main points of this

technique:

1. For the RP under consideration contract all the edges shorter than a certain fraction x

of the average edge length.

2. Find the shortest edge.

3. If the edge is shorter than a fraction y (y > x) of the average edge, check the shape of

the polyhedron (for description see the next subsection). If the shape belongs to the

set of the predefined patterns, take the next polyhedron, and go to step 1; otherwise

contract the edge under consideration, and go to step 2.

4. If the edge is longer than a fraction y of the average edge end the procedure.

As it is seen the edges contraction algorithm involves procedures of polyhedron shape

recognition, which may be avoided setting parameter x equal or greater than y. Detailed tests

of the algorithm efficiency accomplished for monoatomic metallic MD-simulated samples

allowed to establish the optimal values of the parameters x and y to be 0.3 and 0.6,

respectively. x < 0.3 results in switching on the shape recognition procedure sooner; if the

shape of a given polyhedron is undefined, there are no consequences except the slowing

down of computations. On the other hand, y > 0.6 for an undefined shape may result in too

many contractions, leaving eventually a polyhedron with only a few edges and faces.

2.3. Polyhedron shape recognition

Let us turn to the problem of the polyhedron shape recognition. The shape of an

arbitrary polyhedron is described in SIMPL by three sets of integers, as:

F = ( f3, f4, f5, : : :)

V = (v3, v4, v5, : : :)

E = (e4, e5, e6, : : :).

Here fi is the number of the i-edged faces in the polyhedron; vi is the number of the

vertices, from which exactly i edges do originate. In the case of a non-degenerated RP, only

v3 do not vanish, hence i −3 equals to the degeneration degree. Finally, ei is the number of

edges for which i equals to j +k +4, where j and k are the degrees of degeneration of both

vertices associated to the edge. It is not complicated to introduce more sets like these (e.g. in

the form of two or three dimensional array), but our experience shows, that the sets F, V ,
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and E, defined above suffice to perform an efficient structural analysis. Two polyhedra are

said to have the same topological structure if they have the same F, V , and E sets. Thus,

we can compare all the constructed polyhedra with an arbitrary set of reference polyhedra.

For instance, a fcc polyhedron has F = (0,12), V = (8,6), E = (0,24), and a hcp polyhedron

has F = (0,12), V = (8,6), E = (3,18,3).

We have tested the efficiency of the contraction and recognition method on some

perturbed crystalline lattices. As previously in Figure 1 and Figure 2, the lattice points are

shifted by a certain distance in a random direction. All the polyhedra in the structures tested

were correctly recognized for the displacement range lower than 0.13 of the nearest neighbor

distance. Figure 3 presents the results of the pattern recognition applied to fluctuated

hcp structures. No hcp polyhedra have been detected in the structures perturbed within

displacement greater than 0.25.
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Figure 3. The dependence of the fraction Nhcp of the recognized polyhedra

on the perturbation displacement

3. Setup and running SIMPL

SIMPL is written in FORTRAN77, to setup maximum system size one should edit

file simpl.par, and recompile sources. The program needs two input files. The first one

named simpl.ini contains commands describing the tasks to be performed. The second

one is an atom configuration file. At the beginning of execution SIMPL scans simpl.ini

(until it encounters end command) ignoring empty records and those that begin with ‘#’,

all other records are interpreted as command records. Reading a command record the

program extracts task identifier and parameters, and checks correctness of the syntax. In

the case of the syntax error, interpretation is terminated giving a short description of the

problem. If all the commands are correctly interpreted, SIMPL starts to perform suitable

tasks sequentially, writing results to file simpl.out (some commands create additional output

file). The interpretation process is case insensitive. The full list of commands is presented

in the next subsection.

In general, SIMPL has been designed to perform tessellation of a given atomic system,

contraction of RS network, and analysis of contracted RS and RP networks. Commands and
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tasks that SIMPL performs can be grouped in three sets: preparatory commands, tessellation

commands, and analysis commands group. Preparatory commands allow one to open the

configuration file, read in suitable part of this file, match records of configuration file with

atoms names and atomic radius, and also defines periodic boundary box.

