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Abstract: In this paper several aspects associated with numerical simulations of hyperbolic equations

are discussed. This presentation covers a range of modern shock-capturing schemes which are based on

Godunov-type techniques. These schemes are well suited for strong shocks and other discontinuities,

without generating spurious oscillations in the flow variables. An example of a performance of such

schemes is provided to simulate the spatial distribution of air-pollutants which are emitted from a chimney.

The simulations are performed in the framework of two-dimensional hydrodynamics, with a use of the

CLAWPACK code [1]. The model reproduces several features of the distribution, including occurrence of

vortices and plumes above the chimney.

Keywords: numerical discretization, hydrodynamic equations, distribution of air-pollutants

1. Premises of interest in numerical simulations

Traditionally the scientific methods involve a mutual interplay between experiments

and analysis. The former try to collect information by repeated events. The latter attempts

to order the accumulated knowledge. Analysis and experiment interact with each other

via mutual stimulation and feedback. However, the traditional methods of investigating

the nature have their limitations. Often a complexity of phenomena and a simultaneous

interaction of various effects make a complete analysis impossible. On the experimental

side, one is limited to measurements of only a small fraction of the quantities of interest

and even they can be sampled only at a few times and spatial locations and with a limited

degree of accuracy. Consequently, one is then faced with the task of interpreting limited

observations with theories that are incomplete. For example for air-pollutants, due to a high

cost of monitoring the available experimental data is often scarse and sporadic. Additionally,

this data very often depends on time and space. The sheer volume of exploration in space
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can be so large that the essential point measurements alone often lead to misinterpretation

of the data.

Computer simulations – that is, the use of computers to solve problems by simulating

theoretical models – are part of a new methodology that has taken its place alongside

pure theory and experiment during the last 60 years or so. The basic idea of computer

experiments is to simulate the behavior of natural systems by developing and solving a

mathematical model, i.e. an appropriate set of mathematical equations, perhaps in the form

of a set of differential equations, that are built on the basis of a physical model and that

describe a particular physical system. Such equations are transformed to a discrete form

and can be then numerically treated.

The feedback of numerical results into theoretical modeling and the continuous inter-

action with laboratory experiments and analytical theory make computing an indispensable

tool for science. Numerical computations share characteristics with both analytical theories

and laboratory experiments. Like analytical theories, numerical computations are based on

theoretical concepts and attempt to predict the behavior of physical systems using abstract

mathematical equations. The results one can obtain from simulations may vary, depending

upon how the simulation is handled. The computer treats the analytical formulae like a

theoretical physicist fond of manipulating. Instead, many bits of numbers are crunched by

the computer. Consequently, one can get only a single event instead of a physical law out

of the computer. To learn the general behavior and laws of nature, we have to interpret and

analyze the computer results. Numerical work is rarely used to uncover new fundamental

laws of nature, and in this respect computational science is fundamentally different from

theoretical science. However, computer simulations can be used to discover previously un-

known phenomena. In this respect, computations are like physical experiments whose results

depend on initial and boundary conditions. Moreover, like the laboratory experimenter, the

computational researcher has to perform a large number of numerical experiments. Luckily,

the simulation is fully repeatable so one can get a feel for the general behavior of a natu-

ral system and learn something new while changing the conditions of the experiment. As

numerical methods improve and computing power in both speed (more than 9·109 floating

point operations per a second in a single unit) and storage (more than 70 GB on a sin-

gle disk) is increasing rapidly, simulations become more accurate conferring computational

physics its significance. The variety of complex flows that computational fluid dynamics

can analyze continues to increase. Nevertheless, the solutions to much more complex flows

are desired.

However, numerical modelling has its limitations. The conditions investigated numer-

ically are usually much simpler than those encountered in nature. Even the most powerful

present supercomputers can handle a finite number of degrees of freedom. Both the finite-

ness of the capacity of computer memory and the finiteness of operation speed, force the

physical systems that are described by computational physics to be represented by a discrete

finite mathematics. On the other hand, as the power of computers has been increasing at an

exponential rate we expect a computer will become a more and more powerful tool in the

future.

In the present paper we describe various numerical methods which can be used to

solve a variety of fluid equations. Section 2 presents the advection equation which can

be numerically solved by the use of modern shock-capturing schemes. Sections 3 and 4
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provide a short review of old and modern shock-capturing schemes. Moreover, in Section

4 wave propagation method is briefly described. Section 5 discusses multi-dimensional

schemes. In the forthcoming Section we present a model which can precisely represent

the real phenomena by a numerical scheme. As an approach to the problem we adapt a

modern numerical code that solves the Euler equations which describe the dynamics of

pollutants and ambient air. Such model is expected to give more adequate results than a

model based on a single advection equation. We describe this model in Section 6. In Section

7 an example of the performance of a modern hydrodynamic code in the case of simulations

of air-pollutants which are emitted continuously from a linear emittor into the ambient air

is provided. The paper is concluded with a short summary of the main results.

2. Advection equation and air-pollutants

Dynamics of air-pollutants with the mass density q(x ,t) and the constant wind speed

v can be described by the advection equation (e.g. [2]):

@q

@ t
+v

@q

@x
= 0, −∞ < x < ∞, t ½ 0, v = const., (1)

with the initial (t = 0) condition

q(x ,0) = q0(x). (2)

Here, x is the spatial variable and t is the time. The solution of the above initial-value

problem is:

q(x ,t) = q(x −vt ,0). (3)

That is, the initial profile of air-pollutants is simply translated with a vector vt without any

change in shape.

2.1. Old shock capturing schemes for the advection equation

The history of the development of numerical schemes for Equation (1) is long and

rich. The idea that shock-capturing can be accomplished through an appropriate dissipation

term was used in early shock-capturing schemes. We explain it in some details below.

