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Abstract: Numerical simulations of the effect of random mass density field on frequencies of sound waves

are considered for driven and impulsive sound waves which are described by one-dimensional hydrodynamic

equations, with the ponderomotive force which depends stochastically both on space and time. The numerical

results reveal frequency increase for short waves and both wave damping and amplification for the overall

range of wavenumbers. Moreover, a space- and time-dependent random field leads to a generation of a wide

frequency spectrum which contains both retarded and speeded up waves.
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1. Introduction

Wave propagation in random media has been investigated by a number of authors.

For example, Valley [1] discussed the scattering of the Alfvén wave by space-dependent

fluctuations. His ideas were undertaken by Li and Zweibel [2] who considered decay of

the Alfvén wave which propagated through a medium that contains time-dependent ran-

dom density fluctuations. Lou and Rosner [3] showed that the Alfvén wave is damped

owing to the time-dependent fluctuations. The theory of sound wave propagation in me-

dia with random sound speed, mass density and flow was reviewed by Ostashev [4]. It

was shown by Lipkens and Blanc-Benon [5] that the nonlinear distortion of a pulse is

weaker when turbulence is present. Linear fast magnetosonic waves, that were impul-

sively generated in a space-dependent random mass density medium, were discussed by

Murawski, Nakariakov and Pelinovsky [6]. It was shown that the localized pulses ex-

perience a spatial delay and attenuation due to the random field. Linear sound waves

propagating through the medium of a randomly flowing plasma, were considered by Mu-

rawski and Pelinovsky [7] and Murawski [8] to show that a space-dependent random

flow is able to speed up and enhance sound waves. Nocera, Murawski and Mędrek [9]

discussed the effect of a space-dependent random mass density field on the acoustic

waves. The main conclusion was that such random density field alters the frequencies
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of the acoustic waves since these waves are affected by the scattering from random field

(e.g. Howe [10]). Kawahara [11] showed that time-dependent random field, that is as-

sociated with bottom inhomogeneities, leads to amplitude attenuation and increase (de-

crease) of low (high) frequency self-modulated surface gravity waves. Numerical simula-

tions of space-dependent random mass density fields were performed by Mędrek et al. [12].

The numerical results revealed that sound waves are retarded and attenuated by the ran-

dom field.

Numerical simulations of sound waves propagation in time-dependent random media

were performed by Juvé, Blanc-Benon and Wert [13] whose approach was based on the

use of the Helmholtz equation. The obtained results demonstrate the high variability of a

random wave field whose frequency spectrum shows that most of the energy is concentrated

in the low frequency domain. On the other hand, Muzychuk [14] pointed out that space- and

time-dependent fluctuations lead to a reduction of the mean field damping and eventually

to enhancement of this field. Benilov and Pelinovsky [15] provided an example of a time-

dependent random media whose high (low) frequency fluctuations lead to wave amplification

(damping).

We also consider wave propagation in a medium with random density fluctuation,

but our approach differs from the previous calculations in one important respect. By

allowing the density fluctuations to vary with time we discuss the influence of arbitrary

strength fluctuations on spectral properties of the sound waves. The basic motivation

for the calculations presented in this paper is to show that a rigorous approach, such

as numerical simulations of the Euler equations, can lead to more reliable results than

those obtained with the use of the analytical method which is valid for a weak random

field.

In this paper, we present a numerical approach to the problem of wave propagation

in a medium whose mass density depends stochastically on time. Such a random field is

excited by an external force which is represented by a source term in the mass continuity

equation. Our work is stimulated by the fact that earlier treatments of weakly random

media, based on Born (e.g. Howe [10]) and Rytov (Rytov, Kravtsov and Tatarsky [16])

approximations, are too approximate in accounting for multiple scattering, large fluctuations,

and long propagation distances (e.g. Murawski [8], Murawski and Pelinovsky [7], Nocera,

Murawski and Mędrek [9]).

The paper is organized as follows. The following Section is devoted to presen-

tation of model equations. Numerical simulations for impulsively generated and driven

waves are performed in Section 3. This paper is concluded by a short summary of the

main results.

