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Abstract: The aim of this paper is to present a survey of the results for the flows of simple gases and
liquids with substructure through narrow channels, obtained with the Direct Monte Carlo and Molecular
Dynamics Simulation methods.
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1. Introduction

In recent years a very rapid development of microfluidic systems could be noticed. It
was enforced by the requirements of the modern industry and it was made possible thanks
to quick development of the micromachining technology. Now it is possible to fabricate the
micrometer-sized mechanical parts, which may be used to produce a number of microfluidic
systems in silicon, glass, quartz, plastics and other materials.

Typical sizes of micromachined elements are of the order of 1 micrometer or less in
diameter and 100 micrometers in length [1]. Microchannels belong to the most essential
parts of such systems. For instance, fluid flows through channels and valves, driven by
pumps, are typical for biomedical analytical systems [2]. Apart from that, microchannels
are used in MEMS, in inkjet print heads, computer cooling devices or in heat exchangers.
Prediction of flow quantities in microchannels is therefore essential for successful design
and future development of micromachines.
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Experiments show that when the dimensions of the channels are in the microme-
ter range, the measured data are different from those predicted by Navier-Stokes Equa-
tions [3, 4]. Discrepancies concern flow characteristics, such as: volumetric flow rate, av-
erage velocity, pressure drop and Darcy friction factor for incompressible fluids, flowing
through microchannels [5, 6]. Moreover, experimental observations have shown that the
viscosity of the fluids is altered significantly as compared to the bulk viscosity, measured
away from the wall.

Some experiments show, that the data for polar fluid flows in microchannels differ
significantly from those obtained for non-polar fluids. One should mention here, for instance,
the paper by Pfahler ez al. [7], who reported data concerning viscosity of such fluids flowing
in a microchannel. Also Hasegawa et al. (1997) [8] examined pressure drop for flows through
micro nozzles. In general it is interesting to note that in micro flows the measured flow
properties depend on the fluid used in test whenever a size effect is observed.

Several effects, typically excluded from the description of the macro-scale flows,
become increasingly important when considering flows in microscale. Many details of the
physical mechanisms of the microscale flows are not known yet. However the surface forces
and internal degrees of freedom of the molecules (not considered in classical analyses)
seem to be the most important factors, responsible for the behaviour of fluids in very
narrow channels.

During the flow the molecules of the liquid are believed to be influenced by surface
forces nonuniformly, which results in their non-central collisions, causing rotation of the
molecules. This effect is particularly pronounced when polar liquids with substructure
(biofluids, liquid crystals) after phase transition [9], are under investigation and when the
channel width is sufficiently small. It is worth mentioning here, that molecules with no
electric charge may nevertheless have a dipole configuration (e.g. water).

Other effects, apart from rotation of the molecules, which are influenced by surface
forces are: velocity slip at the walls, temperature jump and capillary effects.

To facilitate the description of the fluids with complex molecules, the micropolar
fluid model has been introduced by Eringen in 1966 [10]. It is based on the assumption
of continuous medium, however it takes into account microrotation of the molecules and
augments the laws of the classical continuum mechanics by incorporating the effects of
fluid molecules on the continuum. This becomes increasingly important when considering
flows of fluids with substructure (polar fluids, biofluid, ezc.) in microchannels.

The micropolar model provides a better agreement with the experimental data for
microchannel flows than the Navier-Stokes theory [5, 11]. However, the experiments and
theoretical estimations indicate, that for real fluid flows the micropolar effects are important
if the width of the channel is comparable to the dimensions of the particles of the fluid
(width of the channel equal to 10-100 particle diamaters). On the other hand, when the di-
mensions of the container approach the dimensions characteristic for the molecular structure
of the medium inside (mean free path, average distance between the neighbouring molecules
or the diameter of a molecule — whichever is the largest) the assumption of continuum seems
not to be justified. The question arises then, whether the parameter range exists in which
the micropolar fluid model is sensible at all. Otherwise the fluid could only be described
with some particle based representation method: Direct Monte Carlo Simulation (DMCS) or
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Molecular Dynamics (MD) [12, 13]. The results of these two methods will actually be used
here as standards to compare with micropolar fluid model, to check the range of its validity.

The DMCS method is well suited to gas flows. Its fundamental assumption is, that
the density of the medium is low and therefore the particles do not interact with each other,
except for elastic collisions. Only binary collisions are taken into account. Between collisions
the particles move along straight lines with constant velocities. Partners for collisions are
selected with the use of some probabilistic procedure from particles occupying the same
cell (the whole flow area is divided into a finite number of cells, whose dimensions are
comparable with mean free path of the particles).