Bellow, a typical preparatory part of simpl.ini is presented:

Open File xyz XYZ.xyz

Skip Rec 2
read rec 2916

box
54.2997225303 2.1238777148 0.0583893457
2.0696896577 51.3836355703 0.099681211
0.0902413917 0.1495607081 31.4948373164
1.0

atom spec
Pb1,1, 1000, 1.0
Pb2,1001,2916, 1.0

neig atoms Pb1,Pb2
cent atoms Pb1
setup conf

Command Open File xyz informs the program that configuration file name is XYZ.xyz, and

its format is of xyz type (see also open file asc command). Skip Rec moves file pointer by

two records down in configuration file, in order to skip headers, for example. Next 2916

records are read due to read rec command. SIMPL reads only coordinates, atoms names

are ignored. box command initializes definition of a configuration box. SIMPL imposes

the periodic boundary conditions to analyzed configuration. The first three records after

box command define cell vectors, the next record contains scaling factor (cell vectors and

coordinates of an atom are multiplied by this scaling factor). atom spec command begins

the block of atom specifications. It initializes matching of atoms names and radius with

records of configuration file. In our case records from 1 to 1000 are declared to be Pb1 atoms

with 1.0 radius, and records from 1001 to 2916 are Pb2 atoms with 1.0 radius. All records

declared in read rec must have a specification, and no record must have two or more

different specifications. Because the number of specifications is arbitrary, empty record

must appear after the last one in order to inform SIMPL to end of reading the specification

block. Two next commands neigh atoms and cent atoms define, which atoms should be

treated as centers and, which are neighbors. Preparatory command group must be ended by

setup conf command, which activates all declared settings.

Having defined configuration SIMPL is ready to perform tessellation. At this stage

one can also perform common neighbor analysis, using cna command. This part of simpl.ini

might look like an example below:

del net
contract del net 0.2,0.5
vp from dc 1

The first command del net triangulates the specified configuration according to the al-

gorithm described in Section 2.1. contract del net command activates contraction of the

resulted RS network using contraction algorithm presented in Section 2.2. The parameters

tq404-a/539 19:17, 12I2006 BOP s.c., +4858 5534659, bop@bop.com.pl



540 R. Laskowski

control the contraction process, and are described in Section 2.2 (x and y). vp from dc

command extracts radical polyhedra form the contracted RS network. The parameter indi-

cates that data concerning edges length, faces area and volumes are also to be extracted. In

order to execute a slightly modified contraction algorithm, which has better performance in

recognition of the local neighborhood shape, one should use vp indep command instead of

contract del net and vp from dc. For example:

vp indep 0.1, 0.5, 0.1, 1

vp indep treats all radical polyhedra individually, which may cause some topological

inconsistencies in the RP network. The first two parameters have a similar meaning to

the parameters of contract del net command. The third one controls the process of small

faces neglecting (the value is threshold in unit of average face area of a polyhedron). In our

case all faces smaller than 0.1 of the average face area are neglected before the contraction

process. The last parameter is similar to the parameter vp from dc command.

Because common neighbor analysis (CNA) [1, 2] is a very useful and simple method

of description of local order it is implemented in SIMPL. One should note that the execution

of CNA does not need any tessellation, but only definition of configuration data. CNA is

invoked by cna command in the way presented below:

cna
Pb1,Pb1,Pb1
0.0, 4.0
0.0, 4.0
0.0, 4.0
0.0, 4.0
rdf 1.dat, 50

The first record after cna contains identifier of atoms from the CNA pair and identifier

of their common neighbor. In our case these three are Pb1. The second record defines the

range of distance for the pair atoms. The third and the fourth records define the distance

range for the first and the second atom from the pair, and their common neighbor. The fifth

record defines the distance range for common neighbor. The last record contains file name,

where decomposition of pair distribution function (between the pair atoms) is also written,

and a number of bins.

