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Abstract: The dispersion of the agglomerating fluid process involving colloids has been investigated at the
mesoscale level by a discrete particle approach – the hybrid fluid particle model (FPM). Dynamical processes
occurring in the granulation of colloidal agglomerate in solvents are severely influenced by coupling between
the dispersed microstructures and the global flow. On the mesoscale this coupling is further exacerbated
by thermal fluctuations, particle-particle interactions between colloidal beds and hydrodynamic interactions
between colloidal beds and the solvent. Using the method of FPM, we have tackled the problem of dispersion
of a colloidal slab being accelerated in a long box filled with a fluid. Our results show that the average
size of the agglomerated fragments decrease with increasing shearing rate 0, according to the power-law
A ·0k, where k is around 2. For larger values of 0, the mean size of the agglomerate Savg increases slowly
with 0 from the collisions between the aggregates and the longitudinal stretching induced by the flow. The
proportionality constant A increases exponentially with the scaling factor of the attractive forces acting
between the colloidal particles. The value of A shows a rather weak dependence on the solvent viscosity.
However, A increases proportionally with the scaling factor of the colloid-solvent dissipative interactions.
These results may be applied to enhance our understanding concerning the nonlinear complex interaction
occurring in mesoscopic flows such as blood flow in small vessels.
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1. Introduction
Mesocopic flows are important to understand because they hold the key to the

interaction between the macroscopic flow and the microstructures. This is especially true in
colloidal flows, which involve colloidal mixtures, thermal fluctuations and particle-particle
interactions. In many technological and physical processes, such as emulsification, formation

† Extended version of this lecture is submitted to J. of Colloids and Interface Sci.
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of nanojets [1], water desalination, food production, gel filtration and transport processes in
magma melts or in tiny blood vessels, the microscopic or microstructural effects may even
dominate over the hydrodynamical processes and these phenomena take place in the realm
of mesoscopic flows.

There exists a large body of knowledge on the theoretical, experimental and numerical
models dealing with various aspects of flow of powdered solids in liquid [2]. However,
colloidal beds cannot be treated as a dry powder. In general sense, colloids comprise two
types of particles – large and small ions, which are suspended in a solvent. Colloidal
agglomerates consist of large ions due to complex ion-ion and ion-solvent interactions,
which are of entropic and electrostatic origin [3]. The classical models of powder granulation
in liquids assume that the Péclet number is much greater than unity and the agglomerate
size is much larger than the interaction range of cohesion forces [2]. This means that
thermal fluctuations, diffusion effects in liquid and microscopic interactions are neglected.
For these assumptions the fragmentation microstructurs such as rupture, erosion, shatter,
and aggregation process can be considered separately. In the mesoscale, with the presence
of diffusion, thermal fluctuations and long-range interactions between colloidal particles,
fragmentation and aggregation microstructures usually occur simultaneously or overlap.

Since blood can be regarded as a colloid [4], we will use this as an example for
explaining the rationale of our modelling. The axisymmetric pulsatile flows and flows
subject to acceleration in blood vessels have been investigated both experimentally and
numerically for a long time (see e.g. [5–8]). These investigations were focused on the
influence of material damping on the wall vessels, the viscoelastic properties [9] of blood
on the flow, deformation properties of blood vessels from the shear stresses exerted on the
wall and the mass transfer and fluid dynamics of blood flow. All of these phenomena can be
simulated by using Navier-Stokes equations with proper substitution of the blood rheological
properties. However, there are many medical circumstances in which the Navier-Stokes
equations with simple rheology may not work and they are rapid heart-attack or a rapid
stroke developed by sudden clotting in small blood vessels. These are critical phenomena
in which a transition has taken place in the microscale and propagate over to the mesoscale.
In this mesoscale regime, the blood’s rheology has changed and should be treated as a
complex fluid with various kinds of microstructures, which have suddenly been developed.
A review of the relevant concepts in block of microcirculation in blood vessels was first
given by [10]. Until now there has not been much progress made in the field in these aspects
concerning the flow interactions between the microstructural dynamics and the larger-scale
flow. The modelling of the dispersion of drugs and thrombus along tiny blood vessels needs
a completely different approach, which is still in the air. In this paper we will model the
colloidal interactions between these recently formed microstructures with the complex types
of flows by means of a discrete particle model.