In a liquid, the molecules are densely packed and during their motion they interact
all the time with their neighbours. There is no free motion of the molecules along straight
lines. Since all the neighbours, interacting with a given particle, are known, there is no
room for probabilistic selection and the deterministic method, the MD [13] simulation must
be used. This method of simulation provides actually the best way of investigation of fluids
possessing structured molecules with internal degrees of freedom.

The Molecular Dynamics method is very demanding, as far as the speed of the
computer and the memory size are concerned. Only recently, thanks to dramatically
increasing computer power there has been greater interest in studying the flows with the use
of this method. However, there is still need for simpler and faster methods of calculating
real “structured” fluid flows through narrow channels or pores. The model of micropolar
fluid may probably be helpful here, however, as it is based on the assumption of continuous
medium, all the doubts concerning its applicability to flows in narrow channels remain
valid. So our objective is to review current results of molecular simulation of structured
fluid flows and their comparison with the results for a micropolar fluid in the hope that the
limits of applicability of a micropolar model can be determined this way.

2. Micropolar fluids

As already mentioned in the Introduction, the model of micropolar fluids was
introduced in order to facilitate the description of the fluids with complex molecules. The
“micropolar fluids” are usually defined as isotropic, polar fluids in which deformation of the
particles has been neglected. The theory of micropolar fluids was first formulated by Eringen
in 1966 [10]. It defines microrotation velocity w # Vx V independly of the displacement
velocity V, and flow equations are expressed in terms of these two velocity fields.

The micropolar fluid model is the only existing non-Newtonian model which can be
used for description of real fluids which possess internal structure. The theory of micropolar
fluids is presently being developed very rapidly because of its possible applications in
many areas: tribology, biotribology [9], for description of microchannel flows [14], in
magnetorheology, etc. The number of papers dealing with that subject is quite substantial.
The books [15, 16] summarize results achieved in this field.

The equations of motion of the micropolar fluid may be written as follows:

dv
pz:pf—vp+()L+2/L+K)VVV—(2/L+K)VXVXV+KVX0) (1)
dw
pE=((x+,8+y)VVa)—nywa+KVxV—2Ka) (2)
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where symbols used in the equations denote: p — density of the fluid; p — pressure; A, u,
k — the bulk, shear and vortex viscosities; «, ¥, 8 — the respective couple viscosities and
f — mass force density.
The Pouiseuille flow is one of the very few flow cases in micropolar fluid dynamics
for which, under suitable assumptions, a full analytic solution is available [15] and stands:
cosh(Khy) _1)i|
(u+x)Kh cosh(Kh)
_PE (_ sinh(Khy)
@2 = T( " sinh(Kh) )

V= PE[] -9+ coth(Kh)( 3)

“4)

V=(V,,0,0)
w=(0,0,w,)
h =width of the channel.

3. Surface forces

The unique features of the microchannel flows are perhaps the most intriguing ones in
the whole fundamental fluid mechanics. In the following we shall briefly describe the surface
forces, which seem to be responsible for the complex phenomena observed in microflows.
An excellent review on this subject may be found in the book [17].

The fundamental parameter deciding which forces govern the physical phenomena in
the flow is the length scale. In the macroscale certain surface forces may be ignored. In
the microscale this may not necessarily be possible. The forces which must be taken into
account in the microflows are: van der Waals forces, electrostatic forces and steric forces.

3.1. Van der Waals forces

The van der Waals forces are short range forces and have an interaction free energy
that varies as r~°. If large molecules or surfaces are involved the van der Waals forces can
produce an effect at distances longer than 0.1 um.

The van der Waals forces consist of three components: orientation force, induction
force and dispersion force. The orientation force is the dipole-dipole interaction force
between polar molecules. The induction force arises from the interaction between a polar
molecule and a nonpolar one. The dipersion forces act on all atoms and molecules even if
they are neutral, like those of helium and oxygen.

3.2. Electrostatic forces

The electrostatic forces act between charged molecules. They have an inverse-square
dependence on the distance between interacting molecules, r~> so they are of longer range
than the van der Waals forces.

