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Abstract: The paper presents a spectral solution of the Rayleigh equation for the case of parallel, free

shear layer with the hyperbolic-tangent mean velocity profile. The expansion of the eigenfunction into the

Chebyshev polynomial series allowed transformation of the differential eigenvalue problem into the general

algebraic one. The standard algebraic eigenvalue problem was obtained by the use of Gary and Helgasson

transformation. The results were compared with the shooting method. Although the calculations were carried

out in order to validate the method, some additional study of the velocity ratio and momentum thickness

influence on the temporal eigenmode growth rate was also performed.
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1. Background and motivation

The instability development of the parallel mixing layer is initially dominated by

a linear mechanism because disturbances of the velocity components can be treated as

infinitesimal. Thus the linear hydrodynamic stability theory is expected to give, at least

qualitatively, reasonable predictions for the initial region of the perturbation development.

The mean laminar flow in x-direction with known velocity profile U(y) is assumed to be

influenced by a disturbance, which is composed of the plane waves propagated in the main

flow direction. Since it is assumed that the perturbation is two-dimensional it is possible to

introduce a stream function of the perturbation velocity field in the following form:

9 .x , y,t/ = Re
ð

8.y/eiÞ.x−½t/
Ł

(1)

The amplitude function is assumed to be dependent on y-direction only because the mean

flow depends on y alone. The components of the perturbation velocity can be expressed via

stream function as:

u0
x =

@9

@y
= 80 .y/eiÞ.x−½t/ (2a)

u0
y = −

@9

@x
= −iÞ8.y/eiÞ.x−½t/ (2b)
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Introduction of these velocity components into the linearized form of the Navier-Stokes

equations leads to the Orr-Sommerfeld stability equation that in the inviscid limit, Re � ∞

reduces to the Rayleigh equation [1]:

ð

U .y/−½
Ł

�

d28

dy2
−Þ28

�

−
d2U

dy2
8 = 0 (3)

A solution of Equation (3), in the plane wave form of the perturbation (1), with real wave

number Þ and positive imaginary part of the complex number ½ is said to be an unstable

linear eigenmode, in the sense that the amplitude of the disturbance is growing with time.

Hence this type of instability is called the temporal one. Michalke [2] applied the temporal

stability theory to the parallel shear layer with hyperbolic-tangent velocity profile:

U .y/ = 0.5
ð

1+tanh.y/
Ł

(4)

and the following boundary conditions:

8.+∞/ = 8.−∞/ = 0 (5)

It was noted very soon that the temporal stability theory assumed the instability development

in time while in the case of shear layer the perturbation was growing in space. This

observation stimulated a spatial stability theory, according to which, the quantity Þ was

assumed to be complex and the product Þ½ was real. The spatial linear stability theory was

used also by Michalke [3] to study the parallel shear layer with the same hyperbolic-tangent

velocity profile. More recently, Monkewitz and Huerre [4] studied spatially growing waves

in the case of shear layer characterised by more general velocity profile:

U .y/ = NU
h

1+ R tanh
� y

2�

�i

(6)

investigating a dependence of instability development on the velocity ratio R, defined as:

R =
U1 −U2

U1 +U2

(7)

where: U1 and U2 – the velocities of upper and lower stream of the shear layer, respectively.

The equivalent problem for axi-symmetric jets was studied by Michalke and Hermann [5].

A review of linear stability calculations using temporal and spatial approach was given by

Ho and Huerre [6].

When the concept of absolute instability of the shear flows was proposed by

Landau [7], it turned out that neither temporal nor spatial linear stability theories were able

to predict such a perturbation development. Despite that in the case of absolute instability

the perturbation was growing in time reaching a non-linear level in the location of its source,

it was proved by many authors [8, 9] that the linear stability theory could still be useful if

both parameters Þ and Þ½ were allowed to be complex. This approach is called the linear

spatio-temporal stability theory that was used by Monkewitz and Sohn [10] to study the

stability of low density axi-symmetric jet and by Jendoubi and Strykowski [11] to analyse

constant and variable density jets with external flow.

