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Abstract: A parallel realization of the NDDO-WF technique for semi-empirical quantum-chemical calcu-
lations on large molecular systems in the spd-basis is described. The technological aspects of designing
scalable parallel calculations on super computers (by using MPI library) are discussed. The scaling of
individual algorithms and entire package was carried out for two model systems with a number of atomic
orbitals of 894 and 2014, respectively. The speedup was determined in computer experiments with the
RM600 E60 and Cluster Intel PIII multi-processor systems. The effect of communication rate on the pack-
age performance is discussed.
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1. Introduction
Computational chemistry whose fundamentals were formulated back in the 80s [1, 2]

is becoming more and more important in the view of fast-developing attack of nanotech-
nology on all spheres of human activity. Being quantum in its nature, nanotechnology is
dealing with phenomena that take place at the atomic level and requires adequate description
of these processes, their prediction, and controlling. Modern quantum chemistry (QC) offers
a wide range of tools and techniques that suit the needs of nanotechnology, which makes it
a constituent of nanotechnology processes. All this puts forward strict requirements to the
structure of computation procedure. Of course, QC cannot ensure a calculation component
over the entire nanotecnology cycle. It should be kept in mind that QC is only applicable
to objects whose size does not exceed several nanometers. But the behavior of the atomic
world within these spatial limits is a governing factor for both the microscopic and macro-
scopic objects whose adequate description can be only made by using the entire hierarchy
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of calculation tools: from QC through classical (or semi-classical) molecular dynamics,
mesoscopic dynamics to analysis of finite elements and engineering design [3].

As is known, a volume of several nm in size contains several thousand atoms. Besides
a system size, an important feature here is an increasingly growing number of systems that
has to be subjected to QC calculations when solving a given nanotechnological problems.
All this requires a new approach to the basic concept of computing. The most promising for
computing many-hundred atomic systems seem to be the semi-empirical (SE) techniques
adopted in QC [4, 5]. Meanwhile, a cardinal solution to the problem can be achieved by
using the multi-processor parallel codes. As an example of drastic changes in computing,
we can mention one of the first successful applications of parallel codes to calculating a
reconstructed Si (111) (7×7) surface [6]. These calculations (for a cluster of 700 atoms)
were performed by using Thinking Machine CM-2 (16384 one-bit processors). The use was
made of a combination of ab initio QC techniques [7], such as ab initio molecular dynamics,
the Perdew–Zunger approximation for local electron density, and the Kleinman–Bylander
pseudopotential. In this case, the total execution time was about 0.5 year.

By their concept and accuracy, most close to ab initio techniques are those SE QC
methods based on the NDDO (neglect of diatomic differential overlap) approximation [5]:
MNDO [8], MNDO/H (with account of hydrogen bonding) [9, 10], MNDOC (account of
electron correlation) [11], AM1 [12], PM3 [13], and SAMI [14, 15]. These techniques and
appropriate programs are being used in widespread one-processor packages MOPAC [16],
AMPAC [17], and CLUSTER-Z1 [18] for QC calculations (for many-atomic systems in
the sp-basis). On going to the spd-basis, the above techniques were modified into the
NDDO-WP [19, 20] and MNDO/d [21] techniques that were used in program packages
CLUSTER-Z2 [22] and MNDO94 [23], respectively.

The effectiveness of SE sequential software, and of the package CLUSTER-Z1, in
particular, can be illustrated by a solution to the problem of strengthening silicon polymers
upon addition (to polymer) of nanosized SiO2 particles [24–29]. Essentially, the problem
was reduced to characterization of intermolecular interaction between polymer and SiO2

at the interface and its impact on the mechanical properties of the polymer. In two years,
above 300 model systems (with the number of atoms ranging between 280 and 380) have
been computed by this technique. The calculations (with full optimization of equilibrium
structures and sometimes with solution of direct and inverse spectral vibrational problems)
were carried out by using a two-processor Pentium-PRO personal computer.

In this work, we report on a transformation of the sequential program package
CLUSTER-Z2 to parallel program MP-ZAVA (using the MPI library [30]). The latter was
tested on two 16-processor computing systems — (1) SPM-system RM600 E60 Siemens
Nixdorf and (2) a cluster of 16 Intel Pentium III 667 MHz processors integrated by means of
3COM switch by the 100 Mbit Fast Ethernet technology (hereinafter Cluster Intel PIII) for
two many-atomic clusters. The package was found to exhibit a good scalability of algorithms
and a marked speedup of execution.

2. Theoretical background of CLUSTER-Z2
MP-ZAVA is based on the MPI library and on the inner architecture of the CLUSTER-

Z2 package. The latter is oriented on solution of a QC problem (e.g., see [5]) for a
polyatomic (and many-electron) system in the form of a molecule or model cluster. This
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section describes the basics of the calculations and interprets CLUSTER-Z2 results rather
than introducing QC.

