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Università di Camerino,

Madonna delle Carceri, I-62032 Camerino, Italy

egidi@camserv.unicam.it

(Received 17 November 2000; revised manuscript received 4 December 2000)

Abstract: Using finite element method we study the transient motion of fluid particles in a 3D cavity,

when the fluid is incompressible viscous and with uniform density. The fluid is mixed under the action

of four-blades turbine that is simulated by a velocity function. The mixing quality of the fluid is studied

qualitatively, by visualization, and quantitatively, by measurering the indices of diffusion and dispersion.
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1. Introduction

In this work we consider the mixing of a fluid in a stirred vessel and use computational

fluid dynamics to predict the flow field development. The modern approach to the study of

mixing in laminar fluid flow applies concepts of the Lagrangian description of the fluid flow.

The Lagrangian description uses coordinates that move with particle, where for fluid particle

we mean an element of the fluid of negligible size. We consider the case of incompressible

viscous (Newtonian) fluid of uniform density and suppose that the fluid is laminar even in

the vicinity of the rotating impeller. The numerical simulation is comprised of two phases,

computation of the flow field followed by calculation of particle trajectories to analyze the

mixing process. To model the flow we use a rotating fluid boundary at the impeller. In order

to reproduce that moving boundary we utilize a function that simulates the flow field in

the region of the impeller. The mixing is studied utilizing the trajectories of many particles

of the fluid to visualize their distribution inside the domain and to construct diffusion and

dispersion indices.

2. Mathematical formulation

The governing equations for our fluid in a region �×[0,T ] ² IR3 ×IR are described

by the incompressible Navier-Stokes equations ([1]):

div u = 0, (1)

@u

@t
−

1

Re
1u+(u ·r)u+rp = f , (2)
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8t 2 [0,T ] and 8x = (x1,x2,x3) 2 �, where u(x,t) = (u1,u2,u3). If ¼ is the viscosity of the

fluid and ² is the density of the fluid, ² and ¼ are assumed to be uniform and define the

key dimensionless flow parameter known as the Reynolds number

Re =
²LU

¼
,

where U is a characteristic speed and L is a characteristic length.

In this dimensionless formulation the velocity field of the fluid is uU the position is

xL, the pressure of the fluid is p²U2 and the body force per unit of mass is fU2

L
.

In particular, the incompressibility condition, div u = 0, means that the volume

occupied by a given set of particles is constant in time.

Scaling the fundamental variables with respect to typical values and constructing

dimensionless parameters provides a measure of the relative importance of the various

terms in the equations and identifies the dominant physical phenomena, in particular for

a large Reynolds number the convective term dominates the viscous one.

To define the problem completely, it is necessary to set appropriate boundary

conditions on each part of the boundary of the computational domain and to give initial

conditions, prescribing an initial velocity field at t = 0. Obviously, this field must satisfy

the continuity equation (1). One can prove that in the case of incompressible flow no

boundary conditions for the pressure are necessary, emphasizing the fact that the pressure

plays a special role in the solution process of the Navier-Stokes equations ([2]).

In this paper we consider only Dirichlet boundary conditions:

u(x,t) = g(x,t) 8t , 8x 2 @�,

where g must satisfy
Z

@�

g ·n dS = 0. (3)

Using the finite element method (FEM), we transform the continuous problem into a discrete

problem described by a system of non-linear algebraic equations. We consider the Navier-

Stokes equations (1) and (2) in the region �×[0,T ] (� ² IR3) where:

� = TC n C

TC =

(

(x1,x2,x3) 2 IR3 : 0 < x3 < zs , x1
2 + x2

2 <

�

rs −ri

zs

x3 +ri

�2
)

C =
ý

(x1,x2,x3) 2 IR3 : zm � x3 � zM , x1
2 + x2

2 � .rC/2
	

.

TC is a frustrum of right circular cone, with ri , rs and zs the radius of its bottom base, the

radius of its top base and its height, respectively. C is a right circular cylinder of radius

rC and height zM − zm . The relations between them are: ri > 0, rs > 0, zs > zM > zm > 0,
rs−ri

zs
zm +ri > rC > 0.

So the boundary of � is @� = 0i

S

00 = 0, where:

0i = @C, 00 = @TC .