The electrostatic forces at the walls of the channel are often difficult to evaluate
because of uncontrollable surface charges. In fact, any surface is likely to carry some
charge, due to broken bonds and surface charge traps.
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3.3. Steric forces

This is a special kind of forces, occuring when chain molecules (e.g. polymers) are
attached to the surface at one end, with the other end dangling into solution (liquid for most
of the cases), where they are mobile. The forces, known as steric forces, arise whenever
a free molecule or surface approaches. It is a result of an entropy change caused by the
confined molecules. The complex molecules can produce complex interactions, and steric
forces can be attractive or repulsive. They are rather long range (0.1 um) and they are
important when a fluid flow has significant amount of long chain molecules.

4. Molecular dynamics simulation

The Molecular Dynamics (MD) method is applicable mainly to simulation of liquids.
In a liquid the molecules are densely packed (1 cubic micrometer of liquid contains
approximately 3.35-10'° molecules; the average distance between the molecules is equal
to about 0.31 nanometer). During their motion the molecules interact all the time with
their neighbours. Knowing the positions and velocities of the molecules in certain volume
and the interaction potential between them it is possible, at each time instant, to calculate
short pieces of their trajectories. The Newton’s equations of motion, as well as Lagrange
or Hamilton’s equations may be used for this purpose.

Since each molecule is constantly influenced by its neighbours, its trajectory, in
general, is curved. Therefore to calculate this trajectory and also the trajectories of the
neigbours with reasonable accuracy one must use very short time steps.

It is, of course, impossible to consider the motion of the molecules in an infinite area.
One must limit himself to a finite volume (MD cell), containing a reasonable number of
molecules. To diminish the effect of the walls one simply surrounds the cell with an infinite
number of identical cells [13] containing identical distributions of molecules inside.

With the described method it is possible to calculate the bulk parameters of a liquid.
It is also possible to simulate the flow in a microchannel assuming that some molecules
stay at fixed positions, forming the wall of the microchannel [13]. Since it is difficult to
impose a pressure difference to drive the flow, some gravitational — type force field is usually
introduced.

In the following chapter we will present some results of the simulation of the flow
through capillary channels of different widths.

5. Results

To get a feeling about the possible discrepancies between the classical, continuum
solutions for some simple flows and the corresponding results of the molecular simulation
for flows in narrow channels we performed the DSMC calculations for plane Couette and
Poiseuille flows of a simple, monoatomic gas. The widths of the channel were equal to 10,
5, 3 and 1 mean free paths for the Couette flow and 10, 5 and 3 for the Poiseuille flow.

The length of the channel for Couette flow was equal to 324 mean free paths; to
avoid the disturbances due to finite channel length the periodic boundary conditions were
applied. The length of the channel for Poiseuille flow was equal to 200 mean free paths. In
both cases the hard-sphere molecular model was employed; at the channel walls the diffuse
reflection of the molecules was assumed.
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In the Couette flow one of the walls of the channel was stationary, the other moved
with constant velocity U, equal to 0.1 of the speed of sound. This seemed sufficiently low
to have negligible influence of compressibility.

The results of the simulation for the four widths of the channel are shown in Figure 1.
In each picture a straight line (marked “CONTINUUM?”), corresponding to the continuum
solution, is shown too.
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Figure 1. Velocity distributions for a plane Couette flow (Cm — most probable velocity
of the molecules): (a) channel width equal to 1 mean free path; (b) channel width equal to 3 mean
free paths; (c) channel width equal to 5 mean free paths; (d) channel width equal to 10 mean free paths

The DSMC results for all cases are close to straight lines, which is characteristic for
the Couette flow. However, because of the velocity slip, the value of the velocity gradient
is different from that of the continuum solution. The difference is more pronounced for
narrower channels. The solution for the channel 10 mean free paths wide is so close to the
continuum solution, that this value can probably be considered as the limit of applicability
of the continuum theory for the present configuration.
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Figure 2. Velocity distribution along the centerline of the channel for a plane Poiseuille flow
(Cm — most probable velocity of the molecules); channel width equal to 3 mean free paths

The Poiseuille flow was driven by a stream of gas with density equal to the initial gas
density in the channel, flowing into the calculation domain with the speed equal to about
0.11 of the speed of sound. The rear end of the channel was open to vacuum.

It took quite an appreciable amount of computing time for the flow to stabilize. The
diagram of the flow velocity along the centerline of the channel, obtained for the channel 3
mean free paths wide after long time of computation, is shown in Figure 2. After entering
the channel the flow slows down, then the velocity stays approximately constant and, finally,
the flow accelerates to about the speed of sound. The character of the flow in the other two
channels is similar.