Let a system under consideration contain M positively charged nuclei with the charge
Z A and N negatively charged electrons with a charge of −1 (a.u.). The position of nuclei is
characterized by the vector R with 3M Cartesian coordinates. The position of electrons is
given by the vector r with 3N Cartesian coordinates. The energy and wave function for the
ground state of a given set of nuclei and electrons is determined from the non-relativistic
Schrödinger equation:

H9 = E9 (1)

The Hamiltonian for the system may be written in the form:

H (R,r) = Tn(R)+Te(r)+ Vee(R,r)+ Vnn(R,R), (2)

where Tn(R) and Te(r) stand for the kinetic energy of nuclei and electrons, Vee(R,r) =
Vee(r,r) + Vne(R,r) gives the potential energy of interaction between electrons (ee) and
between electrons and nuclei (en), while Vnn(R,R) = Enuc(R) gives the energy of electro-
static repulsion between nuclei. In terms of the widely adopted Born–Oppenheimer approx-
imation, Hamiltonian (2) can be subdivided into two parts that describe the motion of light
electrons and heavy nuclei:

Helec(r) = Te(r)+ Vee(r,r)+ Vne(R,r), (3a)

Hnuc(R) = Tn(R)+ Eelec(R)+ Enuc(R) = Tn(R)+ VPES(R), (3b)

where
VPES(R) = Etot(R) = Eelec(R)+ Enuc(R) (4)

is the potential energy surface that describes the interaction between atoms in a molecular
system. Normally it is termed the ‘one-point’ total energy of the system, which implies a
selected and fixed spatial disposition of atomic nuclei.

Accordingly, the Schrödinger equations for the electronic and nuclear subsystems have
the form:

Helec(r)9elec(r,R) = Eelec(R)9elec(r,R), (5a)

Hnuc(R)8nuc(R) = Enuc8nuc(R). (5b)

where 9elec(r,R) and 8nuc(R) are the wave functions for electrons and nuclei, respectively.
The package CLUSTER-Z2 solves both equations. However, while Equation (5a) is

solved for the system of electrons as it is, operator Hnuc(R) in Equation (5b) is replaced by
the operator of the classical vibrational problem:

Hnuc(R) = Tnuc(R)+ V (R). (6)

Here Tnuc(R) stands for the classical kinetic energy of nuclei, while V (R) = VPES(R) is
determined, according to Equation (4), as a sum of the electronic energy Eelec(R) as
assessed from Equation (5a) and the energy of Coulomb core-core interaction between
nuclei Enuc(R) that is to be determined additionally. The vibration problem is solved in the
harmonic approximation.

Generally, many-electron quantum problem (5a) cannot be solved explicitly. In order
to overcome this difficulty, the so-called one-electron approximation is being used. In this
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case, one-electron Hamiltonian Helec(r) is represented as a sum of one-electron operators
Heff

i (r):
Helec(r) =

X
i

Heff
i (r), i 2 1, N (7)

Accordingly, the electronic wave function is represented as the antisymmetric product of
the one-electron functions expressed in terms of the Slater determinant:

9(1,2, : : :, N) =
1p
N!

det|'1(1),'2(2), : : :,'N (N)|, (8)

where 'i is a solution to the one-electron equation

Heff
i 'i = "i'i , i 2 1, N , (9)

and is also known as the molecular spin-orbital (MO). The latter is defined by the spatial
and spin coordinates of the i-th electron. The eigenvalue of Equation (9) "i gives the energy
of a given orbital, while the MOs are orthonormalized:Z

'i (r)' j (r)dr = Ži j . (10)

Therefore, Equation (5a) is replaced by a system of N equations fo eigenvalues. Normally,
'i is sought as a linear combination of atomic orbitals (LCAO) �k :

'i =
N OX
k=1

Cki�k , (11)

where N O is the number of atomic orbitals (AOs) and C are varied coefficients. As a
result, we come to the following system of equations written in the matrix form:

HC= SCE, (12)

where E is the diagonal matrix of the MO energies. Matrix S differs from the unitary one
owing to non-ortogonality of AOs. Solution of Equation (12) with respect to the LCAO
expansion coefficients C is performed by generalized diagonalization [31]. Matrix elements
H are defined as:

Hij =
Z
�i (r)Heff� j (r)d− , (13)

while the overlap integral Si j for atomic orbitals �i and � j has the form:

Si j =
Z
�i (r)� j (r)d− = hi | ji . (14)