After tessellation and contraction, one can use the RP network to establish the

geometrical properties of the analyzed structure in many various ways. A particular

realization depends on the questions one asks. SIMPL is able to perform a couple of

basic tasks. For example:

shapes Pb1
vp vol diag Pb1,vol.dat,50

select cent fcc

pdb vp Pb1, fcc.pdb
cluster vp Pb1

select cent all
select cent bcc

pdb vp Pb1, bcc.pdb
cluster vp Pb1
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shapes command analyses local neighborhood of Pb1 atoms and tries to recognize its shape

writing it to file simpl.out. vp vol diag command creates file vol.dat containing distribution

of volumes of Pb1 polyhedra. select cent command restricts further analysis to fcc polyhedra

only. pdb vp creates pdb file containing Pb1 atoms, which have fcc like local neighborhood.

cluster vp writes to simpl.out information about cluster properties of Pb1 atoms with fcc

local neighborhood. Next bcc polyhedra are selected, pdb file and cluster data are output.

In the case when implemented in SIMPL analysis capabilities do not fit ones needs, RP

and RS network might be written to a file using write vp and write dc commands.

3.1. Commands list

3.1.1. Commands defining atomic configuration

F box

initializes definition of configuration cell. Next four records of simpl.ini must contain

three vectors defining the cell and an unit of length. SIMPL imposes periodic boundary

condition to the sample.

Syntax:

box
cell(1) cell(2) cell(3)
cell(4) cell(5) cell(6)
cell(7) cell(8) cell(9)
unit length

where cell(1) cell(2) cell(3) define the first vector, cell(4) cell(5) cell(6)

define the second vector, cell(7) cell(8) cell(9) define the third vector.

F open file asc

opens configuration file. SIMPL expects four–column ASCII file, one atom per record

(first integer number, next coordinates:

1 -27.90219274 -26.06457700 -15.70217249
2 -25.69346326 -23.39167052 -15.56629017
3 24.14252009 -18.58279617 -15.74169706

integer is ignored).

Syntax:

open file asc filename

F open file xyz

opens configuration file. SIMPL expects configuration file to be in xyz format (atom

name followed by coordinates:

Pb -27.90219274 -26.06457700 -15.70217249
Pb -25.69346326 -23.39167052 -15.56629017
Pb 24.14252009 -18.58279617 -15.74169706

atom name is ignored).

Syntax:

open file xyz filename

F skip rec

moves file pointer by a defined number of records of configuration file.
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Syntax:

skip rec n

F read rec

reads a number of records of configuration file. First, file must be opened with

open file asc or open file xyz command. In both cases only coordinates are read.

Syntax:

read rec n

F atom spec

initializes atomic specification. It relates atomic names and radius to read-in records

of configuration file. Each of the following records contains species name, indexes of

the first and the last records related to this name, and radius of this atom. The last

record must be empty.

Syntax:

atom spec
name, first record, last record, radius
...
...
...
empty record

F cent atoms

defines a list of centers (see Subsection 2.1).

Syntax:

cent atoms name1, name2,...

F neig atoms

defines a list of neighbors (see Subsection 2.1).

Syntax:

neig atoms name1, name2,...

F setup conf

actualizes configuration data (last command in preparatory commands group).

Syntax:

setup conf

3.1.2. Tessellation and contraction commands

F del net

performs radical tessellation (see Subsection 2.1).

Syntax:

del net

F contract del net

contracts RS network. Command needs two parameters controlling contraction pro-

cedure (x , y described in Subsection 2.2).
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Syntax:

contract del net x, y

F vp from dc

extracts radical polyhedra from RS network. RP are constructed only for atoms from

centers list.

Syntax:

vp from dc n

n controls output level. For n equal to 0 only information concerning polyhedra shapes

and geometrical neighbors is extracted, for n equal 1 also length of edges, area of

faces and volumes are calculated.