Microscopic techniques employing discrete particles such as molecular dynamics
(MD) and Monte Carlo (MC) are very useful in studying interactions between primary
particles, which form molecules and microstructures. For example, the large-scale MD sim-
ulations were employed for investigating microscopic flows [11, 12, 1] and microstructures
in solid materials such as impurities in crystals and cracks [13]. However, MD becomes too
demanding for simulating larger particle ensembles. At the present time the particle sys-
tems of size about one micrometer during tens of nanoseconds can be simulated by using
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109 atoms on the largest parallel computers [13]. Most of the computations spend time on
producing information on microscopic fluctuations, which is not necessary for scales in the
ordering of complex fluids.

In recent years, beside classical models, new numerical methods have been developed
for modeling physical and chemical phenomena occurring in the mesoscale. The most
popular are: lattice Boltzmann gas (LBG) [14–16], diffusion limited aggregation [17], direct
numerical simulations (DNS) [18, 19] or other particle methods such as stochastic rotational
dynamics (SRD) [20], fluid particle dynamics (FPD) [21], dissipative particle dynamics
(DPD) [22] and fluid particle model (FPM) [23].

Dissipative particle dynamics (DPD) is one of the mesoscopic techniques, which
allows one to model hydrodynamic behavior with thermal fluctuations. This particle based
off-lattice algorithm was inspired by the ideas coupling the advantages of both the molecular
dynamics and lattice-gas methods. A strong background drawn from statistical mechanics
has been provided to DPD [24], from which explicit formulas for transport coefficients in
terms of the particle interactions can be derived. Since then the DPD model has attracted
a great deal of attention from the chemical community.

As shown in [25, 26], DPD can be used for studying various types of phase separation
processes in binary or multicomponent fluids. By employing two-level model for which
colloidal beds are modeled by MD particles and solvent by DPD fluid particles, one can
simulate miscellar solutions [27] and large colloidal aggregates, which can use as many as 20
million particles [28]. Dissipative particle dynamics can also be employed for simulating
hydrodynamical instabilities such as thin-film falling down the inclined plane [29], the
breakup of droplets and mixing in complex fluids [30–32].

For simulating mixing of colloidal agglomerates, over the mesoscale, we have imple-
mented generalized version of dissipative particle dynamics DPD devised by Español [23]
together with the fluid particle model (FPM), which is hybridized within the framework of
a classical MD code. We will first describe the model. We then present the results from the
FPM simulations. Finally we summarize our findings and discuss the prospects of employ-
ing the discrete particle method for modelling dynamics of complex colloidal fluid in the
mesoscale.

2. Description of the fluid particle model (FPM)
We begin our discussion by first going over some rudiments of the dissipative particle

dynamics (DPD) method [22]. The DPD technique portrays the mesoscopic portions of a
real fluid. They can be viewed as “droplets” of liquid molecules with an internal structure
and with some internal degrees of freedom. As shown in [24, 23], the interactions between
these particles are postulated from simplicity and symmetry principles. These principles
ensure their correct hydrodynamic behavior. The advantage of DPD over other methods,
such as lattice-gas or lattice-Boltzmann, lies in the possibilities of matching the scale of
discrete-particle simulation to the dominant spatio-temporal scales of the entire system [23].

One of the serious drawbacks of DPD is the absence of a drag force between the
central particle and the second one orbiting about the first particle. This relative motion may
produce a net drag, when many DPD particles are participating at the same time [23]. This
cumulative effect would reduce the computational efficiency of the DPD method. For this
reason, the fluid particle method (FPM) has been introduced by means of a non-central force,
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which is proportional to the difference between the velocities of the particles [23]. This will
eliminate this deleterious effect from the net drag force. Additionally, this FPM approach
would allow for the simulation of physical effects associated with rotational diffusion and
rotation of the colloidal beds resulting from hydrodynamic or their mutual interactions.