2. Model equations

The outline of our approach is as follows. We first present equations for the time

evolution of the sound waves, propagating in the presence of density irregularities. As

these equations are quite complicated, analytical solutions can only be obtained under

some restrictive circumstances such as linear waves. As a consequence of that, we solve

these equations numerically for the random waves, excited impulsively or driven by a

periodic driver.
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Figure 1. Ensemble averaged spatial profiles of the velocity V (x) at t = 90 lt in the case of ¦ = 0.1,

Vd = 0, and V0 = 10−3c0. The curves from the top correspond to different initial pulse width w:

w = 2 c0 lt (solid), w = 1c0 lt (dotted), w = 0.5 c0 lt (broken) and w = 0.25 c0 lt (dash-dotted)

Figure 2. The difference between position of the pulse maximum at t = 90 lt for the random field with

¦ = 0.1 and the deterministic medium as a function of the pulse width for the wave profiles of Figure 1

Consider one-dimensional sound wave propagation in a gravity-free medium. Then,

the sound waves are described by hydrodynamic equations, viz.

%t +(%V )x = S%, (1)

%(Vt + V Vx ) = −px , (2)

pt +(pV )x = (1− )pVx . (3)

Here % is the mass density, V is the x-component of the velocity vector, and p is the

pressure. The spatial coordinate and time are denoted by x and t , respectively. The indices

x and t denote the partial derivatives, e.g. %t �
@%

@t
. In Equation (1), S% represents the external

mass flux which is described below.

In the limit of small amplitude waves we can linearize Equations (1) – (3) to obtain:

Vt = −
1

%e

px , (4)

pt = − p0Vx , (5)

TQ205G-E/231 19:54, 12I2006 BOP s.c., +4858 5534659, bop@bop.com.pl



232 K. Murawski

Figure 3. Ensemble averaged frequency difference for the linear random waves in the case of the

time-dependent random mass density field with its strength ¦ = 0.1 and the periodic driver with

Vd = 10−3c0. Here K = k c0 lt and � = !lt are the normalized wavevector and frequency.

The correlation time is denoted by lt

Figure 4. Ensemble averaged frequency spectrum of the random sound waves for space- and

time-dependent random mass density field with its strength ¦ = 0.1. The periodic driver acts at x = 0 with

its frequency !d = 5/lt and amplitude Vd = 10−3c0

where %e(x , t) and p0 = const . correspond to the equilibrium mass density and pressure,

respectively. V (x , t) denotes the perturbed velocity and p(x, t) is the pressure.

From Equations (4) – (5), we can derive the wave equation:

Vtt −c2
e Vxx +

%et

%e

Vt = 0. (6)

A qualitative inspection of this equation reveals that the last term leads to local damping

or amplification in dependence on the sign of the time derivative %et . From this equation

it follows that the wave frequency is reduced by the time-dependent mass density, and the

wave is attenuated (amplified) for %et > 0 (%et < 0).

We assume now that the equilibrium mass density can be written as follows:

%e(x , t) = %0 +%r (x , t), (7)

TQ205G-E/232 19:54, 12I2006 BOP s.c., +4858 5534659, bop@bop.com.pl



Numerical Simulations of the Effect::: 233

Figure 5. Ensemble averaged frequency difference for the random waves in the case of space- and

time-dependent random mass density field with its strength ¦ = 0.1 and the periodic driver with !d = 5/lt
and Vd = 10−3c0. Only two most prominent frequencies of Figure 4 are presented

Figure 6. Ensemble averaged frequency spectrum of the random waves at x = 0.2 xmax (upper panel) and

x = 0.8 xmax (lower panel) in the case of the periodic driver with !d = 5/lt and Vd = 10−3c0 as well as the

space- and time-dependent random mass density field with its strength ¦ = 0.1
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Figure 7. Ensemble averaged frequency spectrum of the random waves in the case of space- and

time-dependent random mass density field with its strength ¦ = 0.2 (upper panel) and ¦ = 0.4 (lower

panel) and the periodic driver with !d = 5/lt and Vd = 10−3c0

where %0 = const . and %r is a random function such that its ensemble average (e.g.

Sobczyk [17]) is zero, i.e. h%r i = 0. The density contrast "(x ,t) is defined as the ratio

of the random mass density %r to the uniform mass density %0, i.e.