We discretize the x − t plane by choosing a mesh width 1x and a time step 1t , and

define discrete mesh points (xi ,tn) by:

xi = i1x , i = : : : ,−2,−1,0,1,2, : :: , tn = n1t , n = 0,1,2,: : : . (4)

A forward Euler scheme leads to the discretization of the temporal derivative, viz.

@q

@ t

þ

þ

þ

þ

i , n

=
qn+1

i −qn
i

1t
+0(1t). (5)

Here, 0(1t) denotes all terms which are proportional to 1t . As a consequence of that

scheme (5) is first-order accurate in time.
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A centered Euler scheme, which is second-order accurate in space, can be used for a

discretization of the spatial derivative:

@q

@x

þ

þ

þ

þ

i ,n

=
qn

i+1 −qn
i−1

21x
+0
�

(1x)2
Ð

. (6)

Then, the resulting scheme to Equation (1) is:

qn+1
i −qn

i

1t
= −v

qn
i+1 −qn

i−1

21x
. (7)

This equation can be rewritten as:

qn+1
i = qn

i −
1

1x
(Fn

i+1/2 − Fn
i−1/2), (8)

where the numerical flux F is an approximation to the integral that is evaluated at the cell

interface xi+1/2, i.e.:

Fn
i+1/2 =

Z tn+1

tn

vq(xi+1/2, t)dt = 1/2

Z tn+1

tn

v(qn
i+1 +qn

i )dt . (9)

The above scheme is called explicit as the fluxes on the right-hand side of Equation (8)

are expressed by known quantities which were already computed at old time tn = n1t .

Unfortunately, this scheme is unconditionally unstable and therefore it is useless in practice.

See Section 2.3 for the stability analysis of Equation (8).

A stable scheme can be obtained if qn in the flux F in (8) is replaced by new, and

therefore unknown, density qn+1 that is evaluated at tn+1 = (n+1)1t . Then, we get an implicit

scheme, viz.

qn+1
i = qn

i −
1

1x
(Fn+1

i+1/2 − Fn+1
i−1/2). (10)

Another way of getting a numerically stable scheme is to replace qn
i in Equation (8)

by its average:

qn
i ! qn

i−1 +qn
i+1

2
. (11)

This turns into the Lax-Fredrichs scheme:

qn+1
i =

qn
i−1 +qn

i+1

2
−

1

1x
(Fn

i+1/2 − Fn
i−1/2), (12)

which in the form of discretization (7) is exactly the representation of the following equation:

@q

@ t
+v

@q

@x
=

(1x)2

21t

@2q

@x2
. (13)

We have, in effect, added a diffusion term to the advection equation. The Lax-Fredrichs

scheme is thus said to introduce a numerical dissipation. This scheme belongs to a family

of old shock-capturing schemes.

From Equation (13), we see that the essence of old shock-capturing schemes is

to smear large-gradient profiles, such as occur at shocks, over a small number of grid

points. The smearing is done by introducing into the system a sufficient amount of a linear

dissipation which is implemented globally, both in high-gradient regions and low-gradient

regions.

Our purpose now is to develop a modern scheme which will resolve a shock over few

grid points. However, before doing that, we will introduce some basic information about

numerical errors, stability analysis and monotonicity.
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2.2. Numerical errors

We will introduce the following definitions:

Discretization error is the difference between the exact analytical solution of the partial

differential equation (such as Equation (1)) and the exact (round-off free) solution of

the corresponding difference equation (e.g. Equation (7));

Round-off error is the numerical error that is introduced after a repetitive number of

calculations.

We define: A � analytical solution of the partial differential equation, D � exact

solution of the difference equation, N � numerical solution from a computer. Then:

Discretization error = A− D,

Round-off error = N − D.

Round-off errors occur as a result of:

Numerical diffusion that is associated with a finite length of a numerical cell. The numerical

diffusion is large for short waves (kx1x >> 1), which are removed from the system.

Here, kx is the wavevector. The diffusion controls all the errors mentioned below;

Numerical dispersion that is revealed by the fact that waves of different wavelengths

propagate with different speeds. The dispersion is usually larger for shorter waves

(kx1x >> 1);

Nonlinear instabilities which are generated by a nonlinear term such as V @V

@x
. This term

transforms energy from long wavelengths to short wavelengths for which dispersive

errors are higher;

Gibbs error which is revealed by short oscillations. The Gibbs error is a consequence of

finite Fourier spectrum which is a result of discretization of a continuous medium;

Spurious modes: Equation (7) admits at steady state ( @q

@t
= 0) apart from the physical mode

qn
i = q0 = const. the spurious mode qn

i = q0(−1)i . This mode decouples the odd and

even mesh points. It can be eliminated from the system by coupling the odd and even

nodes or by introducing a numerical diffusion. Occurrence of spurious modes is a

consequence of dispersive errors;

Overshoots and undershoots: Consider the Cauchy problem for Equation (7) with v > 0, viz.

q0
i =

²

0, i � I ,

1, i > I .
(14)

The spatial derivative
@qI

@x
> 0 at x = I1x. Then, according to Equation (7)

@qI

@t
< 0 and

therefore qI will decrease in time, producing an unphysical undershoot at x = I1x .

This undershoot is usually accompanied by an overshoot which occurs at x = (I +1)1x .

2.3. Von Neumann stability analysis

Numerical errors lead to perturbations of a true solution. If this solution is unstable

with respect to perturbations, there is an energy transfer to them and they grow quickly in

time, deteriorating the solution.

TQ205F-E/211 19:54, 12I2006 BOP s.c., +4858 5534659, bop@bop.com.pl



212 K. Murawski and J.K. Michalczyk

To check whether a numerical scheme is stable in the von Neumann sense we

introduce a Fourier mode

qn
j = ¾ neikj1x , (15)

where k is a wave-vector and ¾ = ¾ (k) is a complex function of k, called the amplification

factor.