Calculations are focused on determining the matrix elements for operator Heff . Normally,
this is attained by using the Hartree-Fock procedure [4, 5]: the one-electron Hamiltonian
Heff describes the motion of the i-th electron in the self-consistent field (SCF) induced by
other electrons and nuclei fixed in space. In this case, the matrix elements of one-electron
operator in Equation (9) are replaced by the Fock operator F, so that matrix Equation (12)
is transformed to the Hartree-Fock SCF equation in the Roothaan approximation:

F(C)C= SCE. (15)

Equation (15) is written for closed electron shells in the restricted Hartree-Fock (RHF)
approximation. Each MO is occupied by two electrons, so that MOs with opposite spins
have the same spatial component. Equation (15) is third-order with respect to C and is
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solved by successive approximation: for a given matrix C, we determine matrix F(C), then
determine new matrix C, etc. until attaining a self-consistence with a preset accuracy.

The elements of the Fock matrix are expressed in terms of the electron density matrix
P whose elements are defined by the elements of matrix C:

Pi j = 2
OCCX

k

CikCjk . (16)

Summation is performed over all occupied MOs. In terms of the density matrix, the Fock
matrix elements have the form:

Fi j = Hij +
N OX
k,l=1

Pkl [hi j |kli− 1
2
hik | jli] (17)

where Hij are matrix elements of the so-called core Hamiltonian and hi j |kli present two-
electron integral. The simplest of these, hi i | j ji, describe the electrostatic repulsion of two
electrons in terms of the probability densities �2

i and �2
j , respectively. The density matrix

P defines also the probability to find an electron in the volume dr in the vicinity of r:

²(r)dr =
X
i j

Pi j�i (r)� j (r)dr. (18)

When the spatial components of MOs with opposite spins (Þ and þ, respectively) are
different, in terms of the unrestricted Hartree-Fock (UHF) approximation, the wave
functions are written [32] in the form:

9UH F =
�p

(NÞ + Nþ !
�−1

×

det
þþþ'Þ1 (1),'Þ2 (2), : : :,'ÞNÞ+1(NÞ),'

þ

NÞ (NÞ +1), : : :,'þNÞ+Nþ
(NÞ + Nþ )

þþþ , (19)

where

'Þi =
N OX
k=1

CÞ
ki�k and '

þ

i =
N OX
k=1

Cþ

ki�k . (20)

Accordingly, Equation (15) is transformed to the coupled system of equations for open
electron shells:

FÞ(CÞ,Cþ)CÞ = SCÞEÞ (21a)

Fþ(CÞ,Cþ)Cþ = SCþEþ . (21b)

In this case, Equation (16) is replaced by the following ones:

PÞi j =
NÞX
k=1

CÞ
ikC

Þ
jk , (22a)

Pþi j =
NþX
k=1

Cþ

ikC
þ

jk , (22b)

Equation (17) is also replaced by the system of two coupled equations:

FÞi j = Hij +
N OX
k,l=1

Pkl [hi j |kli− PÞkl hik | jli] (23a)

Fþi j = Hij +
N OX
k,l=1

Pkl [hi j |kli− Pþkl hik | jli] (23b)

tq0305a7/275 26I2002 BOP s.c., http://www.bop.com.pl



276 P.K. Berzigiyarov, V.A. Zayets, V.F. Razumov and E.F. Sheka

and
P = PÞ +Pþ . (24)

The equations are solved by using the same iteration scheme of self-consistence as that
used in case of Equation (15).

3. NDDO-WF approximation
Computation is focused on the solution of RHF Equation (15) or UHF Equations (21).

The matrix elements Hij of the core Hamiltonian are given by:

Hij =
−
i

þþþþ−r2

2

þþþþ j×− N ATX
A=1

−
i

þþþþ Z A

RA

þþþþ j× , (25)

where −
i

þþþþ 1
RA

þþþþ j× =
Z
�i (r1 − Ri )

1
r1 − RA

� j (r1 − Rj )dV1 (26)

and NAT is the number of atoms. The first term in Equation (25) gives the kinetic energy
of electron while the second one, the energy of electron attraction to the nuclear cores.

Two-electron integrals hi j |kli in Equations (23) are given by:

hi j |kli=
Z Z

�i (r1 − RA)� j (r1 − RB)
1
r12
�k(r2 − RC)�l(r2 − RD)dV1dV2, (27)

where A, B, C, D stand for atoms, i 2 A, j 2 B, k 2C, l 2 D, dV = dxdydz for the 1-st
and 2-nd electrons, and x , y,z2 (−∞,+∞).