The theoretical framework for the FPM was presented by Español [23]. We retain
here the original notation used in [23]. The fluid particles posses several attributes as mass
mi , position ri , translational and angular velocities and type. The ”droplets” interact with
each other by forces dependent on the type of particles. We use the two-body, short-ranged
force F as it is postulated in [23]. This type of interaction is a sum of conservative FC, two
dissipative components FT and FR and a Brownian force F̃, that is:

Fi j = FC
i j +FT

i j +FR
i j + F̃i j . (1)

The FPM force components are defined by:

FC
i j = −V

�
ri j
Ð
·ei j , (2)

FT
i j = −
 ·mTi j ·vi j , (3)

FR
i j = −
 ·mTi j ·

�
1
2
ri j ×

�
!i +!j

Ð�
, (4)

F̃i j dt = .2kBT
 ·m/1/2

�
QA�ri j

Ð
dW̄S

i j + QB
�
ri j
Ð 1

D
tr [dW]1+ QC �ri j

Ð
dW̄A

i j

�
·ei j , (5)

where:
ri j – is a distance between particles i and j , ri j = ri −r j is a vector pointing from particle
i to particle j and ei j = ri j /ri j ,
D – is the dimensionality of the model,
T – is the temperature of particle system,
kB – the Boltzmann constant,
dt – is the timestep,

 – scaling factor for dissipation forces,
! – angular velocity,
dWS, dWA, tr[dW]1 – are symmetric, antisymmeric and trace diagonal random matrices
of independent Wiener increments defined in [23],
A(r), B(r), C(r), QA(r), QB(r), QC(r), V 0(r) – functions dependent on the separation distance
r = ri j .

Ti j is a dimensionless matrix given by:

Ti j = A
�
ri j
Ð
1+ B

�
ri j
Ð
ei jei j , (6)

1 – is the unit matrix.
As was shown in [23] the single component FPM system yields the Gibbs distribution

as the steady-state solution to the Fokker-Planck equation under the condition of detailed
balance. Consequently it obeys the fluctuation-dissipation theorem, which defines the
relationship between the normalized weight functions, which are chosen such that:

A.r/=
1
2

h
QA2 .r/+ QC2 .r/

i
, B .r/=

1
D

h
QB2 .r/− QA2 .r/

i
+

1
2

h
QA2 .r/− QC2 .r/

i
. (7)

For the dissipative particle dynamics (DPD) method A(r) = 0, consequently QA(r), QB(r),
QC(r) = 0 and V 0(r)/ B(r), which means that all the DPD forces are central.

tq0305i5/358 26I2002 BOP s.c., http://www.bop.com.pl



Dispersion of Colloidal Agglomerate::: 359

The non-central force in FPM, which is proportional to the difference between particle
velocities, introduces an additional drag lacking in the DPD model. The non-central force
results also in additional rotational friction given by Equation (4).

The temporal evolution of the particle ensemble obeys the Newtonian laws of motion:

v̇i =
1
m

X
i 6= j

Fi j , (8)

ṙi = vi , (9)

!̇=
1
I

X
i 6= j

Ni j , (10)

where the torques are given by:

Ni j = −
1
2
ri j ×Fi j . (11)

The FPM method can predict precisely the transport properties of the fluid, thus allowing
one to adjust the model parameters according to the formulas of kinetic theory. Unlike in
macroscopic particle based method – smoothed particle dynamics SPH [33] – the angular
momentum is conserved exactly in FPM. In short, the FPM model can be physically
interpreted as a Lagrangian discretization of the non-linear fluctuating hydrodynamic
equations.

3. Numerical model
We have employed a two-dimensional model of a simulation involving clearly a three-

dimensional process. However, the simplified 2-D models are less time-consuming than 3-D
models and we can certainly glean some useful basic information before venturing into the
3-D arena. It is a matter of more computer time to carry out 3-D simulations in FPM.

This is a two-level approach and we will consider two types of particles: solvent
droplets and colloidal beds. We assume that the concentration of electrolyte in the solvent
is low, which is appropriate for the blood. In this case we can neglect the long-range
interactions and focus just on the short-range forces. Therefore, the electrolyte-solvent
particles can be represented by FPM fluid particles.

We assume that the weight functions (Equations (6) and (7)) satisfy the conditions
imposed. Due to degree of a freedom allowed by the model in selecting the weight functions
we may assume that:

QA.r/= 0, A.r/= B .r/=
�

1−
r

rcut

�2

, V 0 .r/= −5 ·
3

³ ·r2
cutn

�
1−

r
rcut

�
, (12)

where, rcut – is a cut-off radius, which defines the range of particle-particle interactions.
For ri j > rcut , Fi j = 0.

The first assumption is recommended in [23]. We postulate the rest of weight functions
the same as in DPD [22, 24]. Due to additional drag between particles caused by the non-
central interactions we can reduce the computational load assuming that the interaction
range is shorter than for DPD fluid.