A numerical scheme is unstable if j¾ (k)j > 1 for some k. To find ¾ (k) for Equation

(7), we substitute (15) back into (7). Dividing by ¾ n , we get:

¾ (k) = 1− i
v1t

1x
sin(k1x).

Hence, j¾ (k)j > 1 for all k. So, discretization (7) is unconditionally unstable.

2.4. Monotonicity

As a consequence of numerically induced oscillations, an important problem is to

develop a scheme which leads to monotonic solutions.

A grid function is called monotonic if the following condition is satisfied:

min(qi−1,qi+1) � qi � max(qi−1,qi+1).

This condition prevents an occurrence of local maxima or minima at qi . A numerical scheme

is monotonicity preserving if a monotonic function at t = n1t will be kept monotonic at

t = (n +1)1t . Monotonic schemes do not accentuate local maxima and local minima are

non-decreasing.

To measure the monotonicity, Total Variation is defined as follows:

T V (q) =

Z ∞

−∞

þ

þ

þ

þ

@q

@x

þ

þ

þ

þ

dx '
∞
X

i=−∞

jqn
i −qn

i−1j.

The monotonicity condition is:

T V (qn+1) � T V (qn).

A numerical scheme satisfying this condition is called a Total Variation Diminishing scheme.

Such scheme is monotonicity preserving as it eliminates oscillations which occur near steep

profiles [3, 4]. That means that if the initial data are free of oscillations, then the solution

should be monotonous for later times.

3. Modern shock-capturing schemes for the advection equation

Modern shock-capturing schemes are intelligent as they add only enough dissipation

in small localized regions to eliminate numerical oscillations. To achieve this the dissipation

has to be nonlinear and implemented locally, at regions of high-gradients. Consequently,

the schemes reduce to some highly dissipative, first-order schemes when the solutions are

discontinuous and to some minimally dissipative, higher-order scheme when the solution

is smooth. The dissipation is added only for those wavelengths that the high-order scheme

cannot resolve. As a consequence of that, the shock is captured over a small number of

points and without any oscillations.
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3.1. Upwind schemes

A key point of modern shock-capturing schemes is upwind differencing which

stabilizes shocks and other large gradient profiles. An upwind scheme for advection Equation

(1) can be written as:

qn+1
i = qn

i −
1t

1x
v1qn , (16)

where:

1qn =

(

qn
i+1 −qn

i , if v < 0,

qn
i −qn

i+1, if v > 0.

Modern shock-capturing schemes can be divided into geometric approaches and algebraic

approaches. While all of the members of the geometric approaches attempt to assign a value

to the generalized density, q, in a global manner the algebraic approaches use flux limiters.

Some common limiters are: minmod, superbee, van Leer, and monotonized centered [5].

The algebraic schemes enforce some constraint on the problem, usually that some

component of the solution be total variation diminishing (e.g. [4]). The geometric approaches

are: the Godunov scheme [6], MUSCL scheme [7], piecewise parabolic method (PPM)

scheme (e.g. [8]), and essentially non-oscillatory (ENO) scheme [9–11]. In the geometric

approaches the defining functions can be continuous within a cell, but may be discontinuous

at cell edges. For example, in the original Godunov approach [6], the solution was considered

to be piecewise constant over each grid cell at a fixed time. The evolution of the flow to the

next time step results from the waves interactions originating at adjacent cell boundaries,

specifically a Riemann initial-value problem (e.g. [12]).

3.2. Riemann problem

In the Riemann problem, an imaginary membrane, which separates two cells at

different states is ruptured, and shock, contact, and expansion waves are emitted when these

two states interact. In other words the Riemann solver is based on the idea that two adjacent

arbitrary states will evolve into a set of left- and right-going shocks and rarefactions. We

can explain this more precisely by considering the initial condition:

q(x ,0) =

²

ql , x < 0,

qr , x ½ 0,
(17)

for the equation:
@q

@t
+

@ f (q)

@x
= 0. (18)

Here, ql and qr are constants corresponding to the left and right states, respectively. With

certain assumptions on the flux function f (q), it is always possible, in principle, to solve

the Riemann problem if the states ql and qr are sufficiently close to each other. The solution

consists of waves traveling with finite velocities. These waves may either be discontinuous

shock waves or smooth rarefactions. The procedure for constructing the solution of a

Riemann problem is called a Riemann solver. The most popular Riemann solver is due

to Roe [13].

3.3. Roe solver

The keystone of the Roe scheme [13] is the introduction of an average Jacobian Av,

which approximates the Jacobian A = @ f

@q
, associated with Equation (18).
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The average Jacobian (called also the Roe matrix) is such that for any given left and

right pair of states (ql ,qr ) the so-called Property U is satisfied:

(i) Av is a linear mapping from the vector space q to the vector space f ;

(ii) Av(ql ,qr ) ! @ f

@q
as ql and qr ! q;

(iii) Av(ql ,qr ) has real eigenvalues and a complete set of linearly independent eigenvectors;

(iv) Av(qr −ql ) = fr − fl for any ql and qr .

In the case of Euler or magnetohydrodynamic equations, average mass density is given

by [12]:

²v =
p

²l²r (19)

and the rest of flow variables are averaged as follows:

�v =
�l

p
²l +�r

p
²rp

²l +
p

²r

. (20)

Once all the averaged variables are obtained, the linearized Riemann problem, expressed

as:

@q

@t
+ Av

@q

@x
= 0, (21)

is considered at each interface. The exact solution of this approximate problem can be

expressed in terms of right eigenvector ri of Av as:

1q � qr −ql =

m
X

i=1

Þiri , Þi = r−1
i 1q. (22)

From property (iv) it follows that the flux difference is given as:

1 f =

m
X

i=1

Þi½iri . (23)

3.4. The Godunov method and its generalizations

3.4.1. The Godunov scheme

In the original Godunov [6] approach upwind finite-volume flow solver was used. The

solution was considered to be piecewise constant over each grid cell at a fixed time:

q(x) = qi , xi−1/2 < x < xi+1/2. (24)

So, discontinuities are placed at the cell interfaces xi+1/2. Moreover, the Riemann problem

at adjacent cell boundaries is solved. The Godunov method is first-order accurate in space.