F vp indep

controls modified version of the contraction algorithm. In standard version (initialized

by contract del net) whole RP network is contracted, keeping it dual to RS network.

Modified version makes contraction of each polyhedron individually, which increases

efficiency in recognition of shape of local neighborhood.

Syntax:

vp indep x, y, p, n

x and y control contraction like in contract del net, n controls output level like

in vp from dc. vp indep allows one to get rid of small faces at the beginning of

contraction, p is a threshold (in unit of average face area of a polyhedron).

3.1.3. Analysis commands

F end

terminates execution of SIMPL.

Syntax:

end

F write vp

writes out composition of all constructed radical polyhedra to file of a given name

(one record per polyhedron, first index of a polyhedron, next number of geometrical

neighbors, and indexes of the neighbors).

Syntax:

write vp file

file is output file name.

F write dc

writes out composition of all contracted radical simplices to file of a given name

(one per record, first index, next number of composing atoms, indexes of these atoms,

position of vertex).

Syntax:

write dc file

file is output file name.
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F shapes

writes to output file (simpl.out) statistic of local neighborhood shapes. Program

can recognize only shapes defined in procedure DEF SHAPE (file def pol.f, where

polyhedra topology corresponding to each local neighborhood are coded). Each

defined shape is identified by a shortcut. Actually there are 14 defined shapes:

fcc (local neighborhood corresponding to face centered cubic structure), bcc (body

centered cubic), hcp (hexagonal close packed), kub (simple cubic), ico (icosahedron),

tet (tetrahedron), bpt (triangle bipiramid), bpp (pentagon bipiramid), pis (square

piramid), pip (pentagon piramid), prt (triangle prism), prs (square prism), prp

(pentagon prism), fhp (fcc+hcp). In this case undefined local neighborhood are

identified by und.

Syntax:

shapes p

where p is an atom name from center list.

F colors

writes to output file information about composition of local neighborhood.

Syntax:

colors p,

where p is an atom name from center list.

F select cent

selects centers of given types of local neighborhood. The following output is only for

selected centers (it does not concern tet diag, edg len diag and cna, where output is

created and written for all centers).

Syntax:

select cent all

selects all centers.

select cent [not] p1, p2,..., pn

selects centers with given shapes of local neighborhood (p1, : : : , pn are shape

identifiers – fcc, bcc, hcp, tet, : : :). Putting not at the beginning of the parameters

list results in selecting all centers except the centers appearing in the parameters list.

select cent col p1, p2,..., pn

selects centers with a given composition of local neighborhood. It means centers,

which have p1 neighbors of first type (according to neighbor list), p2 – second type,

etc. If p1, p2, : : : , pn are negative, program select centers with number of neighbors

of given type greater or equal to −pi −1.

F face area diag

writes out diagram of faces area (in box unit).

Syntax:

face area diag c, n, file name, nbin

where c is the center type identifier (from centers list), n is the neighbor type identifier

(from neighbors list), file name is name of file, where the diagram is written to, nbin

is number of bin in the diagram.
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F vp area diag

for a given centers type, writes out diagram of fraction of polyhedron area, that

consists of faces originated from a given type of neighbors.

Syntax:

vp area diag c, n, file name, nbin

c is the center type identifier (from centers list), n is the neighbor type identifier (from

neighbors list), file name is name of file, where the diagram is written to, nbin is

numbers of bin in the diagram.

F edg len diag

writes out diagram of edges length.

Syntax:

edg len diag file name, nbin

file name is name of file, where the diagram is written to, nbin is numbers of bin in

the diagram.

F tet diag

writes out diagram of tetrahedricity (T =
P

i , j (li − l j )
2/l2, i , j are the indexes of

simplex edges, l is edge length) of radical simplices (before contraction).

Syntax:

tet diag file name, nbin

file name is name of file, where the diagram is written to, nbin is numbers of bin in

the diagram.

F vp vol diag

writes out diagram of polyhedra volume.

Syntax:

vp vol diag c, file name, nbin

where c is the center type identifier (from centers list), file name is name of file,

where the diagram is written to, nbin is numbers of bin in the diagram.