The linear stability theories, based on the Rayleigh equation, represent a differential

eigenvalue problem. In all of the papers mentioned above this problem was solved by the

“shooting” method where integration of the stability equation was carried out by the Runge-

Kutta scheme and the Newton-Raphson procedure was applied to guess the eigenvalues. The
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shooting method reveals two important disadvantages. Firstly, the convergence rate of the

rootfinder is dependent on the initial eigenvalue guess. Moreover, in the hydrodynamic

stability problem we are always interested in the least stable mode, thus the procedure

has to be performed many times. An alternative method to the shooting one is the matrix

method [12], which transforms the differential eigenvalue problem into the algebraic one

by the discretization of the stability equation. The primary advantage of the matrix method

is the existence of a very efficient and reliable method for solving the algebraic eigenvalue

problem, namely the Q-R algorithm [13], which gives all the eigenvalues of the matrix.

However, since the computation time for the Q-R algorithm increases as the cube of the

matrix order, it is important to use an accurate discretization scheme. It is recommended by

Boyd [14], Gottlieb and Orszag [15] and Canuto et al. [16] to use a spectral approximation

based on the series of Chebyshev polynomials. Orszag [17] solved the problem of the plane

Poiseuille flow stability by the approximation of the eigenfunctions using this method. The

aim of the present paper is to apply the spectral method to free shear layer stability analysis

using the temporal instability concept. Bearing in mind that this theory does not predict

the convective perturbation development in space, this problem is treated rather as the test-

case which is expected to prove efficiency and reliability of the method used, not as an

investigation which can bring any physical insight into the problem considered. Because

the linear spatio-temporal stability theory turned out to be valid even in the case of absolute

instability and can predict correctly the parameters for which the transition from convective

to absolute regime appears, it seems to be justified to develop and test new, more reliable

methods to solve the hydrodynamic stability equations.

2. Outline of the method

According to the spectral approximation based on the series of Chebyshev polynomials

the eigenfunction of the stability Equation (3) is expressed as:

8. Ny/ =

N
X

m=0

am Tm . Ny/ (8)

where: Tm . Ny/ – the Chebyshev polynomial of degree m defined as:

Tm . Ny/ = cos.m arccos Ny/ (9)

The argument Ny is the non-dimensional distance from the range h−1,+1i related to lateral

direction of the shear layer as:

Ny =
y

Yinf

(10)

where: Yinf stands for the location where the boundary conditions are formulated:

8.y = −Yinf/ = 8. Ny = −1/ = 8.y = Yinf/ = 8. Ny = 1/ = 0 (11)

The Rayleigh stability formula (Equation (3)) expressed in the non-dimensional distance Ny

takes the form:

U . Ny/
d28

d Ny2

1

Y 2
inf

−Þ2U . Ny/ 8. Ny/−
d2U

d Ny2
8. Ny/

1

Y 2
inf

−½

�

d28

d Ny2

1

Y 2
inf

−Þ28

�

= 0 (12)

The discretization of the Equation (12) requires a spectral approximation of the given

mean velocity profile. The most convenient way is to use also the series of the Chebyshev
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polynomials. The coefficients of the Chebyshev spectral approximation can easily be

calculated using the mean velocity values at the Chebyshev-Gauss-Lobatto points [16],

defined as:

Nyk = cos

�

k³

N

�

(13)

It can be shown that if the coefficients are calculated according to the following formula

a(U)
m =

2

N

N
X

k=0

NckU . Nyk/ Tm . Nyk/ (14)

where

Nck =

²

0.5 when k = 0 or k = N

1 otherwise
(15)

then the velocity profile approximation takes the form:

U . Ny/ =

N
X

m=0

Ncma(U)
m Tm . Ny/ (16)

In Equation (12) eigenfunction 8. Ny/ and velocity profile U . Ny/ appear with their second

derivatives. According to the properties of the Chebyshev polynomials the second derivatives

can be expressed also in the form of the Chebyshev polynomial series as follows:

d28. Ny/

dy2
=

N
X

m=0

a(2)
m Tm . Ny/ (17a)

d2U . Ny/

dy2
=

N
X

m=0

a(U2)
m Tm . Ny/ (17b)

where

a(2)
m =

1

cm

N
X

p=m+2
p+m
even

p
�

p2 −m2
Ð

ap (18a)

a(U2)
m =

1

cm

N
X

p=m+2
p+m
even

p
�

p2 −m2
Ð

a(U)
p Ncp (18b)

and coefficient cm defined as

cm =

²

2 for m = 0

1 for m > 0
(19)

In the first three terms of Equation (12) the products of the functions approximated with

the polynomial series appear, which can be generally written as:

v. Ny/w. Ny/ =

N
X

m=0

N
X

n=0

bnan Tm . Ny/ Tn . Ny/ (20)