The colloidal agglomerates consist of primary particles – the colloidal beds. They can
represent large charged ions, which are a few times larger than electrolyte-solvent droplets.
We assume that the agglomerates are “wet”, i.e., colloidal beds are covered by electrolyte
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binder. This assumption allows us to use in the model mean forces similar to those obtained
for charged macro ions in realistic colloidal mixtures.

Interactions among colloidal particles have been studied for more than 50 years.
Colloids can be regarded as complex many-body systems described by highly approxim-
ate treatments drawn from classical statistical physics. As follows from the conventional
(Derjaguin, Landau, Verwey, Overbeek) DLVO theory the long-range electrostatic interac-
tion between colloidal spheres can be modelled by a screened-Coulomb repulsion [34].
Additional interactions come from hydrodynamic [35] and depletion forces [36]. Some ex-
perimental findings [37, 35] show that like-charged macro ions have been attracted to one
another by short ranged forces. This fact cannot be explained by the conventional theories.
The recent simulation results [3] show that the fluctuation of the charge distribution by the
small ions results in the attraction between micro ions. The mean force is a combination
of hard-sphere and electrostatic force. As an approximation V (ri j ) (see Equation (2)) of
the mean force between colloidal beds, we use the sum of the Lennard-Jones (L-J) force
and a very steep force with a soft core. In Figure 1 we depict that the approximation is
very close to the mean force obtained from large-scale Monte-Carlo calculations performed
for a real colloidal mixture [3]. The force well is proportional to " – the minimum of L-J
potential – which is called here the cohesion factor. Unlike in our previous papers exploiting
two-level model [27, 28, 31], we introduce additional non-central dissipative force between
colloidal beds. This force is responsible for dissipation of energy due to bed collisions.
The colloidal particles are larger and heavier than FPM “droplets” and their interactions
are singular. Therefore, thermal fluctuations are transferred from the bulk of fluid and are
partly dissipated inside the colloidal agglomerates (F̃= 0, if i and j are colloidal particles).
There is also no drag between colloidal beds (B(ri j ) = 0) because the binder layer covering
colloidal beds is assumed to be very thin.

The bed-“droplet” interactions are simulated by employing FPM forces. This is
justifiable on the following grounds:

• the bed-“droplet” forces cannot be singular,
• non-zero Brownian component (F̃i j 6= 0) comes from the fluid “droplet”,
• viscous drag (B(ri j ) 6= 0) comes from the fluid “droplet” and the electrolyte binder,
• the electrolyte concentration in electrolyte-solvent mixture surrounding the agglom-

erate is low, thus electrostatic bed-“droplet” interactions are negligibly small.

Because the colloidal bed contains a hard core, we have modified repulsive part of
conservative FC bed-“droplet” forces, thus making it steeper than for “droplet”-“droplet”
interactions.

The FPM model is based on concepts drawn from statistical physics. In contrast
to DPD and two-level models used in our earlier simulations, it is a more general and
self-consistent particle method. Simulation of multiphase flow consists in appropriate
definition of conservative forces between particles representing different phases and in
setting some interactions to zero. Thermodynamic properties of the model and the detailed
balance conditions are always preserved according to the rigorous theoretical basis set out
in [23, 38].

The forces are computed by using O(M) order (M-number of particles) link-list
scheme combined with neighbor tables [39]. Multiple link-lists are used because the sizes
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Figure 1. The mean force between colloidal particles as a function of macro ion separation (in units of
macroion diameter) approximated by the sum of the L-J force and soft sphere repulsion. Black dots show

the approximate shape of the mean force obtained from Monte-Carlo simulation of a macro ions
interactions in a real colloidal mixture [3]

of particles and ranges of interactions (rcut) are different, that is, larger Hockney cells [39]
are used for longer ranged interactions.

In the integration of the equations of motion, we have employed the leap-frog
numerical scheme. Due to large instabilities observed by using leap-frog for angular velocity
computations, we have used the following higher-order temporal O(1t4) scheme for !:

!n+1/2
i = 2!n−1/2

i −!n−2/3
i +

�
Nn

i −Nn−1
i

Ð
. (13)

The values of vn+1 and !n+1 are predicted by using O(1t2) Adams-Bashforth procedure as
it is in [26].