For the boundary conditions, we consider 00 like a fixed wall, so along 00 velocity

must be zero (no-slip condition):

u(x,t) = 0 8x 2 00, 8t .
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Laminar Mixing Flow in a Stirred Vessel 73

Instead, to model the impeller, we prescribe the speed of the fluid, under the action of a

pitched blade turbine with four blades, at the boundary 0i of the cylinder C, so

u(x,t) = g 8x 2 0i , 8t .

As the velocity function g must satisfy (3), in the next paragraph we define the function g

in C with the property div g = 0.

The initial conditions can be given prescribing an initial velocity field at t = 0. In

particular, we have:

u(x,0) = 0 8x 2 �,

because at t = 0 the fluid and the impeller are steady.

3. Flow pattern around the impeller (rotating) blades

In cylindrical coordinates, the function g, giving the fluid speed in the region C under

the turbine action, has the form:

V(²,� ,z) = (−² sin(� )V² +cos(� )V� ,² cos(� )V² +sin(� )V� , Vz),

where
8

>

<

>

:

V²(²,� ,z) = f (� )

V� (²,� ,z) = k−1

2
f 0(� )² +g(� )�(²)

Vz(²,� ,z) = −kz f 0(� )− zg(� )
h

�0(²)+ �(²)

²

i

+h(� )'(²).

We have the sum of three pieces f , g�, h' that have null divergence. In this way, each

function V of this type has the property div V = 0.

To define the boundary conditions we must introduce the following periodic function:

l(l1,l0, A,a) =

(

l1 +
l0−l1

2

�

cos
�

2³a

A

Ð

+1
Ð

if cos(a) ½ cos( A

2
)

l1 if cos(a) < cos( A

2
).

We observe that for a = 0, l = l0.

In our simulation, we have four impeller blades. At t = 0, each blade is located around

the segment given by �i = i³

2
, i = 0, : : : ,3, z0 = zm+zM

2
, r � lb (in cylindrical coordinates),

where lb is the lenght of each blade. They rotate with angular speed !b = 8³ , so at time t

they are in �i (t) = �i +!bt .

For t ½ 0.5, the dragging radial speed of the fluid is ! f lb where ! f = 2³ moreover the

fluid near a blade has a further radial speed which is inversely proportional to its distance

to the blade and to its radial position, the maximum of this last radial speed is equal to

(!b −! f )lb = 6³lb.

As the blades are initially steady we introduce a grading factor

s(t) =

²

1−cos(2³ t)

2
if t � 0.5

1 if t > 0.5,

in this way the maximum radial speed, given to the fluid, passes from 0 to 8³lb in the time

interval [0,0.5].

In the first example, the blade turbine gives only a radial impulse to the fluid. In

particular, under these hypotheses the fluid speed at time t in a point p 2 C with cylindrical
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coordinates p = (²,� ,z), is defined by g(²,� ,z) = V(²,� ,z − z0) where:
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

f (� ) = s(t)
�

! f +
P3

i=0 fi (� ,t)
�

g(� ) = 0

h(� ) = 0

�(²) = 1

'(²) = 1

k = 1

(4)

fi (� ,t) = l(0,!b −! f ,
³

4
,� −�i (t)),

in this case A = ³

4
.

For example:

fi (� ,t) =

(

6³
cos.8(�−�i (t))/+1

2
if cos(� −�i (t)) ½ cos( ³

8
)

0 if cos(� −�i (t)) < cos( ³

8
).

In the other examples, the blade turbine gives also a vertical impulse to the fluid. So

we have f (� ), g(� ), �(²), k, as in (4), while:

h(� ) = s(t)

 

3
X

i=0

h i (� ,t)

!

,

h i (� ,t) =

(

l(0,vi ,³ ,� −�i (t)) if sin(� −�i (t)) < 0

l(0,vi ,
³

4
,� −�i (t)) if sin(� −�i (t)) ½ 0

'(²) =

8

<

:

1−cos
�

³²
lb

�

2
if ² < lb

1 if ² ½ lb

where vi = (−1)i5. In this way each blade gives a maximum vertical speed that is equal to

5, in particular the blades at �0 and �2 give upward vertical speed while those at �1 and �3

give downward vertical speed.