It can be proved that the product of the Chebyshev polynomials can be eliminated from the

r.h.s. of the last formula that leads to the expression:

v. Ny/w. Ny/ =
1

2

N
X

m=0

1

cm

N
X

n=−N

cjnjcjm+njajnjbjm+njTm . Ny/ (21)

A spectral approximation of the Rayleigh stability equation is obtained if the eigenfunction

and velocity profile approximations are applied. The method of weighted residuals with the
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Chebyshev polynomials used as the test functions leads to the following system of linear

equations:

1

2Y 2
inf

N
X

n=−N

Nc|n|c|n|a
(U)

|n|

N
X

p=|m+n|+2
p+|m+n|

even

p
ð

p2 −.m +n/
2
Ł

ap −
Þ2

2

N
X

n=−N

c|m+n|c|n| Nc|n|a
(U)

|n| a|m+n|−

−
1

2Y 2
inf

N
X

n=−N

c|m+n|c|n|a
(U2)

|n| a|m+n| −½

0

B

B

@

1

Y 2
inf

N
X

p=m+2
p+m
even

p
�

p2 −m2
Ð

ap −Þ2cmam

1

C

C

A

= 0

(22)

where: m = 0, : : :, N −2

According to the “tau” method two additional equations are formed by the use of the

boundary conditions:
N

X

m=0

am Tm .−1/ =

N
X

m=0

am .−1/
m = 0

N
X

m=0

am Tm .1/ =

N
X

m=0

am = 0

(23)

The system of linear equations described by Equations (22) and (23) can be rewritten in

the form of the general algebraic eigenvalue problem:

.A−½B/a = 0 (24)

where the eigenvector a consists of the coefficients of the eigenfunction spectral approxi-

mation (see Equation (8)).

The general eigenvalue problem (24) was transformed into the standard one using

the Gary and Helgason algorithm [12] and the standard problem was solved using the Q-R

method in the form for real Hessenberg matrices, as published among others in [18, 19].

3. Numerical results

In the method presented above two parameters governing the calculation accuracy can

be pointed out. The first one is the number N +1 of terms in spectral approximations of the

eigenfunction Equation (8) and the velocity profile Equation (16). The second parameter is

the distance Yinf where the boundary conditions are formulated. Because the exact boundary

conditions for a free shear layer are formulated in the infinity, then the greater the Yinf -

distance is, the more accurate is the solution. On the other hand the greater is Yinf -distance,

the more terms in the spectral approximation are required for a correct approximation of

the eigenfunctions and the velocity profile.

The influence of these two parameters is presented in Figure 1 that shows the

imaginary part of the eigenvalue ½ for the least stable mode for two wave numbers Þ = 0.2

and Þ = 0.5 as a function of both the Yinf -distance and number of terms N . In the case of

lower wave number (longer wavelength of the disturbance) the Yinf -distance required for the

correct evaluation of the eigenvalue is greater (Figure 1a) than in the case of the higher

wave number shown in Figure 1b. In the first case the slope of the ½i .Yinf/ is very low for

the Yinf -parameter higher than 20, while for higher wave number Þ = 0.5 (see Figure 1b), the

approximation of the eigenvalue obtained for Yinf > 10 is accurate enough. This behaviour is
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justified because the longer wave of the perturbation requires a longer distance in order to

approximate accurately the boundary conditions posed in infinity. The Yinf -parameter is also

limited from above and this limit is higher for greater numbers of terms N used in spectral

approximation. The examples shown above suggest that the Yinf -distance for which good

approximation is obtained is close to the wavelength because l = 2³ /Þ = 31.4 in the case

Þ = 0.2 and l = 12.57 for Þ = 0.5. Therefore for the rest of a calculations presented later on

in the paper the Yinf -distance was chosen to be equal to the wavelength of the perturbation

considered i.e.:

Yinf =
2³

Þ
(25)

Figure 1. Approximated value of the imaginary part of the eigenvalue ½ as a function of the

Yinf -distance and number of terms used in approximation for Þ = 0.2 (a), and Þ = 0.5 (b)

Table 1 shows the comparison of the ½i -values of the least stable eigenmode calculated

for the Yinf -distance determined according to Equation (25), and a number of terms

in spectral approximation N = 100, 200, 300, respectively, with the results obtained by

Michalke [2].

It can be seen from Table 1 that N = 200 gives the same results as shooting method

with the accuracy to four digits apart from the eigenvalues obtained for extreme wave

numbers Þ = 0.1 and Þ = 0.9, which represent weakly amplified perturbations as can be seen

from the growth rates presented versus wave number in Figure 2.