Solving Equations (21), we find out the electronic energy Eelec:

Eelec =
N OX

i , j=1

[PÞi j (F
Þ
i j + Hij )+ Pþi j (F

þ

i j + Hij )] (28)

or
Eelec = SpP(H+F). (29)

Until this moment, the logic of ab initio and SE calculations is identical. The difference
manifests itself in calculating the elements of the Fock matrix (23) and two-electron
integrals (27). In ab initio calculations, major difficulties are encountered in finding out
the two-electron integrals hi j |kli whose number is proportional to [N O]4. In advanced
versions that take into account configurational interaction (CI), such as CI, MCI, MP2-MP4,
the number of operations increases even more. According to [33], the time consumption for
non-empirical calculations exhibits the following proportionality:

• MP2 / N5

• MP3, MP4(1+2+4), CI(1+2), CC(1+2) / N6

• MP4, RC[1+2+(3)] / N7

• complete CI (accurate solution on a given basis) / N!

where MP denotes the Mueller-Plesset technique from the perturbation theory of the
appropriate order and CC stands for the method of coupled clusters. Of key importance
here is the number N of selected one-electron basis functions.

SE techniques operate by using a minimal basis set of the Slater valence orbitals.
This implies that MOs (11) are formed only by the AOs of the valence electrons of a given
atom. A common feature of SE methods is the approximation of zero differential overlap
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of AOs: �i� j = 0 when i and j refer to different atoms [5]. For widely adopted valence
bases (AO combinations nl, n0l, e.g., 2s3s etc., are absent), the matrix S is unitary, so that
Equation (15) can be rewritten in the form:

F(C)C= CE. (30)

The matrix elements in Equations (23) are calculated for the AOs of one atom and for the
AOs of different atoms separately. Let us assume that i , j ,k,l 2 A; m,n 2 B (A 6= B). In this
case, the matrix element of the one-electron Hamiltonian for the AOs at one atom has the
form:

Hij = Uij −
X
B 6=A

−
i

þþþþ Z B

RB

þþþþ j× , (31)

where

Uij =
−
i

þþþþ−r2

2

þþþþ j×−−i þþþþZ A

RA

þþþþ j× , (32)

and


i
þþ 1

RA

þþ j Þ is given by Equation (26). On the valence basis, Uij = 0 for i 6= j . When AOs
are localized at different atoms:

Him =
−
i

þþþþ−r2

2
−

Z A

RA
−

Z B

RB

þþþþm×− X
C 6=A,B

−
i

þþþþZC

RC

þþþþm×. (33)

In SE calculations, exact Equations (31)-(33) are replaced by the parameter-containing
ones whose appearance depends on the type of computation scheme. In case of CLUSTER-
Z2, the diagonal elements Uii are not determined from Equation (32) but are regarded as
system parameters. Practical calculations [19, 20] show that the second term in Equation (31)
can be readily replaced by the expression:−

i

þþþþZ B

RB

þþþþ j× = −
X
m

2mm hi j |mmi , (34)

where 2mm is the density matrix for neutral atom B averaged over each orbital quantum
number l. In turn, Equation (33) is approximated by:

Him =
1
2
(þi +þm)Sim , (35)

where þ are the method parameters.
Despite the above difficulties, a more serious problem is imposed by the calculation

of two-electron integrals hi j |kli in the second term of Equations (23). Special attention
was given to decreasing the number of these integrals. Schematically, these integrals can
be written as hAB |CDi. This implies that the constituent AOs belong to different atoms
A, B, C and D. In other words, it means that one-, two-, three-, and four-center two-
electron integrals have to be considered. The NDDO approximation neglects the three-
and four-center integrals on the basis of the zero differential overlap of AOs. Therefore,
we have to calculate only the one-center hAA | AAi and two-center hAA | BBi integrals in
order to obtain the Fock matrix. This strongly decreases the number of integrals and makes
feasible calculations for many-particle systems. Indeed, when � A

i �
B
j = 0, Equations (23)

remain unchanged if AOs are localized at one center. When AO belong to different centers,
Equations (23) acquire the form:

FÞim = Him −
N OX
j ,n=1

PÞjn hi j |mni (36)

(expression for Fþim is similar).
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Let us denote the starting integrals hi j |mni as:

CAB
Coul =

D
� A

1 �
A
2

þþþ�þ3 � B
4

E
(37)

According to [34], the use of the Slater functions with real spherical harmonics leads to
the expression:

CAB
Coul =

l1+l2X
l=|l1−l2 |

l3+l4X
l0=|l3−l4 |

Ill0 (l1,l2,l3,l4), (38)

where

Ill0 =
X

m(m1,m2)

X
m0(m3,m4)

Žmm0

Z Z
²lm (1)

1
r12
²l0m0 (2)dV1dV2, (39)

l + l1 + l2 and l 0+ l3 + l4 are even, while and may have two values, m+ and m−;

m± = sgn(m1)sgn(m2)
þþ|m1|± |m2|

þþ,
sgn(x) = x /|x |, sgn(o) = 1, l½ |m|.