4. The finite element procedure

This section is devoted to the solution of the instationary Navier-Stokes equations and

the continuity equation. The general approach is the application of the Galerkin’s method

in the space variable ([3]).

We multiply the equations (1) and (2) by arbitrary test functions, integrate over the

domain � and substitute boundary conditions after the use of Green Theorem. If we choose

the basis functions of the approximation as test functions we end up with the Galerkin’s

equations.

We subdivide � (using [4]) into a finite number of tetrahedra satisfying the following

properties:

1. if T1 and T2 are two tetrahedra, then either T1 = T2 or T1 \ T2 = ; or they have a

common face or a common edge or a common vertex;

2. the union of the tetrahedra is exactly �.

We choose a subdivision such that we have a finer refinement around C, as near C

there is a large change of velocities.
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The vertices of tetrahedra and the middle points of their edges are the nodes. We

denote with H = fh1, : : : ,hNH
g the set of interior nodes, with B = fb1, : : : ,bNB

g the set

of boundary nodes, with K = fk1, : : : ,kNK
g the set of vertices, so the set of nodes is

J = fh1, : : : ,hNH
,b1, : : : ,bNB

g.

Let ' j be the unique quadratic function on each tetrahedron such that ' j ( j1) = Ž j , j1 ,

8 j , j1 2 J and let �k be the unique linear function on each tetrahedron such that

�k(k1) = Žk,k1
, 8 k,k1 2 K (see [5]), where:

Ž j , j1 =

²

1 if j = j1
0 if j 6= j1.

We interpolate the dependent variables ui by functions ' j and the dependent variable p by

functions �k .

This choice follows from the fact that the pressure must be approximated by

interpolation polynomials that are at least one degree less than the polynomials for the

velocity (see [6]), so we use a quadratic velocity approximation and a linear pressure

approximation given by:

ui (x,t) = ui0(x,t)+
X

h2H

uh
i (t)'h(x),

ui0(x,t) =
X

b2B

ub
i (t)'b(x),

p(x,t) =
X

k2K

pk(t)�k(x),

where (u
j

1(t),u
j

2(t),u
j

3(t)) is the speed at time t in the node j , pk(t) is the pressure at time

t in the vertex k.

We note that ' j and �k are continuously differentiable in each element and continuous

in the whole domain �.

As test functions we choose 'h , h 2 H , and �k , k 2 K , in this way 'h = 0 on 0.

The resulting integral equations are:
Z

�

�

@u

@t
'h −

1

Re
1u 'h +(u ·r)u 'h +rp 'h − f 'h

�

d� = 0,

Z

�

div u �kd� = 0.

We set 8 i = 1,2,3, 8 h 2 H , 8 j 2 J , 8 b 2 B

ui (t) = (u
h1
i , : : : ,u

hNH

i ,u
b1
i , : : : ,u

bNB

i )T (t),

uH
i (t) = (u

h1
i , : : : ,u

hNH

i )T (t),

uB
i (t) = (u

b1
i , : : : ,u

bNB

i )T (t),

p(t) = (pk1 , : : : , pkNK )T (t),

fi (t) = ( f
h1
i , : : : , f

hNH

i )T (t),

Mh, j =

Z

�

'h ·' j d�, M = (M H , M B),

Sh, j =
1

Re

Z

�

r'h ·r' j d�, S = (SH , SB),
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Nh, j (u(t)) =

Z

�

'h

�

u(x, t) ·r' j

Ð

d�, N = (N H , N B),

(Li )k, j = −

Z

�

@' j

@x i
�kd�, Li = (LH

i , L B
i ),

f h
i = −

Z

�

fi'hd�,

ub
i (t) = gi (x

b,t),

where xb = (xb
1 ,xb

2 ,xb
3 ) are the coordinates of boundary node b 2 B.

If NT is the number of subdivision of [0,T ], 1t = T

NT
, tn = n1t for 0 � n � NT , we

use implicit Euler scheme to solve
dui

dt
and Picard iteration to solve N(u(t))ui (t).