The parameters associated with the fluid dynamical interactions of FPM have been
matched to the fluid transport coefficients by using the equations in the continuum limit
and the detailed balance condition [39]:

Pk 6=l =
n ·5k 6=l hri

2· D
, (14)

¹b = 
 ·n
�

A2

2D
+

D+2
2D

B2

½
+c2 1


 · Dn .A0 + B0/
, (15)

A0 =
1
D

Z
drA(r), B0 =

1
D(D+2)

Z
drB(r),

(16)
A2 =

1
D

Z
drr2 A(r), B2 =

1
D(D+2)

Z
drr2 B(r),


 =
¦ 2m
2kBT

, (17)

where P – is a partial pressure, T0 – temperature of the particle system, ¹b – is a bulk
kinematic viscosity, D = 2, c2 = kBT /m, 5, ¦ and 
 – scaling factors of conservative,
Brownian and dissipative forces, respectively.
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The results of our test runs show that our FPM model satisfy the basic physical
constraints:

• Total angular and translational momenta are preserved,
• The actual thermodynamical pressure computed from the virial theorem is constant.

Its average is 5−10% larger than P assumed (for M = 50000 particles),
• The actual thermodynamical temperature computed from the average kinetic energy of

the particle system is constant and deviates no more than 2–5% from the value of T ,
• The rotational kinetic energy is about 1/3 of the total kinetic energy.

Since the compressibility of the fluid is low (for a large value of 5), there are some
quantitative differences between the theory and the simulation. The kinetic theory formulas
have been developed in the limit where no conservative forces are present. The actual
transport coefficients computed from generalized Einstein and Green-Kubo formulas [40] are
larger more than 50% than those predicted from the classical kinetic theory [41]. Therefore,
the transport coefficients computed from the theory can be used only as the first coarse
approximation. The most precise matching can be done by using a new generic formulation
of DPD model, which is a natural generalization of both the DPD and FPM [38].

Table 1. Program units

Value Unit

Length ½ the average distance between the neighboring fluid particles

Mass m dimensionless – mass of the lightest fluid particle m = 1

Time t in t = ½/c where c2 = kBT /m, ½ – unit of length

Energy " in 3
2kB T (average kinetic energy for Maxwell distribution)

Viscosity � �= 
 rc /2 ·c where 
 is the scaling factor of dissipative forces

We have solved the problem for finding clusters of very sophisticated shapes created
during granulation by employing an efficient O(M) clustering procedure. It is based on the
mutual nearest neighboring (mnn) distance concept. This procedure is outlined in [28].

To define the transport properties of liquid, we introduce dimensionless factor � as
it is in [42]:

� = 
 rc/D ·c, (18)

where D is dimension of the system. The value of� represents the magnitude of the viscous
FPM forces. We introduce also the other dimensionless units collected in Table 1.

Table 2 comprises the principal dimensionless parameters used in 2D simulations.
We assume that:

• density of colloidal system is 10 times greater than density of the liquid,
• spacing between colloidal beds is 50% greater than for liquid “droplets”.

Since the droplets represent clusters of molecules, we can estimate that a colloidal
bed is around a few orders of magnitude larger than a molecule, which would put it around
0.1 to 1 micron.

The existence of the non-central force in the FPM, allows us employing a shorter
cut-off radius for forces calculation than in DPD simulations thus saving computational
time. A typical cut-off radius used in DPD simulation is 2.5½ [22, 25]. The number density
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Table 2. Principal physical and numerical parameters

General parameters Values

T [K] 50

g 0.00001 ½/1t2

1t 0.008

Types of interactions

Liquid particle– Liquid particle– Colloidal bed–
Liquid particle Colloidal bed Colloidal bed

Average distance between
1 1.5 1.5

neighboring particles ½

3.2 (particles in
Number density 3.2 3.2

sphere of radius ½)

Cut-off radius (in ½) 1.5 2.5 1.8

Particle mass m1 = 1 m1,2 =
2m1m2

m1 +m2
m2 = 22.5

Sound velocity
q

P
²

(in c) 7.4 — 1.5

Viscosity 25 25 10

Cohesion factor " — — 0−4

Number of particles 1×105 — 2×103

(for large-scale R− T simulations) (1×106) — (5×104)

from Table 2 is also representative for MD and DPD simulations of liquids in 2D. The
partial pressure P is relatively high, thus resulting in a very incompressible liquid.