F dc size

writes out to simpl.out statistic of size contracted radical simplices.

Syntax:

dc size

F cluster vp

writes out to simpl.out information of cluster properties of given atoms.

Syntax:

cluster vp c, n1,..., ni

c is the center type identifier (from center list), n1, : : : , ni are the neighbor type

identifier (from neighbor list). If there are no neighbors in the parameter list (i = 0) the

program considers clusters of c-type atoms being geometrical neighbors (they share

polyhedra faces). For i > 0 clusters are composed of c-type atoms sharing n1, : : : , ni

geometrical neighbors.
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F cluster dc

writes out to simpl.out information of cluster properties of contracted radical sim-

plices.

Syntax:

cluster dc size, ns, [t1, t2]

size is the size of contracted simplex, ns is a number of shared atoms of contracted

simplex in a cluster. In the case of size = 4, t1 and t2, defining range of tetrahedricity,

must be specified.

F dc comp

writes out to simpl.out information of composition of contracted radical simplices.

Syntax:

dc comp

F pdb vp

writes out centers of a given name to pdb-formatted file (to view in rasmol program).

pdb vp c, file

c is the center type identifier (from center list), file is output file name.

F cna

initializes CNA (common neighbors analysis) and writes the results to simpl.out.

Syntax:

cna
atom1, atom2, atom3
r12 1, r12 2
r13 1, r13 2
r23 1, r23 2
r33 1, r33 2
rdf name, nbin

atom1, atom2, atom3 are a type identifier of respectively the first and the second

atom from the CNA pair, and a common neighbor of these atoms, rij k defines

the range of distance between atom i and j , rdf name is the name of file, where

decomposition of pair distribution function (between atom1 and atom2) is written to,

nbin is number of bins. rdf name is ASCII file, first column is tabulated distance, next

columns contain RDF data in the order in which corresponding information appears

in simpl.out.

4. Example application

4.1. Multiphase Pb sample

Lets us first analyze structure of monoatomic Pb sample. The sample is an end result

of a numerical experiment, where influence of external pressure on sample structure has

been investigated [18]. On increasing of the external pressure on the initial fcc crystal, the

structural phase transition to bcc has been detected. After this, during decreasing pressure,

transition to close packed structure occurred. Because fcc and hcp structures are energetically

undistinguished by the interatomic potential used, the sample should be a mixture of fcc

and hcp structures. In this case, SIMPL is used to recognize shape of local neighborhood.

Below is the contents of used simpl.ini:
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Open File xyz XYZ.xyz
Skip Rec 2
read rec 2916
box
54.2997225303 2.1238777148 0.0583893457
2.0696896577 51.3836355703 0.0996812118
0.0902413917 0.1495607081 31.4948373164
1.0

atom spec
Pb,1,2916, 1.0

neig atoms Pb
cent atoms Pb

setup conf
# end of preparation, start analysis

del net

vp indep 0.2, 0.5, 0.0,0
shapes Pb

select cent fcc
pdb vp Pb fcc.pdb

select cent all
select cent hcp
pdb vp Pb hcp.pdb

# end of analysis

end

As it is seen tessellation is done for all atoms as centers and neighbors. RP network

is contracted using vp indep command. Recognition procedure is activated by shapes

command, and pdb files are generated for fcc and hcp subsystems using select cent and

pdb vp commands. Resulted simpl.out file is presented below:

file: XYZ.xyz XYZ

number of skipped records: 2

number of read records: 2916

box: 54.2997 2.1239 0.0584
2.0697 51.3836 0.0997
0.0902 0.1496 31.4948

box unit: 1.0000
bx, by, bz: 54.3413 51.4254 31.4953
alfa, beta, gama: 85.4534 89.7638 89.6105

--------------------------------
system specification

--------------------------------
atom points radius
--------------------------------
Pb 1 2916 1.000
--------------------------------

neighbors list: Pb
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centers list : Pb