"(x , t) =
%r (x , t)

%0

. (8)

3. Numerical results

In this Section, we present the results of the numerical simulations for nonlinear

Equations (1–3). These simulations are performed with the use of the CLAWPACK code

(LeVeque [18]), which is a packet of Fortran routines for solving hyperbolic equations. The

code utilizes the Godunov-type method (e.g. Murawski and Tanaka [19], and references

therein). Initially, at t = 0, the equilibrium state is set as follows:

%0 = const ., V0 = 0, p0 = const . (9)

Here %0, V0, and p0 are the background mass density, velocity, and pressure, respectively.

Waves are excited by the periodic driver which acts at x = 0, i.e.

V (x = 0, t) = Vdsin(!d t) (10)
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Figure 8. Ensemble averaged wavenumber (upper panel) and frequency (lower panel) spectra of the

random waves in the case of time-dependent random mass density field with its strength ¦ = 0.1%0 the

periodic driver with !d = 5/lt and Vd = 10−2c0

or impulsively through the initial condition:

V (x , t = 0) = V0e
−(x−5c0 lt )

2/w2

, (11)

where V0 is the amplitude of the initial pulse, w is its width, Vd denotes the amplitude of

the driver, and !d is its frequency.

The Fourier transform F of initial profile (11) is given by:

FV (x ,t = 0) = V0

w

2³
e−k2 w2

4 , (12)

In the case of driven waves, the free-boundary conditions are applied at x = 70 c0 lt such

that:

@%

@x
=

@ V

@x
=

@p

@x
= 0, at x = 70 c0 lt . (13)

In the case of impulsively generated waves the simulation region is extended from x = 0

and x = 100 c0 lt and the free-boundary conditions are applied there.

TQ205G-E/235 19:54, 12I2006 BOP s.c., +4858 5534659, bop@bop.com.pl



236 K. Murawski

We choose the mass source term S% in Equation (1) that depends stochastically on

space and time as follows:

S% = ¦ sin
� ³

xr − xl

(x − xl )
�

sin(2!g t), xl � x < xr , (14)

where ¦ is the amplitude of the density fluctuations and !g is the frequency, which is

associated with the characteristic time, Tg , i.e. Tg = 2³

!g
. The left and right positions of the

cell are given by xl and xr , respectively. In this model, ¦ , xl and xr are chosen randomly,

with Gaussian statistics, such that 200 km � xr − xl � 2000 km. The characteristic time Tg

is set equal to 600 s and held fixed during the simulations. As a consequence of the term

sin(2!g t) in Equation (14), the random density field is initially zero. Then, it grows in

the time for t < Tg /2 and subsequently decreases to zero at t = Tg . A spatial pattern of the

random field is chosen randomly every time t = nTg , where n = 0,1,2,: : :. For the case of the

time-dependent only random field the term sin
�

³

xr−xl
(x − xl)

Ð

in Equation (14) is dropped.

3.1. Time-dependent random field

3.1.1. Impulsively generated waves

In this case the random field depends on time only, %r (t), and waves are generated

impulsively by setting initial condition (11). The random field is excited through the source

term S% which attains values of %r (t), chosen randomly (Murawski [8]) at each time-step

of the numerical simulations. Figure 1 presents the wave profiles for the initial amplitude

V0 = 10−3c0. For such small amplitude nonlinear effects are negligibly small. The random

field strength ¦ = 0.1. Note that the initial impulses excite packets of waves which contain

higher K for lower pulse width w. See Equation (12). In the deterministic medium the

pulse would reach the point x = 95 c0 lt . The presence of the random field leads to pulse

acceleration (splitting) in the case of high (low) values of w. The splitted pulses are either

slowed down or sped up by the random field. These pulses are damped and this damping

is inversely proportional to the pulse width; broader pulses are damped the least.