We consider a colloidal slab accelerated in a periodic box. Similar types of flows
were studied for solid-liquid mixing by assuming a constant shear rate [2]. By using an
accelerated flow we can investigate the granulation of colloidal agglomerate over a broad
range of kinetic energies in the flow with a single simulation. The particles are confined
within the rectangular box with periodic boundary conditions in y-direction and reflecting
walls in x-direction. The aspect ratios of the slab to the box dimensions are 1 : 5 and 1 : 10
along x and y axes, respectively. As shown in Figure 2, the V -shaped profile of velocity
field stabilizes after about 15 000 timesteps. Over the whole periodic box along both the
x and y directions we can observe strong correlations along the horizontal direction. The
vertical correlations are weaker due to greater aspect ratio and vanishing velocity gradients
in y direction. In the following section we report the simulation results of granulation for
this type of flow.

4. Dispersion of colloidal slab in a periodic box

In Figures 3 and 4 we present the snapshots from 2-D FPM simulations of dispersion
of colloidal agglomerate accelerated in a periodic box.

We recognize several tages of granulation, which usually occur with some degree of
overlap:

1. Imbibition – consisting in spreading off the liquid solvent into the colloidal cluster,
and reducing the cohesive forces between the colloidal beds. This process corresponds
to the wetting of a dry, porous solid by the liquid.
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Figure 2. Velocity profiles with simulation time. The V -shaped profile becomes stable
after about 15000 timesteps

" =0 " = 0.5

Figure 3. Imbibition of colloidal agglomerate by fluid particles
for different cohesion factor "; T = 3000

2. Fragmentation – consisting of shatter – producing a large number of smaller
fragments in a single event, rupture – breakage of a cluster into several fragments
of comparable size, erosion – gradual shearing off of small fragments of comparable
size [2],

3. Aggregation – the process being the reverse of dispersion. Two traditional mech-
anisms can be recognized: nucleation – defined as the gluing together of primary
particles due to the attractive forces, coalescence – is the process by which two larger
agglomerates combine to form a granule.

Imbibition is the principal mechanism responsible for initiating fragmentation. As
shown in Figure 3, fluid particles penetrate the permeable agglomerate. The repulsive forces
between colloidal and fluid particles (see Equation (12)) reduce the attractive interactions
between colloidal beds. In the case where there is a lack of cohesive forces between the
primary particles and " = 0, the fluid particles create longitudinal paths parallel to the
streamlines (see Figure 3). Simulation results from Figure 4 (" = 0) show that for longer
simulation times (T = 5000−7500) the slab brakes up (shatter) along these paths. For larger
value of " (see Figures 3 and 4), fluid particles concentrate in the center of agglomerate.
Unlike the case without any cohesive forces (" = 0), the presence of cohesive force allows
one to observe the crosswise fragmentation of the colloidal slab.

Fragmentation may be caused by a few mechanisms. Rupture or shatter of the slab
from Figure 4 for T = 5000−7500 is the consequence of cracks formed at the initial stages
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T = 5000 T = 15000 T =25000

" =0.0

" =1.5

" =2.5

" =3.5

Figure 4. Selected snapshots from FPM simulations of accelerated colloidal slab
in a periodic box for various cohesion factors "

of simulation. The formation of cracks is due to direct compressive loads and particle-
particle impacts than to the hydrodynamical forces. The relevance of hydrodynamic forces
in fragmentation shows up at greater kinetic energies of the flow.

The dimensionless number, which characterizes fragmentation, the fragmentation
number Fa is defined as follows:

Fa =
¼0

T
, (19)
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where:
¼ – dynamic viscosity,
T – denotes the cohesive strength,
0 – shearing rate:

0 = V /Žs, (20)

V – a characteristic velocity,
Žs – a characteristic length scale for the Stokes flow.

The agglomerate strength T is not an intrinsic material property, like the surface
tension but depends on many factors, including the internal structure, compaction and many
other physical parameters.

When the fluid dynamical stresses exceed a critical value Facrit , that is, Fa > Facrit, the
agglomerates would rupture in the shear flow. As shown in [2], for fragmenting polystyrene
lattices the value of Facrit is reciprocal of the mean agglomerate size Savg. Ionic effects at
high electrolyte concentrations are well accounted for by assuming T to be proportional to
the force between two primary particles, i.e., T³ g(") where " is here a maximum cohesion
strength – the cohesion factor.