Triangulation of specified system is done.
Number of simplexes in DS network is 17597

VP are now independent, each is contracted with parameters:
0.2000 0.5000 0.0000

---------------------------------------------------------------
VP SHAPE ANALYSIS

---------------------------------------------------------------
shape of local neighborhood | fcc hcp und bcc
number of Pb in % of selected | 50.7 38.3 10.9 0.0
---------------------------------------------------------------

The centers with local neighborhood shapes: fcc are selected,
so the following output is only for these centers.
Number of selected centers is 1479

VP network is in file fcc.pdb

All type centers are selected, so the following output
is for all centers.

The centers with local neighborhood shapes: hcp are selected,
so the following output is only for these centers.
Number of selected centers is 1118

VP network is in file hcp.pdb

It is seen that all used commands generate self-explanatory output into simpl.out file.

For example: command shapes creates table of recognized local neighborhood shapes. More

than 50% is fcc type, and about 40% is hcp type. fcc and hcp subsystems are in fcc.pdb

and hcp.pdb files, which can be visualized by (for example) rasmol program (see Figure 4).

(a) atoms with fcc local neighborhood (b) atoms with hcp local neighborhood

Figure 4. Results of local neighborhood shape analysis

4.2. Na dopped disilicate glass

As an example of application of SIMPL to multiatomic systems let us analyze structure

of Na dopped disilicate glass. In this case we are interested in local neighborhood of

Na and Si atoms. Below simpl.ini file is proposed:
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box
24.1790000000 .0000000000 .0000000000
.0000000000 24.1790000000 .0000000000
.0000000000 .0000000000 24.1790000000
1.0

atom spec
Na,1, 240, 1.86
Si,241, 480, 1.18
O, 481, 1080, 1.40

neig atoms Na,Si,O
cent atoms Na,Si

Open File xyz XYZ.xyz
Skip Rec 2
read rec 1080

setup conf

del net
vp from dc 1

vp area diag Si,O, sio.dat,20
vp area diag Si,Si, sisi.dat,20
vp area diag Si,Na, sina.dat,20
vp area diag Na,O, nao.dat,20
vp area diag Na,Si, nasi.dat,20
vp area diag Na,Na, nana.dat,20

vp vol diag Si, volsi.dat, 20
vp vol diag Na, volna.dat, 20

vp indep 0.1, 0.5, 0.2, 1

shapes Si
colors Si
shapes Na
colors Na

end

In the previous subsection the sample was monoatomic, so the value of atomic radius

had no significance. Now the radiuses are equal to known chemical values. At the beginning

we decided to calculate diagrams of fraction faces area originated from different neighbors

for Si and Na polyhedra in uncontracted RP network. In both cases vp area diag command

is used. Faces originate from O, Si and Na are analyzed separately. Results are presented

in Figure 5. Diagrams of volume of Si and Na polyhedra are generated using vp vol diag

command and plotted in Figure 6.

Contraction process realized by vp indep command removes Na originated face

from Si polyhedra. As it is seen in simpl.out almost all Si polyhedra are terahedrons

with O originated faces. Shape (shape command) and composition (colors command) of

Na polyhedra are more complicated. Below, the content of the resulting simpl.out file is

presented:

box: 24.1790 0.0000 0.0000
0.0000 24.1790 0.0000
0.0000 0.0000 24.1790
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Figure 5. Atomic contribution to polyhedron area for Si and Na
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Figure 6. Volume distribution of Si and Na polyhedra
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box unit: 1.0000
bx, by, bz: 24.1790 24.1790 24.1790
alfa, beta, gama: 90.0000 90.0000 90.0000

--------------------------------
system specification

--------------------------------
atom points radius
--------------------------------
Na 1 240 1.860
Si 241 480 1.180
O 481 1080 1.400
--------------------------------

neighbors list: Na Si O

centers list : Na Si

file: XYZ.xyz XYZ

number of skipped records: 2

number of read records: 1080

Triangulation of specified system is done.
Number of simplexes in DS network is 6233