(40)

In Equation (39), the terms containing m−(m1,m2) are zero when either sign (m1Łm2) = −1
and m1 +m2 = 0 or m1 Łm2 = 0 (irrespective of the value of m1 +m2). The same is valid
for m 0(m3,m4). Here sign has a normal mathematical meaning, in contrast to sgn used in
Equation (40). Ill0 characterizes interaction between two continuous charge distributions ²lm

and ²l0m0 .
However, the above calculation scheme suggested by Dewar and Thiel [8] was

found to yield overestimated values of two-center integrals compared to exact solution
of Equation (27) for RAB values typical of chemical bonds. This drawback can be released
in two ways. In terms of a commonly used NDDO approximation (basis of MNDO [8],
AM1 [12], PM3 [13], and MNDO/d [21]), the continuous charge distribution ²lm is replaced
by a system of 2l point charges of ±1/2l a.u. each (zero total), on retention of the ²lm

symmetry [8]. Charge coordinates are found from the condition for equality of multipole
moment components. The latter ones are either found from the equation:


²lm

þþ x I y JzK
Þ
=
Z
²lm (r1)x I

1 y J
1 zK

1 dV1 (41)

(the components differ from zero when I + J +K = l) or are calculated directly for the system
of point charges. As a result, we obtain:eCAB

Coul =
X

l,l0 ,m,m0

X
i , j

qiq jq
r2
i j +(−l +−l0 )2

, i 2 1−2l , j 2 1−2l0 , (42)

where q is the magnitude of point charges. Linear dimensions of the point charge system
depend on the quantum numbers n, l and Slater exponent ".

The integrals eCAB
Coul must meet the following limit conditions:

lim
RAB!∞

eCAB
Coul = CAB

Coul , (43a)

lim
RAB!0

eCAB
Coul = eCAA

Coul(A and B of the same type). (43b)

Equation (43a) always holds true. The conditions under which Equation (43b) is valid have
to be specified. For eCAB

Coul in Equation (42) it can be attained by appropriate choice of −l
and −l0 . In this case, the one-center integrals eCAA

Coul are regarded as system parameters [8,
12, 13].
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The above scheme turned out to be a success, which made it possible to apply the
MNDO, AM1 (PM3) techniques to large organic [12, 13] and inorganic systems containing
C and Si [35–38]. But for small ", AOs become smeared out, so the linear dimensions of
the system of point charges may exceed interatomic distances that affect a dependence ofeCAB

Coul on RAB. In particular, this circumstance makes the parametrization of alkali metal
atoms difficult within the framework of the MNDO and AM1 techniques. Similar difficulties
are encountered in the case of the elements that contain valence d-electrons: in the spd-
basis, there always exist vacant AOs either of the p-type (transition metals) or d-type
(metametals) with small ". In addition, a procedure for determining ²l in the spd-basis
becomes ambiguous per se. In order to retain the rotation invariance, we also have to
average some two-electron integrals. A better solution was found in [21] to the problem of
d-orbitals within the framework of the multipole approximation. The limitations imposed
in the latter have been analyzed [39] in more detail.

An alternative weighting factor technique was suggested in [19] for calculating eCAB
Coul .

This type of the NDDO approximation is realized in CLUSTER-Z2 software (hereinafter
NDDO-WF approximation). In this case, Equation (38) takes on the form:

eCAB
Coul =

l1+l2X
l=|l1−l2 |

l3+l4X
l0=|l3−l4 |

Fll0 (l1,l2,l3,l4)Ł Ill0 (l1,l2,l3,l4) (44)

where Ill0 , as before, are given by Equation (39) while weighting factors Fll0 , which reduce
the values of integrals assessed from Equation (27), are defined as follows:

Fll0 (l1,l2,l3,l4,) =
[Cl(l1,l2)ŁCl0 (l3,l4)]2 + A
Cl (l1,l2)ŁCl0 (l3,l4)+ A

. (45)

Here A = wl(l1,l2) Łwl0 (l3,l4) Ł Rl+l0+1
AB . The condition wl > 0 ensures the validity of the

limit condition (43a). The values wl are fixed and remain unchanged during the search
of the method parameters while Cl in Equation (45) play the role. Generally, there are no
limitations on quantum numbers, although the execution time increases with increasing n
and l.