3.4.2. MUSCL scheme

The low accuracy and the complexity of the Godunov method meant that other

methods have mostly been used for a long time. Two decades passed until the Godunov

approach was first extended to second-order spatial accuracy by the MUSCL approach
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developed by van Leer [7]. In this scheme the accuracy was increased by constructing a

piecewise linear approximation of q(x) at the beginning of each time step, viz.

q(x) = qi +si (x − Nxi ), xx−1/2 < x < xx+1/2, (25)

where Nxi = (xi + xi+1)/2 and si is a slope. As an upwind (Beam-Warming) slope we can

choose:

si =
qi −qi−1

1x
.

In regions where si = 0(1), the reconstruction used is linear, and the truncation error is

0
�

(1x)2
Ð

. In regions where si = 0, the reconstruction used is piecewise constant, and the

truncation error is 0(1x).

As the above slope can lead to oscillatory approximations to discontinuous solutions,

slope-limiter methods may be introduced to reduce these oscillations and to enforce the

monotonicity of the reconstruction.

3.4.3. Piecewise parabolic scheme

A piecewise parabolic method (PPM) scheme is an extension of the MUSCL

scheme. The key difference from MUSCL is that q(x , t) is allowed to be piecewise

parabolic within a cell, rather than piecewise linear. Second-order accuracy in time is

again achieved in the same way as in the MUSCL scheme, via characteristic tracing and

solving Riemann problems. Dai and Woodward [12, 8] applied the PPM scheme to ideal

magnetohydrodynamic equations.

3.4.4. Essentially non-oscillatory scheme

Essentially non-oscillatory (ENO) schemes are again extensions of the PPM approach.

Arbitrarily high-order polynomials are allowed to define q(x , t) within a cell, yielding

arbitrarily high-order spatial accuracy [9–11].

It is noteworthy that various modern shock-capturing schemes were compared by

Woodward and Colella [14] by computing a blast wave interaction problem in one

dimension. The result of that test was an ordering of the schemes in terms of the accuracy.

With the most accurate schemes listed first, that ordering was obviously as follows: PPM,

MUSCL, and the Godunov scheme.

4. Wave propagation method as a modern

shock-capturing scheme

In this part of the paper we consider the wave propagation method that was developed

by [15] for a linear hyperbolic system of equations:

qt + Aqx = 0, (26)

where the m × m matrix A has m right-eigenvectors r p and real eigenvalues ½p for

p = 1,2,: : : ,m, viz.

Ar p = ½pr p, p = 1,2, : :: ,m.

Then, the difference of the generalized density vector 1qi can be written as:

1qi � qi −qi−1 =

m
X

i=1

Þ
p

i r p �
m
X

i=1

W
p

i , (27)

where W
p

i is the wave and ½p is its speed.
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The matrix A can be decomposed as:

A = R3R−1, (28)

where the matrices R and 3 are constructed by the right-eigenvectors r p and eigenvalues

½p, respectively, viz.

R = [r1jr2j: : :jrm], 3 = diag(½1, : :: ,½m). (29)

Let q0
i denote the value at the interface between qi−1 and qi . The case of qi > qi−1 is shown

in Figure 1.

Figure 1. Waves, interface values and flux differences

Then, with the use of Equation (27) we can write:

q0
i −qi−1 =

X

½
p
i

<0

W
p

i , qi −q0
i =

X

½
p
i

>0

W
p

i . (30)

According to property (iv) of the Roe solver, the flux at the interface can be expressed

twofold:

f (q0
i ) = Aq0

i = Aqi−1 +
X

½
p
i

<0

½
p

i W
p

i = Aqi−1 + A−1qi , (31)

f (q0
i ) = Aq0

i = Aqi −
X

½
p
i

>0

½
p

i W
p

i = Aqi − A+1qi , (32)

where:

3± = diag(½p±), A± = R3± R−1, (33)

½p+ = max(½p,0), ½p− = min(½p,0). (34)

4.1. First-order scheme

Equation (26) can be discretized as:

qn+1
i = qi −

1t

1x
(Fi+1 − Fi ), (35)

where the flux:

Fi = f (q0
i ) = Aq0

i . (36)

Using (31) and (32), we obtain:

Fi = f (qi )− A+1qi , Fi+1 = f (qi )+ A−1qi+1. (37)

Equation (35) can now be rewritten as:

qn+1
i = qi −

1t

1x
(A−1qi+1 + A+1qi ) � qi +1

upwind

i . (38)

This scheme is first-order accurate in space and is called the Godunov scheme.
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4.2. Second-order correction

A second-order correction to Equation (38) is obtained by altering its right-hand

side as:

qn+1
i = qi +1

upwind

i −
1t

1x
( NFi+1 − NFi ), (39)

where the flux:

NFi =
1

2

m
X

p=1

j½p

i j
�

1−
1t

1x
j½p

i j
�

NW p

i . (40)

Here, NW p

i is a limited version of the wave W
p

i , obtained by comparing W
p

i to W
p

i−1 if ½
p

i > 0

or to W
p

i+1 if ½
p

i < 0.

4.3. Entropy fix

Godunov schemes are very robust in most situations. However, there are few instances

in which a particular scheme produces inappropriate results [16, 17]. For example, when

computing rarefaction waves, the scheme can produce nonphysical expansion shocks in

the computed flow. This can lead to numerical approximations with entropy violating

discontinuities. To prevent these expansion shocks, an intermediate state (that simulates

the diffusion) between the left and right states is introduced [18]. This procedure is called

an entropy fix and it is necessary to obtain physically relevant numerical approximations of

the exact solution. In Roe method [13] the entropy fix is only required for the case of sonic

rarefactions for which ½il < 0 to the left of the wave while ½ir > 0 to the right of the wave.