The calculations carried out with the use of spectral method served only as a numerical

test-case to validate the correctness of the method, which is confirmed by the results shown

in Table 1 and Figure 2. However, some additional computations were carried out to study

an influence of the velocity ratio R and momentum thickness � of the mean velocity

profile on the maximum growth rate Þ½i . Figure 3 shows the velocity profiles for which the
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Table 1. Comparison of the eigenvalues of the least stable mode obtained by shooting and spectral

methods

Wave number Eigenvalue Eigenvalue Eigenvalue Eigenvalue
A ½i ½i ½i ½i

shooting

method

spectral

method

spectral

method

spectral

method
Michalke [2] N = 100 N = 200 N = 300

0.1 0.4184 0.4153 0.4181 0.4182

0.2 0.3487 0.3495 0.3488 0.3487

0.3 0.2885 0.2891 0.2885 0.2884

0.4 0.2352 0.2357 0.2352 0.2352

0.5 0.1875 0.1880 0.1875 0.1875

0,6 0.1442 0.1448 0.1442 0.1442

0.7 0.1044 0.1056 0.1043 0.1043

0.8 0.0674 0.0702 0.0674 0.0673

0.9 0.0327 0.0392 0.0339 0.0329

Figure 2. The growth rate vs wave number calculated with the use of spectral method compared with

results of shooting method applied by Michalke [2], mean velocity profile, R = 1 and � = 0.5

computations were carried out for velocity ratios R = 0.25, 0.5, 0.75 and 1. All the profiles

have the same momentum thickness � = 0.5 like in the calculations of Michalke [2]. The

growth rate versus wave number for these velocity profiles is presented in Figure 4. It can

be observed that the velocity ratio influences significantly the value of the maximum growth

rate while it changes very weakly the wave number of the most amplified disturbance. This

conclusion confirms the observation of Monkewitz and Huerre [4] based on the spatial

theory.
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Figure 3. Mean velocity profiles for various values of the velocity ratio, � = 0.5
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Figure 4. Influence of the velocity ratio on the growth rate vs wave number for various velocity ratios R

Recent experimental work on absolute instability in variable density round jets carried

out by Kyle and Sreenivasan [20] revealed that one of the key parameters influencing the

instability development was the boundary layer thickness. It was suggested by Monkewitz

et al. [13] that the global modes observed in variable density jets result from a break off the

convective coherent structures. It seems therefore that the boundary layer thickness should

also affect the characteristics of the constant density shear layer instability. Figure 5 shows

three velocity profiles with somewhat different momentum thickness � = 0.4, 0.5 and 0.6
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Figure 5. Mean velocity profile for various momentum thickness, R = 1
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Figure 6. The growth rate vs wave number for various values of the mean velocity

momentum thickness

respectively while Figure 6 presents corresponding growth rate curves. These results show

that slight changes in the boundary layer thickness influence significantly the wavelength

of the most amplified disturbance (see Figure 6). Moreover, it can be seen that the thinner

is the boundary layer the higher is the wave number of the most amplified mode. One may

conclude that the thinner boundary layers are more sensitive to the disturbances characterised

by shorter wavelengths. This is in qualitative agreement with the measurements of Kyle and

Sreenivasan [20] who observed that the Strouhal number of the global mode is increased

for thinner boundary layer.

4. Concluding remarks

The linear stability theory turns out to be still in the focus of interest because an

application of the spatio-temporal theory can predict correctly a transition from convective
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to absolute regime as a function of many governing parameters as for example the density

and velocity ratios. The huge amount of numerical work done in this field used the

shooting method which has important shortcomings because, first of all a convergence

rate is influenced by an initial eigenvalue guess and secondly one integration procedure

leads to establishing only one eigenvalue, and in order to find the least stable mode the

computations have to be repeated many times. An alternative is a matrix method which

transforms a differential problem into the algebraic one. The paper presents an example of

the application of the matrix method used with Chebyshev spectral approximation of the

eigenfunction. The problem chosen as the numerical test-case was the temporal instability of

the inviscid shear layer. The results obtained with the use of spectral method were compared

with the results of shooting method given by Michalke [2], which confirms the correctness

of the spectral calculations. The computations carried out are treated primarily as a test-

case but some additional numerical examples are shown which illustrate the influence of

the velocity ratio and boundary layer thickness on the wavelength of the most amplified

temporal eigenmode.
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