In terms of the NDDO-WF approximation, Equation (44) is used to determine both
two-center eCAB

Coul and one-center eCAA
Coul integrals. In the former case, the Ill0 values are

calculated on the Slater basis by using a recurrence relation suggested in [40] for the double
integrals in Equation (39). In the latter case, the weighed values of Cl (l1,l2)Cl0 (l3,l4)Ł Ill0
are calculated. Accordingly, the expression for eCAA

Coul has the form [34]:eCAA
Coul = c1(n1,"1) ·c2(n2,"2) ·c3(n3,"3) ·c4(n4,"4)

×
X
l,l0
Žll0Cl(l1,l2)Cl0 (l3,l4)

X
mm0
Žmm0

4³
(2l +1)(2l 0+1)

× Qlm (l1,l2,m1,m1) · Ql0m0 (l3,m3,l4,m4)

×
Z ∞

0
rn+n3+n4exp(−r("3 +"4)) · [En+l (Þr)+ An−l−1(Þr)]dr ,

n = n1 +n2; Þ = "1 +"2; c(n,") =
�
(2")2n+1

�
(2n)!

½1/2

(46)

Here

Qlm (l1,m1,l2,m2) =
�
(2l1 +1)(2l2 +1)(2l +1)

4³

½1/2

qlm(l1,m1,l2,m2). (47)

tq0305a7/279 26I2002 BOP s.c., http://www.bop.com.pl



280 P.K. Berzigiyarov, V.A. Zayets, V.F. Razumov and E.F. Sheka

Summation over l, l 0, m, m 0 is the same as in Equations (38) and (39). The auxiliary
variables Qn(x), En(x), qlm are taken from [34]. The interval (0−∞) in Equation (46) is
divided into five subintervals: (0−0.6R); (0.6R− R); (R−1.5R); (1.5R−2.4R); (2.4R−∞);
R = (R1 · R2 · R3 · R4)1/4; where Ri = 2ni +1

2"i
, i 2 1−4 is the mean size of AO, while ni and "i

are the quantum numbers of the AO. Within each of these intervals, the Gauss–Legendre
quadrature formula [41] is applied over 26 points. The integration limits are reduced to the
standard ones (−1,+1): Z b

a
f (x)dx =

b−a
2

Z +1

−1

�
b−a

2
Ž+

b+a
2

�
dŽ, (48)

Z ∞

R
f (x)dx = 2

Z +1

−1
f
�

1+Ž
1−Ž

+ R
�.

(1−Ž)2 dŽ. (49)

In order to attain better accuracy, the summation is carried out from smaller to greater
terms. Up to n = 6 and l = 3, the calculation accuracy was of eight meaningful digits. It
was checked by the 1,2$ 3,4 commutation of index pairs in Equation (46), since this
expression is asymmetric with respect to the operation. The values obtained for n = 2,
l = 1 were checked according to [5]. As follows from Equation (27), for all Cl (l1,l2) = 1
and wl (l1,l2) = 0, eCAA(AB)

Coul = CAA(AB)
Coul . Thus calculated eCAB

Coul and eCAA
Coul exhibit rotational

invariance and a common appearance for any quantum number l.
The NDDO-WF parameters used in calculating in both the sp- and spd-basis are

given in Table 1. The parametrization procedure is similar to that used for MNDO, AM1
and PM3 techniques [8, 12, 13]. However, in case of NDDO-WF, physically meaningful
atomic charges are used at a starting stage of the parametrization. During successive
geometry optimization, individual weighting coefficients for various characteristic of the
molecules under consideration are used as well [20, 42]. Program package CLUSTER-Z2
is characterized in Table 2 that contains also a list of parametrized atoms.

Table 1. Parameters of the NDDO-WF method [19]

Value Formula Parameters Notes
Hij (31) UssUppUdd

Him (33) þsþpþd

Ill0 (39) "s"p"d Parameters " are used in calculating ²lm [40].
Sim (35) "0s"

0
p"
0
d For H, C, N, O, F, Cl, and Br atoms,

these are identical to "s"p"d .eCAB
Coul ,eCAA

Coul (44),(46) C(l1,l2) 4 parameters in the sp-basis
and 10 parameters in the spd-basis.

E1)
nuc ÞKi Li Mi , i 2 1−4 The same as in AM1 [12].

1) In the NDDO-WF approximation, Enuc has the form [19]:

EAB
nuc = TAB(1+ FA + FB)+

Z AZ B

RAB

"X
PA

KPA exp
�
− LPA (RAB − MPA )

2
�
+
X
PB

KPB exp
�
− LPB (RAB − MPB )2

�#
,

where TAB =
P

im �i i�mm hi i | mmi, i 2 A; m 2 B, FA = exp(ÞA RAB) and (for NH and OH bonds) FO(N ) =
RAB exp(−ÞO(N ) RAB); K , L,M and Þ are the method parameters. The density matrix �i i for a neutral atom is
averaged within each quantum number l. In AM1 [12], TAB is defined by the Coulomb integral



sAsA |sBsB

Þ
for the s-orbitals of atoms A and B.
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Table 2. Characteristics of the CLUSTER-Z2 package

Magnitude Value

Number of atoms 8952)

Total number of orbitals 38022)

Number of occupied orbitals 19002)

Parametrized atoms H, C, N, O, F, Cl, Br, I, P, S, Li, Na, K, Rb, Cs, Ag, Ti
Al, Ga, As, Sb, Cr

Atoms under parametrization Si, In, Ge, Cd, Sn, Te, Pb, Ni, Co, Bi, Zn, Hg, Tl

2) There is no limit for these values; the indicated ones are optimal for use in PC Intel PIII with RAM
256 Mb.