VP are evaluated directly from DC network
VP area diagram is in file sio.dat
VP area diagram is in file sisi.dat
VP area diagram is in file sina.dat
VP area diagram is in file nao.dat
VP area diagram is in file nasi.dat
VP area diagram is in file nana.dat
VP volume diagram is in file volsi.dat
VP volume diagram is in file volna.dat

VP are now independent, each is contracted with
parameters: 0.1000 0.5000 0.2000

-------------------------------------------------
VP SHAPE ANALYSIS

-------------------------------------------------
shape of local neighborhood | tet bpt
number of Si in % of selected | 98.7 1.2
-------------------------------------------------

---------------------------------------------------
| number of neighbors

number of Si atoms in % |------------------------
of selected | Na Si O
--------------------------|------------------------

98.7 | 0 0 4
0.8 | 1 0 4

---------------------------------------------------

-------------------------------------------------
VP SHAPE ANALYSIS

-------------------------------------------------
shape of local neighborhood | und ico
number of Na in % of selected | 99.6 0.4
-------------------------------------------------
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---------------------------------------------------
| number of neighbors

number of Na atoms in % |------------------------
of selected | Na Si O
--------------------------|------------------------

1.2 | 5 0 7
2.9 | 7 0 8
1.7 | 2 0 8
2.1 | 6 0 8
1.2 | 7 0 9
1.2 | 6 0 10
2.9 | 3 0 8
6.2 | 6 0 7
8.3 | 5 0 8
5.8 | 4 0 8
1.7 | 4 0 6
1.7 | 4 0 12
5.0 | 5 0 9
4.2 | 6 0 6
4.6 | 4 0 7
1.7 | 7 0 7
2.9 | 3 0 9
4.6 | 5 0 6
3.3 | 4 0 10
1.2 | 7 0 10
1.2 | 2 0 9
2.9 | 4 0 9
1.2 | 8 0 5
2.5 | 3 0 7
1.7 | 5 0 10
1.7 | 4 0 11
2.5 | 6 0 9
2.9 | 7 0 6
2.1 | 3 0 10
2.1 | 2 0 10

---------------------------------------------------

5. Summary and conclusions

Tessellation based methods are an effective approach to the structural analysis of

computer simulated sample in the case of close packed and continuous network materials.

Radical polyhedra network contains great amount of easily accessible information about

structure of the sample. For example: analyzing shape and composition of radical polyhedra

one has direct access to information about the structure of the nearest neighborhood; analysis

of geometrical relation between polyhedra or radical simplices gives information about non

local order in the sample.

In this paper we have described base theory and usage of computer program

SIMPL designed for structural analysis of simulated materials. The program utilizes radical

tessellation method, however CNA (common neighbor analysis) is also implemented. In

general the structural analysis is performed in three stages. In the first step, mutually

dual radical polyhedra and radical simplices networks are constructed. The algorithm of

tessellation implemented in SIMPL is described in Subsection 2.1. Each radical polyhedra

diagram constructed for any sample contains some excess information concerning thermal

motion or other meaningless fluctuations of atomic position. Thus, in the second stage, the

networks are contracted in order to clean the structure from the effects of these fluctuations.
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The contraction of faces and edges of the polyhedra has a clear geometric significance:

it simply changes the category of neighbor. For instance in hcp structure, the contraction

algorithm allows one to separate the direct and the degenerate neighbors, which makes local

order recognition possible. The contraction algorithm is described in Subsection 2.2. After

construction and contraction the resulted radical polyhedra and radical simplices networks

can be put into further analysis using implemented capabilities of SIMPL or simply exported

to an external file. The analysis can be performed in many various ways which depend on

particular questions one asks. In order to make SIMPL as flexible as possible it has been

designed as commands interpreter. Section 3 describes usage and setup of SIMPL and also

contains the list of all directives and commands actually implemented.

6. Availability

SIMPL program is available free from www.task.gda.pl/software.
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