So in our notation, we have to solve the linear system:
8

>

>

>

<

>

>

>

:

�

M H

1t
+ SH + N H (u(tn−1))

�

uH
i (tn)+(LH

i )T p(tn) =

−
�

M B

1t
+ SB + N B(u(tn−1))

�

uB
i (tn)+ M

1t
ui (tn−1)+ fi (tn)

LH
1 uH

1 (tn)+ LH
2 uH

2 (tn)+ LH
3 uH

3 (tn) = −L B
1 uB

1 (tn)− L B
2 uB

2 (tn)− L B
3 uB

3 (tn)

8i = 1,2,3, 81 � n � NT .

5. Qualitative and quantitative measures of mixing phenomena

Now, having computed the flow field u(x,t), we want to analyze the mixing process.

An accurate determination of the mixing phenomena can be obtained by calculating the

trajectories of fluid particles in the flow field of the mixer. Such an approach, which can be

applied to a part of the fluid, has been adopted for the present study. To obtain an accurate

global evaluation of the mixing, it is necessary to study the trajectories of a large number

of particles, leading to the use of a massively parallel computer system.

Some care must be taken at the integrating of the equation for the streamlines in order

to retain a sufficient degree of accuracy. For the result presented in this paper, we used a

two-step Adams-Bashforth scheme.

If ¾ p(t) is the position of a point p at time t , and ¾
p

0 is its initial position, we have:
²

d¾ p

dt
= v(¾ p,t), 8t 2 [0,T ]

¾ p(0) = ¾
p

0

where v(¾ p, t) is the speed of the particle p at time t and it is given by:

v(x,t) =

²

u(x,t), 8t 2 [0,T ],8x 2 �

g(x,t), 8t 2 [0,T ],8x 2 C.

We subdivide [0,T ] in NT subintervals and we have a time step 1t = T

NT
, tn = n1t for

0 � n � NT . Using second order Adams-Bashforth method, we have 8 1 � n � NT

¾ p(tn+1) = ¾ p(tn)+
1t

2
.3v(¾ p(tn),tn)−v(¾ p(tn−1),tn−1)/ .

Note that v(x,0) = 0 8x, since initially the fluid and the impeller are steady.

Solving these equations we find the position of particle p at each time step, so we

can supervise the displacement of the particles, under the action of the turbine.

To analyze the mixing phenomena, in the first simulation, particle trajectories

corresponding to only a part of the fluid have been calculated.
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We consider the following grid of �[ C, with step ¦ = 0.03:

G = fx 2 �[ C : x1 = −rm + i1¦ , x2 = −rm + i2¦ , x3 = i3¦ , i1, i2, i3 2 INg,

where rm = maxfri ,rsg and we compute the trajectories of a set of particles P, setting in

S \ G at t = 1t , where S = fx 2 �[ C : zm+zM

2
−0.15 � x3 �

zm+zM

2
+0.15, 0.0 � x1,x2 � rmg.

We obtain a visualization of the mixing phenomena drawing (using [7]) the isosurface

of the function Ž : G ! IR defined in the following way:

Žp(g) =

(

e
dg ,p

dg ,p−ž if dg ,p < ž

0 if dg ,p ½ ž

Ž(g) =
X

p2P

Žp(g),

where dg ,p is the distance between p and g , and ž = 2¦ .

For other evaluations of the mixing phenomena we follow particles of Ps for

s = 1, : : : ,4, that at t = 1t are respectively located in Bs = f (id1 cos k³

8
, id1 sin k³

8
, jd2 +

d2

2
) :

0 � k � 7, 3+6k � i � 50, 3+6(s −1) � j � 3+6s −1g, where d1 =
maxfrs ,ri g

75
and d2 = zs

150
.

In order to have some quantitative measures of flow mixing, first we subdivide �[C

in 1100 bins with height 3d2 and base 0.13×0.13, and consider the following dispersion

indices (see [8]):

¦ 0(t) =
number of bins occupied by particles of [4

s=1 Ps at time t

1100
,

¦ 00(t) =
number of bins occupied by particles of [3

s=2 Ps at time t

1100
.

Then we subdivide �[ C into 72 layers:

Lk =

²

x 2 �[ C :

�

2k +
3

2

�

d2 � x3 <

�

2k +
7

2

�

d2

¦

k = 1, : : : ,72

and consider the following diffusion indices:

²s(t ,k) =
number of particles of Ps in Lk at time t

10 Volume(Lk)
.

6. Results and conclusions

For our simulation we get T = 7 and NT = 700 and we consider three cases.