3.1.2. Driven waves

We consider now the case of a time-dependent random field of its strength ¦ = 0.1 and

a low amplitude driver with Vd = 10−3c0. Figure 3 presents the results of the spectral analysis

of V (x = 60 c0 lt ,t) and V (x ,t = 150 lt ). As a result of the presence of the random field the

random frequency � is shifted in comparison to the non-random frequency �0 = K . Note

that �− K is positive for low K . For K ½ 2 the frequency difference is negative, suggesting

that the waves are retarded. These results, however, agree with the results for the impulsively

generated waves (Figure 1) which shows that wide (of high w) impulses are accelerated

while narrow impulses for which contributions from high k are higher, split into retarded

and accelerated waves.

3.2. Space- and time-dependent random field

Figure 4 presents the frequency spectrum which was obtained by averaging over 15

realizations of space- and time-dependent random fields with their strength ¦ = 0.1. The

periodic driver is settled at the spatial coordinate x = 0. Its frequency !d = 5/lt and amplitude

Vd = 10−3c0. It is interesting that while a space-only-dependent random field excites a narrow

spectrum which is centered around ! = 5.34/lt (not shown), a space- and time-dependent

random field generates a multitude of spectral lines which are organized in two groups:
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the lines for which ! < !d and the lines with ! > !d . At the same time, the wavenumber

spectrum consists of an essentially single line at k = 5/(c0 lt ) (not shown). The lines for which

! < !d (! > !d) correspond to slowed down (speeded up) waves. Indeed, Figure 5 displays

the normalized frequency difference �−�0 as a function of the normalized wavenumber K .

The normalized non-random frequency �0 = K . Only the lines which correspond to two

strongest maxima of the spectral power are presented. The waves which are sped up or

slowed down as a consequence of the random field are clearly visible. The frequencies

depart one from another and this departure grows with K . For low K , � is close to �0,

while it departs from �0 for high K .

Figure 6 displays the frequency spectra which were made from signals, collected at

x = 0.270 c0 lt (upper panel) and x = 0.870 c0 lt (lower panel). We conclude that the spectrum

gets broader with a distance of the wave propagation, x ; the two groups of frequencies split

apart at x = 0.870 c0 lt (lower panel). The effect of random field grows with a propagation

distance.

Figure 7 shows the effect of a stronger random field on frequency spectrum of the

sound waves. In the case of ¦ = 0.2%0 (upper panel), the strongest line of � < �0 is shifted

to the left in comparison to the corresponding line of Figure 4. The strongest line of � > �0

of Figure 4 is split into two lines: the line at � ' 5.2 is slightly shifted to the left; the

line at � ' 5.55 is shifted to the right. Note that for ¦ = 0.4%0 (lower panel), the spectrum

is wider (1 < � < 9) than the corresponding spectrum for the weaker (¦ = 0.1%0) random

field (Figure 4), for which 4.5 < � < 5.5. A stronger random field leads to line splitting and

broadening of the spectrum.

Figure 8 displays the effect of higher wave amplitude on the wavenumber (upper

panel) and frequency (lower panel) spectra. These spectra are centered around ' 5.3. Note

that the frequency spectrum is wider than in the corresponding case of low amplitude waves

(Figure 4).

4. Summary

In this paper we have presented a numerical study of the propagation of the sound

waves in a medium with space- and time-dependent random mass density fluctuations. The

main findings can be summarized as follows. The time-dependent random mass density field

leads to frequency increase (decrease) of long (short) waves. The space- and time-dependent

field leads to a multitude of frequencies which depart from the driving frequency !d . A

frequency ! < !d (! > !d ) corresponds to slowed down (sped up) waves. As a consequence

of the presence of these frequencies, a spectrum of the sound waves is broader than in the

case of a space-dependent random field. The corresponding wavevector spectrum is narrow.

The effect of the space- and time-dependent random field grows with a propagation distance

and with a strength of the random field. The nonlinearity leads to a generation of higher

harmonics (not shown) and to a broader frequency spectra.

As the analytical method (Howe [10]) is essentially valid for a weak random field

only, the numerical simulations provide a potential tool for a detailed description of an

interaction between waves and a random field. It has been already proved that this tool is

very powerful to represent random flows (Nocera, Murawski and Mędrek [9]) and sound

waves in space-dependent random density plasma (Murawski [8], Murawski, Nakariakov

and Pelinovsky [6], Mędrek et al. [12]).
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