The idea used in the entropy fix is to replace the single jump q j r −q j l propagating at

speed ½ j by two jumps propagating at speeds ½ jl and ½ j r , with a new state q j n in between.

The flux difference can be expressed as follows:

f (q jl )− f (q j r ) = f (q j l)− f (q jn)+ f (q j n)− f (q jr ). (41)

Using the property (iv) of the Roe solver this formula can be rewritten as:

½ j (q j l −q j r ) = ½ j l(q jl −q jn)+½ jr (q jn −q j r ). (42)

Hence,

q jn =
(½ j −½ j l )q j l +(½ j r −½ j )q j r

½ j r −½ jl

(43)

and consequently

q jn −q j l =
½ jr −½ j

½ j r −½ j l

(q j r −q j l) � ½ j r −½ j

½ j r −½ jl

Þ j r j , (44)

q j r −q jn =
½ j −½ j l

½ j r −½ j l

(q j r −q jl ) � ½ j −½ jl

½ j r −½ jl

Þ jr j . (45)

The flux can now be written twofold:

F(ql ,qr ) = f (ql )+
X

i 6= j

½−
i Þiri + O½ j lÞ j r j (46)

or

F(ql ,qr ) = f (qr )−
X

i 6= j

½+
i Þiri − O½ jrÞ j r j , (47)

where we introduced the following notation:

O½ j l = ½ j l

½ j l −½ j

½ j r −½ j l

, O½ jr = ½ j r

½ j −½ j l

½ jr −½ jl

. (48)
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Another deficiency of most Godunov-type schemes is the generation of a long wavelength

noise, downstream nearly stationary shock. This noise is not effectively damped by the

dissipation of the scheme [16].

4.4. An example – the isothermal hydrodynamic equations

The isothermal equations can be written as follows:

@²

@t
+

@(²u)

@x
= 0, (49)

@(²u)

@ t
+

@(²u2 +c2²)

@x
= 0, (50)

c = const., p = c2². (51)

For the Roe solver we define an average velocity [15]:

Nui =

p
²i−1ui−1 +

p
²iuip

²i−1 +
p

²i

. (52)

Then, from Equations (49) – (51) it follows that an average Jacobian (the Jacobian matrix

f 0(q) evaluated at the averaged state) is:

Ai =

 

0

c2− Nu2
i

1

2 Nui

!

. (53)

The matrix Ai can be decomposed as:

Ai = Ri3i R−1
i ,

where:

Ri =

�

1

Nui −c

1

Nui +c

�

, 3i =

� Nui −c

0

1

Nui +c

�

, R−1
i =

1

2c

� Nui +c

− Nui +c

−1

1

�

. (54)

The wave strengths are given by the following formulae:

Þi = R−1
i 1qi , (55)

Þ1
i =

1

2c
[( Nui +c)1q1

i −1q2
i ], (56)

Þ2
i =

1

2c
[(− Nui +c)1q1

i +1q2
i ]. (57)

The Riemann solver is determined by:

W
p

i = Þ
p

i r
p

i , p = 1,2, (58)

½1
i = Nui −c, ½2

i = Nui +c, (59)

A−
i 1qi = ½1

i

−
Þ1

i r1
i +½2

i

−
Þ2

i r2
i , (60)

A+
i 1qi = ½1

i

+
Þ1

i r1
i +½2

i

+
Þ2

i r2
i . (61)

To check for a transonic rarefaction, we compute:

Oqi = qi−1 +Þ1
i r1

i = qi −Þ2
i r2

i . (62)

Suppose that:

ui−1 −c < 0 < Oui −c. (63)
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Then, there may be a transonic rarefaction in the first wave and the flux differences are

modified according to formulae (46) and (47) as follows:

A−1qi =
( Oui −c)−( Nui −c)

( Oui −c)−( Nui−1 −c)
(ui−1 −c)W1

i , (64)

A+1qi = [ f (qi )− f (qi−1)]− A−1qi . (65)

5. Multi-dimensional schemes

A common approach when solving multi-dimensional hyperbolic equations is to apply

operator splitting method (e.g. [19]). The idea of this method is to iterate sequentially one-

dimensional equations. The popularity of this method is a consequence of the fact that

the numerical schemes lead to surprisingly good results (e.g. [20]) and that the strategy is

very simple as any multi-dimensional scheme consists of a system of the one-dimensional

problems. However, the operator splitting methods have several disadvantages. For example,

discontinuities traveling obliquelly to the grid are smeared more than those traveling in the

coordinate directions. The implementation of boundary conditions may also be complicated

using this method.

In unsplit methods, information is propagated in a genuinely multi-dimensional way.

One-dimensional Riemann problems are solved at the interfaces and limiter functions are

applied to suppress numerically induced oscillations which are usually generated by higher-

order derivative terms. The left-going and right-going waves are split into parts propagating

in the transverse direction by solving Riemann problems in coordinate directions tangential

to the interfaces. These cross-derivative terms are necessary for obtaining both a stable and

second-order schemes [21].

A class of conservative finite difference schemes for hyperbolic conservation laws

in multi-dimensional spaces has been developed by [22]. These schemes do not make use

of operator splitting and instead the multidimensional wave properties of the solution are

used to calculate fluxes. In these schemes some of the second-order terms are limited to

suppress oscillations. Although the same Riemann problems appear in these schemes as in

the operator split methods, these schemes are somewhat more expensive, requiring twice

as many solutions to the Riemann problems as the corresponding operator split algorithm.