In the first case the geometry �1 is given by ri = 0.4, rs = 0.6, zs = 1.5, lb = rC = 0.25,

zm = 0.4, zM = 0.5, the function that simulates the blade turbine gives only a radial impulse

to the fluid, �1 is divided into 2114 tetrahedra and the resulting mesh gives NH = 2471,

NB = 712, NK = 439, Re = 100.

In the second case the geometry �2 is given by ri = 0.45, rs = 0.65, zs = 1.6,

lb = rC = 0.275, zm = 0.24, zM = 0.34, the function that simulates the blade turbine gives

also a vertical impulse to the fluid, �2 is divided into 19712 tetrahedra and the resulting

mesh gives NH = 24820, NB = 3028, NK = 3691, Re = 250.

In the third case the geometry �3 is given by ri = 0.65, rs = 0.45, zs = 1.6, lb =

rC = 0.275, zm = 0.24, zM = 0.34, the function that simulates the blade turbine gives also a
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a) t = 0.0 b) t = 0.5

c) t = 1.0 d) t = 3.0

e) t = 5.0 f) t = 7.0

Figure 1. Isosurface Ž = 0.61 in �1, the considered particles of P are 2149
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a) t = 0.0 b) t = 0.5

c) t = 1.0 d) t = 3.0

e) t = 5.0 f) t = 7.0

Figure 2. Isosurface Ž = 0.61 in �2, the considered particles of P are 2086

TQ105-F/79 19:31, 12I2006 BOP s.c., +4858 5534659, bop@bop.com.pl



80 N. Egidi, L. Misici and R. Piergallini

a) t = 0.0 b) t = 0.5

c) t = 1.0 d) t = 3.0

e) t = 5.0 f) t = 7.0

Figure 3. Isosurface Ž = 0.61 in �3, the considered particles of P are 3285
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Figure 4. ²1(
n

100
,k), k = 1, : : : ,72, 0 � n � 700, �2 on the left and �3 on the right

Figure 5. ²2(
n

100
,k), k = 1, : : : ,72, 0 � n � 700, �2 on the left and �3 on the right

vertical impulse to the fluid, �3 is divided into 19864 tetrahedra and the resulting mesh

gives NH = 25008, NB = 3044, NK = 3715, Re = 250.

We note that since we consider only a discrete set of non-interacting particles we have

value of Ž greater than the initial maximum, moreover the plots of isosurface (Figures 1–3),

at different time, illustrate that the redistribution of the particles varies with the Reynolds

number of the flow, with the geometry of the mixer and with the type of blades push.

In particular in �1 (Figure 1) the mixing is poor since there is no vertical contribute

from the turbine and the Reynolds number is lower than in the other cases.

From the diffusion indices, Figures 4–7, we can see that in �3 the particles reach

higher levels than in �2, independentment from their initial position, so there is a better

diffusion in �3.
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Figure 6. ²3(
n

100
,k), k = 1, : : : ,72, 0 � n � 700, �2 on the left and �3 on the right

Figure 7. ²4(
n

100
,k), k = 1, : : : ,72, 0 � n � 700, �2 on the left and �3 on the right

Figure 8. The upper curve shows ¦ 0( n

100
), the lower curve shows ¦ 00( n

100
),

�2 on the left and �3 on the right
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From the dispersion indices, Figure 8, starting from particles of [4
s=1 Ps or from

particles of [3
s=2 Ps , we see that the number of bins occupied is greater in �3 than in �2.

If we consider Figures 2 and 3 we can say that the mixing is better in �3 than in

�2, the only difference between them being the geometry. This result might be an artefact

because the number of considered particles, at time t = 0, is greater in �3 than in �2. For

this reason we have introduced the indices of diffusion and dispersion. From the comparison

of the dispersion indices, Figure 8, and of the diffusion indices, Figures 4–7, for the same

fluid and the same rotor turbine, we can affirm that the mixing in �3 is better than in �2.

Nevertheless we observe that for t = 7 the layers near the top do not show trace of the

perturbation given by the turbine, so the results might be different for large values of t .
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