Thus the value of T is independent on the agglomerate size and the shear rate. From
Equations (19)-(20) we obtain:

Savg³ g ."/
¼0

, (21)

where g(") is a monotonically increasing function of " determined empirically [2]. A similar
relationship between the mean cluster size and the shear rate 0 is also found in the case of
converging flow and in the granulation of wet agglomerate in powder due to the shear flow.

Mixing and segregation of granular materials can be simulated also employing discrete
particle model rooted in molecular dynamics simulations. The rapid granular flow simulation
(RGFS) employs actual expressions for the magnitude of the forces for describing the
interactions between the finite-sized particles [21]. Interactions between particles in RGFS
are restricted to frictional effects and elastic and plastic deformations of the surface, which
limits the applicability of these models to dry powder flows. The agglomeration of fine
particles in wet granulation can be achieved by introducing an intermediary viscous binder
fluid into a shearing mass of powder [21]. Viscous interactions between solid particles
covered by the binder allow the particles to adhere together or bounce off one another. The
wet agglomerates breakup in a shear flow. The wet agglomerates rupture when the Stokes
number St – determined by the ratio of the initial kinetic energy in the shearing mass and
the energy resisting deformation – exceeds a critical value.

According to [21], the stable cluster size at the point of equilibrium before deformation
and breakup is given by the following formula:

Savg³
�¼
0

�Þ
, (22)

where ¼ – dynamic viscosity of fluid binder and Þ = 1 for T= const. Since cohesive strength
T will depend on shear rate and/or the size of granule, the value of Þ is greater than 1. The
results from RGFS simulations show that, for a small capillary number (Ca) the value of
Þ = 2 (for Ca > 10, Þ = 5).

In the both cases, i.e., powder-in-liquid and mud-in-powder flows, the microscopic
effects such as the thermal fluctuations can be neglected and shear rate is constant. In the
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FPM model, thermal fluctuations in the solvent are simulated by the Brownian component
of particle-particle forces. The fluctuations are transferred to the agglomerate particles.

The shear rate 0 changes in time and is defined as follows:

0 =
p

vdif ·vdif

½
where vdif = hUbedi−



Ufluid

Þ
, (23)

where ½ is the average distance between the neighboring beds, hUbedi and


Ufluid

Þ
are the

average translational velocities in y-direction for the agglomerate beds and fluid particles,
respectively.

From Figure 5a one can discern that in the beginning the average kinetic energy EK

of the accelerated slab increases with time linearly. After incipient rupture, the value of EK

decreases (compare Nclu time dependence from Figure 5b with the plot from Figure 5a).
This drop in kinetic energy is due to larger dissipation caused by an increase of friction
surface and increase of potential energy of the colloidal particle system after rupture. As
shown in Figure 5a, the second mechanism dominates at stronger cohesion. In the course of
the simulation, the V -shaped velocity field (Figure 2) causes the colloidal beds concentrate
in the center of the box where the velocity is the highest. This mechanism dominates over
the previous two after 10 000–13000 timesteps. The kinetic energy of the colloidal beds
increases. Together with an increase of kinetic energy, the agglomerate deforms by creating
elongated structures, which then rupture and are eroded.

(a) (b)

Figure 5. (a) The average kinetic energy of the colloidal agglomerate with time
for various cohesion factors ". (b) Mean cluster size (Savg – gray) with shear rate 0 and number

of clusters (Nclu – black) with number of timesteps for the colloidal slab accelerated in a periodic box.
The value of " = 1.5. The scales of shear rate 0 and number of timesteps do not correlate exactly

As shown in Figures 5b and 6, in this power-law regime the mean cluster size is as
follows:

Savg =
A(",�,T0, : : :)

0Þ
, (24)

where Þ ³ 2 and A() is a function of material properties and physical conditions of the
particle system such as temperature, viscosity, partial pressure. The value of Þ obtained
from a linear regression for the different simulation parameters is found to locate within
the [1.82,2.12] interval.
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Figure 6. Mean cluster size with time for a few different cohesion factors

This result is, surprisingly, similar to that obtained from RGFS (rapid granular flow
simulations) simulations [21] of mud-in-powder shearing flow. The value of Þ is greater
than 1 (as it is in Equation (21)) because the cohesive strength depends on the shear rate
and the size of granule. For an increasing shear rate, the temperature of a colloidal granule
increases because the energy from friction cannot be dissipated away. Thus there is a positive
feedback, since the cohesive strength decreases sharply.