6. Model of air-pollutants

Dynamics of air-pollutants can be described by the hydrodynamic equations:

@²

@ t
+r · (²V) = S² +SD, (66)

@(²V)

@t
+r · [(²V)V] = −rp +²g Oy +SV, (67)

@p

@t
+r · (pV) = −(
 −1)pr ·V+Sp, (68)

where ² is the mass density, V is the velocity, p is the gas pressure, g is the gravity, Oy is a

unit vector in the vertical direction y, and t denotes the time. The adiabatic constant that is
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expressed by the ratio of specific heats
cp

cV
is 
 . The x-axis lies in the horizontal direction.

Henceforth, we consider the two-dimensional case with @

@z
= 0. SD is a diffusive term:

SD = −r · D(x , y, t ,²)r²(x , y,t). (69)

Assuming the diffusive coefficient D to be a constant, the latter equation can be rewritten

as follows:

SD = −Dr2². (70)

The source terms S² , SV and Sp are associated with the emission of the pollutants. These

terms are derived in the following way. In the diffusion-free case (D = 0) the mass continuity

equation can be written as:

@²

@ t
+r · (²V) = −r(²eVe) � S² , (71)

where ²e and Ve denote the mass density and velocity of the emitted pollutants, respectively.

In the case of a vertical emission with the speed Ve = [0, QVey], the mass source term is given

by:

S² = −
@

@y
(²e

QVey). (72)

If the emittor of its width x0 is placed at y = y0, the parameters of the emission that takes

place for y > y0 are described as follows:

²e = O²ee
−

y−y0
x0 , QVey = const. (73)

As a consequence of that the source term S² is described by the following expression:

S² = QVey

O²e

x0

e
−

y−y0
x0 =

E

A · x0

e
−

y−y0
x0 , (74)

where E = O²e
QVey A is the flux of the pollutants which cross the area A of the emittor. Having

defined the mass source term, the remaining source terms SV and Sp are given as:

SV = S²
QVey Oy, (75)

Sp =
pe


 −1
QVey . (76)

7. Numerical simulations of air-pollutants

This research is stimulated by an elementary disagreement between the results

obtained with the use of the existent air-pollution models and the experimental data. Our

approach is to adapt a modern numerical scheme that solves a set of the hydrodynamic

equations which describe the dynamics of pollutants in the ambient air. Such a model is

expected to represent more adequately physical phenomena which take place in the Earth’s

atmosphere than a model based on a single equation.

Numerical simulations which are presented in this paper treat pollutants which are

emitted from a linear smokestack into the ambient air. At this stage, wind and topography of

a terrain are neglected and the atmosphere is assumed to be isothermal. Such approximations

allow to trace the distribution of pollutants in the neighbourhood of an emittor as well as

observe a plume development. These simulations consist a continuation of the work led so

far by the authors [23, 24].
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7.1. The numerical scheme

In the present research we have applied the CLAWPACK (Conservation LAWs

PACKage) code which is a collection of Fortran routines for solving a hyperbolic system of

conservation laws. The general structure of the code is described in detail in the user notes

report [1]. Here, we briefly describe the method applied in the code.

For the numerical purposes, the Euler equations can be written in the conservative

form:

@

@ t

2

6

4

²

²Vx

²Vy

E

3

7

5
+

@

@x

2

6

4

²Vx

²V 2
x + p

²Vx Vy

Vx (E + p)

3

7

5
+

@

@y

2

6

4

²Vy

²Vx Vy

²V 2
y + p

Vy(E + p)

3

7

5
= S, (77)

where S denotes the source vector, and the total energy density is E = 1

2
²(V 2

x +V 2
y )+ p/(
 −1).

The method used here, is a finite-volume method on a uniform rectangular grid 1x , 1y.

In two dimensions Equation (77) can be discretized as follows:

Un+1
i, j = Un

i , j −1t

�

1

1x

�

Fi+1/2, j − Fi−1/2, j

Ð

+
1

1y

�

Gi , j+1/2 − Gi , j−1/2

Ð

½

, (78)

where Un
i, j is an average of q(x = i1x , y = j1y, t = n1t) over the cell (i , j ), F and G are

numerical fluxes that are evaluated at cell interfaces to properly resolve the wave structure.

The waves arising from a solution of Equation (78) are then used to define second-order

correction terms, typically with the application of limiters to suppress numerically induced

oscillations. In this two-dimensional scheme a transverse splitting of the waves is also used

to improve stability and resolution.

The CLAWPACK code uses a modern shock wave propagation method [15]. These

waves are the solution of hyperbolic differential Equations (77). Additionally, a Riemann

solver which decomposes data at cell edges into a set of waves and wave speeds, is adapted.

To suppress numerically induced oscillations, flux limiters are used.

Problems with source terms S(u) are generally solved using the Godunov splitting in

which the solution of the homogeneous equation, @u

@t
+ @( f (u))

@x
+ @(g(u))

@y
= 0, is alternated with

solutions of the equation @u

@t
= S(u). An exception is the gravity source term that is treated

by the method which was developed by LeVeque [25]. This method is essentially based

on an implementation of a Riemann problem at the center of each grid cell whose flux

difference exactly cancels the source term. Such approach has no problem with preserving

steady states and it accurately calculates small perturbations of such states.

7.2. Boundary conditions

The proper treatment of the boundary conditions at the edges of the simulation domain

is not a trivial aspect of time-dependent numerical simulations. The boundary conditions

must represent the rest of the physical system and do not reflect any disturbances going out

of the numerical domain and must pass information about the physical system. An important

problem is associated with open boundary conditions. Incorrectly treated open boundary

conditions lead to artificial reflection of the wave at the boundaries. A commonly applied

method is known as the Sommerfeld radiation condition [26].

A simple method for imposing boundary conditions is to generate image cells at the

boundaries of the simulation region and then, to apply the Riemann solver to compute

the flux across these boundaries. This treatment is very easily implemented in an explicit
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scheme in which the fluid variables in the image cells are set at the beginning of each

time step. For implicit schemes, this approach can also be used although for large time

step a considerable time lag between the solutions and the boundary conditions can lead to

numerical instabilities.