4. Program package CLUSTER-Z2 for sequential computing
The scheme of the CLUSTER-Z2 modules is presented in Figure 1. The modules

inside a dashed line ensure ‘one-point’ calculations for some fixed spatial structure of a
molecule. A solid line embraces the modules that ensure the optimization of molecular
geometry during a search for a minimum of the total energy. As is known, SE calculations
are performed through cyclization over pairs of indices i and j that enumarate atoms
or atomic orbitals. Thus calculated functions f (i , j ) are such that f (i1, j1) and f (i2, j2)
are independent. This circumstance defines the principle of program parallelization in QC
calculations: massive of computations (cycles) over index pairs is divided into either
continuos or cyclic blocks in accordance with the number of processors.

The functionality of the modules shown in Figure 1 is as follows.
Module MAIN runs the procedure, accumulates data, and organizes the data output.

During operation, it:

• reads out atomic parameters,
• calculates one-center integrals hAA|AAi and electronic energy of atoms,
• estimates the constants for calculating hA|Bi and hAA|BBi,
• appeals to the INPUT module that contains governing information about computing

regimes and a starting molecular structure,
• appeals to the HCORE module for SCF calculations at a fixed molecular geometry or
• appeals to the OPT module that finds a minimum of the total energy and optimizes

the starting structure,
• appeals to the FINAL module that initiates and performs the data output.

Module HCORE builds up the matrix of the core Hamiltonian Hcore from Equa-
tions (31) and (35) and opens up the construction of the Fock matrix. During operation,
it:

• appeals to the MC1 module that calculates and stores (on the disk) two-center integrals
hAA|BBi,

• appeals to the TAB module that calculates the integrals of electron attraction to the
nucleus



A
þþ 1

RB

þþAÞ and


B
þþ 1

RA

þþBÞ Equation (34) (by using the data for hAA|BBi),
• appeals to the SIJ1 module for calculating the overlap integrals hA|Bi,
• appeals to the NUCLR module for calculating the repulsion energy for atomic cores

Enuc (see footnotes to Table 1),
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Figure 1. The scheme of the CLUSTER-Z2 package

• appeals to the ITER modulus for performing SCF calculations,
• calculates the total energy of the system Etot = Eelec + Enuc, Equation (4), and the heat

of formation 1H = Etot −
P

A EA
elec + EH E AT A, where EA

elec is the electronic energy
of an isolated atom A in the NDDO-WF approximation and EH E AT A is the heat of
formation for atom A.

Algorithm for constructing the core Hamiltonian matrix Hcore:

• Contribution from two-center integrals is taken into account:

• for all i 2 2, NAT (A is the i-th atom and NAT is the number of atoms),
• for all j 2 1, i −1 (B is the j -th atom).

Calculation of hA|Bi (total Ni × Nj elements, where Ni , Nj is the number of
orbitals in atoms A and B).
Calculation of hAA|BBi integrals and storage of these data on the disk for
subsequent use in construction of the Fock matrix F (total number of hAA|BBi
elements is Ni (Ni +1)/2× Nj (Nj +1)/2).
Calculation of



A
þþ 1

RB

þþAÞ and


B
þþ 1

RA

þþBÞ massives (total number of elements is
Ni (Ni +1)/2 and Nj (Nj +1)/2, the use is also made of hAA|BBi).

• Account of contribution from the above values into appropriate elements of
the matrix H.

• Contribution from one-center integrals Uii .

The above calculation procedure makes the basis for one-point calculations (at a fixed
molecular structure). Its schematic is given in Figure 2.
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Figure 2. The scheme of SCF calculations: finding self-consistent electron density matrix P and electron
energy Eelec (ITER module)
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Module ITER performs SCF calculations and builds up the Fock matrix F. Calcu-
lations get started with zeroing the iteration counter k, i.e. k = 0, Ek = 0. The maximum
number of iterations, kmax, is preset.

Constructing the zeroth approximation. The starting density matrix P0 is obtained by
using a standard procedure or readout from the disk as a result of precedent iteration.