5. Concluding remarks
In this work we have presented results taken from 2-D fluid particle modelling in

which we have simulated the flow of a colloidal slab along a long periodic box.
The first type of flow may be applied to blood flow. In both types of solid-liquid

flows we can easily recognize the characteristic dispersion caused by the microstructural
dynamics and they include phenomena such as rupture, erosion, shatter and agglomeration,
all of which would be very difficult to be modelled with conventional continuum methods.
We have studied rather thoroughly the process of fragmentation in the power-law regime [2].
In solid-liquid systems, such as the fractal agglomerate in solvent and wet granulation in
powder under shear, the mean cluster size Savg varies with the shear-rate 0 as 1/0Þ . This
very important relationship can also be detected in mesoscopic solid-liquid systems in
which thermal fluctuations play a definite role. In Table 3 we categorize the various types
of fragmentation with the mean cluster size.

Table 3. Types of fragmentation with the mean cluster size

Mean cluster size – Savg Type of fragmentation

Savg³ g (")
¼0

fractal agglomerate in fluid (experimental)

Savg³
�¼
0

�2
wet agglomerate in powder (simulation)

Savg =
b5 · f (�1−1) ·eb4·"

�1−202
dense agglomerate accelerated in mesoscopic liquid (simulation)
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1. For wet granulation in powder and mesoscopic solid-liquid fragmentation the mean
agglomerate size depends inversely on the square of the shear rate. For both cases the
cohesive strength T depends on shear rate and/or the size of a granule.

2. For shear flow with a constant rate and a constant cohesive strength T in fractal
agglomerate-in-liquid, the average mean size of the granule varies as 1/0.

3. The attractive forces arising from the binder fluid covering the colloidal beds are
found to correspond to the dissipative forces in the mesoscopic colloidal agglomerate.

4. The hydrodynamic forces developed in fractal-agglomerate/liquid system would
correspond to the dissipative colloidal-bed/fluid-particle interactions in the mesoscale.

5. The exponential dependence of Savg on the cohesive factor epsilon is derived from
collective mesoscopic effects, such as short-ranged, attractive ion-ion forces and thermal
fluctuations.

Another aspect concerning complexity is revealed by the strong heterogeneity in
the flow structure. With the fluid-particle model one can discern properly the multiscale
character of the solid-fluid system. These multiscale structures are complicated due to
the inflexibility of the description level with varying scale of observation. Unlike [43],
where different numerical methods were employed for describing the particle, cluster and
the entire system, the FPM model is sole numerical paradigm in our simulations. From a
computational standpoint, we do not observe any methodological disparity of solid-fluid
interaction mechanisms in totally different regimes in which either fluids or particles may
dominate.

Even though the fluid particle model is superior to the older mesoscopic scheme –
dissipative particle dynamics – it does not solve the serious conceptual problem of the
method of DPD. The thermodynamic behavior of the fluid particle model is determined by
the conservative forces, which are soft in comparison with the singular MD interactions.
Hence, there does not exist a well-defined procedure to relate the shape and amplitude of the
conservative forces with a prescribed thermodynamic behavior. Furthermore, it is not clear
what are the physical time and length scales the model actually describes. The presence of
thermal noise suggests a fuzzy area belonging to the mesoscopic realm. In [26–28] we show,
for example, that the DPD and FPM fluid structures resemble short chain polymers. Serrano
and Español [38] proved that the spacio-temporal scale for DPD can be precisely defined
by introducing the volume of a fluid particle as a new variable. The model is interesting
from theoretical point of view but it is very hard for implementing efficiently in simulating
multicomponent fluids. Moreover, it is less efficient involving larger cut off radius than
FPM and DPD. This price paid for being more strict with matching spatio-temporal scale
may appear currently too demanding especially for 3-D simulations. There is a thin border
between the applicability of a numerical model and theory.

With the FPM we can extend further the capabilities of the discrete particle method
to the mesoscopic regime and show that they are competitive to standard simulation
techniques with continuum equations. These methods establish a foundation for cross-scale
computations ranging from nanoscales to microns and can provide a framework to study
the interaction of microstructures and large-scale flow, which may be of value in blood flow
and other applications in polymeric dynamics.
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