In the CLAWPACK code two ghost cells are generated at each side of the computa-

tional domain, which in the case of the present approach is divided into uniform grid of 133

cells in the x-direction and 133 cells in the y-direction. The boundaries of the simulation

box are placed at x = ±10 x0, y = 0, and y = 20 x0, where x0 is the width of an emittor. The

height of the emittor has been assumed to be 10 x0. The top, left and right boundaries are in

the present model entirely open. So, any signal can easily cross through them. The bottom

boundary, however, corresponds to a rigid wall. Consequently, when a signal reaches the

bottom boundary, it is reflected off and eventually spread near the surface of the Earth.

7.3. Initial conditions

Initially, at t = 0, density and pressure correspond to the isothermal atmosphere of its

temperature T0 = 293 K. The vertical profiles of the atmosphere are presented schematically

in Figure 2. We assumed the ground pressure p0 = 101325 Pa and the mass density

²0 = 1.29kg/m3. These values provide the sound speed cs = 333 m/s. The diffusion coefficient

was assumed to be constant, D = 0.333 ·10−4 m2/s.

Figure 2. Equilibrium profiles of the mass density, pressure and temperature for the case of the

isothermal atmosphere

The outlet from a smokestack is localized at the position |x | < x0 = 1m and the

height y0 = 10 x0 above the Earth’s surface. The emission is specified by introducing the

source components of the mass density, velocity and pressure in Equations (66) – (68).

Six numerical sessions were performed for the mass density of the emitted pollutants:

a) ²e = 2.0 ²0, b) ²e = 1.5 ²0, c) ²e = 1.0 ²0, d) ²e = 0.75 ²0, e) ²e = 0.1 ²0, and f) ²e = 0.002 ²0.

The emitted pollutants are chosen five times hotter than the ambient air, and they possess

the initial vertical velocity QVey = 15m/s.

7.4. Numerical results and discussion

We describe first the results of numerical simulations in the case of ²e/²0 = 2.0

and ²e/²0 = 1.5. Our purpose here is to examine the behaviour of dense pollutants in the

gravitational field. Neglecting shapes and dimensions of gas particles, the emitted pollutants

can be approximately treated as dust.

Figure 3a shows that the emitted dense gas spreads essentially in the horizontal

direction. This spreading is also discernible in Figure 3b which shows the velocity vectors
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(a) (b)

Figure 3. Spatial distribution of pollutants in the case of ²e = 1.5 ²0: (a) the mass density at t = 0.75 s;

(b) the velocity vectors at t = 3.75 s

at t = 3.75 s. We observe here a generation of vortices which are convected upwards at a

later time. As a result of a high emission momentum and a buoyancy force these vortices

pass a long distance.

It is worth mentioning that the ambient air provides a resistance for an expansion of

the emitted pollution. This effect can be well observed at the initial stage of the emission

(Figure 3a), when the expansion in the horizontal direction dominates over the vertical

expansion. Later on, however, the emitted flux of pollution overcomes the resistance of the

ambient air. As long as this flux possesses sufficiently large kinetic energy, the cloud of the

pollution moves easily upwards at the initial stage (Figure 3b). However, at a later time the

gravitational field takes over the buoyancy force, resulting in a fact that a cloud of pollution

does not move along a straight line but along a bow (Figure 3b) and finally falls down (not

shown in the figure).

The obtained results indicate that the effect of gravitation (i.e. a gravitational fall down

of the pollution) is best seen at the initial phase of the emission when the highest damping

of the pollution occurs. In the already disturbed air, however, spreading of pollutants is

much easier both in the horizontal and vertical directions. We can find a confirmation of

that in Figure 3b in which at x = 0 and y = 12 x0 we see a stream of vertically propagating

pollutants. It is only at a certain height that the direction of these vectors changes and

they deflect from the main vertical direction. Furthermore, in Figure 3b the arrangement of

these vectors in the neighbourhood of the largest vortices (e.g., at x = 7 x0 and y = 10 x0)

indicates that at a certain distance from a smokestack we expect to observe a gravitational

fall down of these pollutants. Small vortices are also generated at the sides of the outlet

of the chimney. These vortices are pulled down by the gravity at the initial stage of their

evolution. In Figure 3b such vortices are located at x = y = 0. The other falling down vortices

are seen at x = 0 and y = 4 x0.

The case of ²e = ²0 is presented in Figure 4. It is interesting that in this case we do

not observe any formation of a cloud of pollutants above the outlet from the smokestack.

Instead, the plume expands into the horizontal direction, symmetrically on both sides of the

chimney (Figure 4a). This case results in a rapid decrease (with a height from the chimney)

of the density of the pollutants.
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(a) (b)

(c)

Figure 4. Spatial distribution of pollutants in the case of the emission density ²e equals to the ambient

air density ²0, i.e. ²e = ²0: (a) the mass density of pollutants at t = 1.5 s; (b) the mass density profile

at t = 2.25 s; (c) the velocity vectors

As a consequence of a high value of the emission speed Vey , we observe a generation

of vortices (Figure 4b) which make spreading of pollutants more difficult. These vortices

propagate essentially horizontally and they are convected a little upwards. This convection

occurs as a consequence of the buoyancy force which prevails over the gravitation. The

emitted pollution is 5 times warmer than the air and therefore it expands itself at the initial

stage of its evolution. This expansion rarefies the pollution (Figure 4c), leading to the

occurrence of the buoyancy force.