Figures 3a, 3b and 3c show the velocity distributions in the perpendicular cross-
sections of the three channels, in the area where the velocity at the centerline of the channel
is approximately constant. In all three cases the velocity slip at the walls is visible, however
its relative value is appreciable only for narrower channels. For the channel 10 mean free
paths wide the velocity distribution is close to the parabolic continuum solution. Probably
this value can also be considered to be the limit of applicability of the continuum theory
for the Poiseuille flow.

One thing should be mentioned at this point — the presented DSMC results fluctuate
considerably. The momentary distributions of velocity may actually be quite far from
anything expected. Only the distributions averaged over sufficiently long time may be
comparable and may agree with continuum solutions.

There are only two papers [18, 19] in which results of molecular dynamics simulations
of structured fluids in microchannel flows are reported and compared with the analytical
solutions, Equations (1) and (2). Both papers concern plane Poiseuille flow, however they
employ different MD methodologies and consider different fluids. Numerical results in both
cases show that short linear molecules exhibit rotational motion.

In the first of the papers Travis and Todd [18] present some results obtained with
nonequilibrium molecular dynamics (NEMD) simulations for a fluid, consisting of non-
spherical, uniaxial (diatomic) molecules in a plane Poiseuille flow. The uniaxial molecule
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Figure 3. Velocity distributions in the cross-section of the channel for a plane Poiseuille flow
(Cm — most probable velocity of the molecules): (a) channel width equal to 3 mean free paths;
(b) channel width equal to 5 mean free paths; (c) channel width equal to 10 mean free paths

consists of two hard — sphere molecules. The slit pore width is equal to W=5.1 maximum
uniaxial molecular diameters (it means W = 10.2 molecular diameters). The fluid flows down
a rectangular channel undergoing gravity. The system consists of 360 uniaxial molecules.

The comparison of the results of simulation with theoretical predictions of micropolar
fluid theory is presented in Figure 4 and Figure 5. They indicate that the shape of the velocity
profile is almost the same as that obtained with the use of the micropolar fluid theory.
The microrotation profile gives a reasonable qualitative agreement with the theoretically
predicted one.

The simulation of the channel flows of various fluids consisting of short linear
chain molecules were presented in the second of the above mentioned papers [19]. In
this simulation each molecule consisted of four soft spheres, which could be connected
in several different ways to produce either fully flexible chains, stiff chains with restricted
internal degrees of freedom and rigid, rod-like molecules. The molecules were forced to flow
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Figure 4. Velocity distributions in the cross-section of the channel for a plane Poiseuille flow. Channel

width & equal to 5.1 diatomic molecules diameters, (after [18])
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Figure 5. Microrotation distributions in the cross-section of the channel for a plane Poiseuille flow:
(a) channel width & equal to 5.1 diatomic molecules diameters, (after [18]); (b) theoretical, Equation (4),

for various values Kh

through a channel by uniform gravitational field with gravitational acceleration g oriented
in the y direction. The (two-dimensional) channel had two infinite walls perpendicular to
the x direction. The initial molecular array consisted of 45 molecules in both x and y
directions; in the z directions the array was three molecules deep. The periodic boundary
conditions were employed. The width of the channel % is equal 16.5 dimension of linear

chain molecules.
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Figure 6. Velocity distributions in the cross-section of the channel for a plane Poiseuille flow,
for flexible, stiff and rigid chain molecules. The width of the channel /4 is equal 16.5 dimension
of linear chain molecule, after [19]
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Figure 7. Microrotation distributions in the cross-section of the channel for a plane Poiseuille flow, for

flexible, stiff nad rigid chain molecules. The width of the channel /4 is equal 16.5 dimension
of linear chain molecule, after [19]

The corresponding results for microrotation and velocities (Figure 6 and Figure 7)
show general agreement with the profile predicted with the micropolar fluid theory. The
profile of microrotation for rigid molecules agrees nearly perfectly with the theoretical
one for Kh=4.7.

6. Conclusions

We present the results of the numerical simulation of the flows of simple gases and
“real” liquids through capillary pores. The flow is considered as a motion of separate
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molecules, interacting among themselves and with the walls. The model of interactions
in a liquid takes into account rotation of the molecules. Large number of the performed
numerical simulations makes it possible to obtain the average distribution of velocity. This
average distribution is compared with analytical solution of the Eringen equations for the
Poiseuille flow.

The presented results provide quantitative tests of the applicability of micropolar fluid
theory to modeling relatively complex fluid flows in very narrow channels.
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