Figure 5a presents a distribution of pollutants around the smokestack for the density

ratio ²e/²0 = 0.75 at the time t = 3 s. The velocity vectors at the time t = 9 s are shown in

Figure 5b. Similarly to the above discussed cases, we see an influence of a resistance of the

ambient air. Consequently, the first phase of emission is characterized by spreading of the

pollutants in the horizontal direction and generation of two vortices. However, at the height

of 7–8m above the outlet from the smokestack (Figure 5a) a distinct and extended cloud

of pollutants is formed. A plume of the pollutants forms below this cloud. At t = 3 s, the

cloud leaves the simulation area. In the simulation area remains, however, the vortex which

was formed at the beginning stage of the emission. Initially, this vortex is very static, i.e. it

does not change its spatial position for t < 4 s. The buoyancy force that acts on the vortex

overcomes the gravity force at the time t > 4 s and this vortex moves slowly upward. At the
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same time we observe an undisturbed vertical plume of the emitted pollutants (Figure 5b).

Such a state of emission cannot, however, be preserved since in the initially motionless

air the flow instabilities occur. Consequently, at t = 9 s new vortices form at y = 13 x0

(Figure 5b). Moreover, the energy cascades from larger vortices to smaller vortices which

are discernible in Figure 5b at y ³ 15 y0 and x = ±7 x0. Such a cascade is typical for a

turbulent medium (e.g. [27]).

(a) (b)

Figure 5. Spatial distribution of pollutants in the case of ²e = 0.75 ²0: (a) the mass density at t = 3s;

(b) the velocity vectors at t = 9 s

The velocity vectors of Figure 5b in the neighbourhood of the vertical axis x = 0 are

directed vertically upwards. Consequently, the pollution movement is not disturbed there.

The gas movement at a border between the plume and the ambient air generates the Kelvin-

Helmholtz (KH) instabilities which are revealed by vortices. In the case of an incompressible

flow a growth rate of the KH instabilities is defined by the following formula:

=(!)2 =
²0(²0 +²e)

[²0 +(²0 +²e)]2
[k .Ve − V0/]

2 , (79)

where ²e, ²0, Ve and V0 are the mass densities and speeds of the emitted pollution and

the ambient air, respectively k = 2³

½
is the wave number of the wave with its length ½ and

! = 2³

T
is the circular frequency of the wave. The period T corresponds to the appearance

of vortices. If we assume that the distance between the neighbouring vortices is equal to the

wavelength ½, this period can be estimated as T ³ 0.6–0.9 s for ²e/²0 = 0.75. This period is

in agreement with the numerical results.

A scenario of a distribution of light pollutants with ²e/²0 = 0.1 (Figure 6) resembles the

case of the gravitationless atmosphere [23]. At the initial stage of the emission (Figure 6a) a

cloud of pollution is generated. A head of this cloud is quite wide due to a resistance of the

disturbed ambient air. The spatial scale of these disturbances is much smaller in comparison

to the scale in the above discussed cases. As the cloud is rarified, the buoyancy force starts

acting upwards. We see this effect in Figure 6b. The cloud is followed by a vertical plume

of pollution with speed vectors directed upwards (Figure 6c). Vortices that one can see in

Figure 6c at y = 15 x0 move also upwards (Figure 6d). They influence the plume dynamics

as the velocity vectors are deflected from the main direction. This can enhance the plume

broadening with the height.
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(a) (b)

(c) (d)

(e)

Figure 6. Spatial distribution of pollutants in the case of ²e = 0.1 ²0: (a) the mass density at t = 2 s;

(b) the mass density at t = 6 s; (c) the velocity vectors at t = 6s; (d) the velocity vectors at t = 8s;

(e) linear profile of the mass density as a function of the vertical coordinate y for x = 0.7m

Figure 6d displays at y = 14 x0 the air penetrating the plume. This penetration is a

consequence of a local decrease of mass density that occurred in the neighbourhood of a

plume structure, below a cloud (Figure 6e). As a consequence of that, a tunnel is generated.

This tunnel provides an easy way for the air to flow from ambient regions of normal density

and pressure (x > |5| m, y ³ 12m) towards the plume.

The case of the emission with the density ratio ²e/²0 = 0.002 is shown in Figure 7.

The generation of a plume and vortices does not need an additional discussion as the origin

of these phenomena is similar to the cases discussed earlier. Figure 7a shows that both the

cloud and the plume of pollution are small and they are hardly extended in the horizontal

direction. The speed of plume spread is low; it takes 16 s for the plume to reach the height
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(a) (b)

Figure 7. Spatial distribution of pollutants in the case of ²e = 0.002 ²0: (a) the mass density;

(b) the velocity vectors at t = 16 s

of 20m. This amount of time is at least twice as much as we observed in the above discussed

cases.

In Figure 7b we see that a vertical flow is driven by vortices. This flow generates a

specific way along which pollutants are transported easily upward. The pollution exhibits a

small kinetic energy. Therefore, once transported into the height y = 18 x0 above the vortices

(Figure 7b) the pollutants can hardly detach from the whirling cloud to keep moving upward,

but their flow is affected by these vortices.

8. Summary

The present paper provides an introduction to modern numerical techniques which

can be used for solving dynamics of air-pollutants. With the use of highly efficient present

computers it is possible to adapt the latest numerical models which describe physical

phenomena by the system of differential equations. The numerical simulations, which have

been performed within this study, concern emission and distribution of one-component gas.

Our model is of great practical importance and seems to be a valuable tool in a research

on propagation of pollutants. This model is expected to provide accurate data for urban and

country planning, design of protection zones and location of future emission centers. In

the case of numerical simulations, obtaining of the data is faster, cheaper and more precise

than in the case of experimental methods being used. As a consequence of that, further

studies are highly desirable. In future studies the numerical domain will be enlarged and the

wind will be introduced into the model. We hope to observe a developed turbulence which

plays a dominant role downwind from the emittor. On the other hand, an incorporation into

numerical models boundaries with various permeability properties will make it possible to

simulate an influence of buildings and forests on reduction of the expansion of pollutants.
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