Iteration pitch. For all k � kmax, the calculation sequence is as follows:

• constructing the Fock matrix Fk(Pk−1),
• diagonalization of the symmetric matrix F: solving the equation FkCk = CkEk and

finding out the eigenvectors Ck and eigenvalues Ek ,
• constructing the electron density matrix Pk = CkC?k and calculation of Eelec,k =

SpPk(H+Fk), Equations (28), (29),
• checking the convergence: 1P � "P and 1E � "E , where 1P = |Pk − Pk−1|, 1E =

|Ek −Ek−1|, and "P , "E are the preset calculation accuracies,
• constructing F(Pk) and solving FC= CE to find out resultant P, E, and Eelec according

to Equation (28).
• When k > kmax, the computation is stopped.

Algorithm for constructing the Fock matrix F:

• Two-center contributions are taken into account:

• for all i 2 2, NAT (A is the i-th atom, NAT is the number of atoms),
• for all j 2 1, i −1 (B is the j -th atom).

Readout the hAA|BBi data from the disk (total Ni (Ni +1)/2 × Nj (Nj +1)/2
elements for given i and j , where Ni , Nj is the number of orbitals in the i-th
and j -th atom).
Calculation of contributions form hAA|BBi into appropriate elements of F.

• One-center contributions are taken into account:

• for all i 2 2, NAT (A is the i-th atom)
Account of contributions from hAA|BBi that are stored in RAM.

• Account of H: Fk = Fk +H
For all this to be done, module ITER:

• reads out (from disk) two-center integrals hAA|BBi,
• appeals to FOCKAB module to take into account integrals hAA|BBi,
• appeals to FOCINT module to take into account integrals hAA|AAi,
• constructs the resultant Fock matrix with account of the one-electron part of

Him (see Equations (23)),
• appeals to module GIVENS that diagonalizes the symmetric matrix F and

determimes the eigenvectors C and eigenvalues E,
• appeals to module BORDER to construct the density matrix P and to calculate

electronic energy Eelec, after which the iteration counter k is increased by 1,
• checks out the degree of self-consistence relative to the density matrix P and

energy Eelec until attaining the following relation: 1P � "P and 1E � "E .

The scheme of SCF calculations is illustrated in Figure 3.
Module BORDER constructs the electron density matrix P, Equations (22) (for a

given matrix C), and computes the electronic energy Eelec,k , Equation (28). Note that Pk
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Figure 3. The scheme of one-point calculation for a fixed molecular geometry (HCORE and
ITER modules)
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can be constructed either by extrapolation from Pk−2 or (at poor convergence) by using the
level-shift technique [43, 44] (see a scheme of SCF calculations in Figure 3).

Algorithm for constructing the density matrix:

• One-center integrals are taken into account:

• for all i 2 1, NORBS (NORBS is the number of orbitals).
Calculating the one-center component of the density matrix, Equations (22).

• Two-center integrals are taken into account:

• for all i 2 2, NORBS,
• for all j 2 1, i .

Calculating the two-center component of the density matrix.

• Computing the energy E: Ek = SpPk(H+Fk).

Module GIVENS performs the diagonalization procedure, solves the equation FkCk =
CkEk and finds out Ck and Ek .

The above modules are the basis in the scheme of ‘one-point’ calculations (Figure 1).
The flow chart of these calculation is given in Figures 2 and 3.

In order to optimize the molecular geometry, the above scheme should be supplemen-
ted with modules OPT, COMFG, and COMPFD.

Module OPT:

• optimizes the molecular geometry over internal coordinates by determining a min-
imum of Etot ; during execution, appealing by choice to standard programs of un-
constrained linear minimization VA09A [45], BFGS [46–50] or the Newton-Raphson
technique for exact localization of a minimum or saddle point [51],

• appeals to the IRSPD and INTD modules to calculate the harmonic vibration
frequencies and the relevant intensities in IR and Raman spectra.

Module COMPFD calculates the derivatives of the total energy Etot with respect
to the Cartesian coordinates x, y, z of atoms. Denoting x , y,z just as x (total 3× NAT
components), we can write Equation (4) in the form:

Etot (x ,P) = Eelec +
X
A>B

EAB
nuc. (50)

The first term in Equation (50) gives the total electronic energy while the second one, the
energy of nuclei repulsion. Because of the self-consistency of solution for P,

@Etot

@P
= 0. (51)

Therefore, we have to calculate only the derivatives:

@Etot

@x
=
@

@x
Enuc +SpP

�
@H
@x

+
@F
@x

�
. (52)

that, in their turn, are determined by the following derivatives, according to Equations (23),
(31), (35) for F and H:

@

@x
hAA|BBi , @

@x
hA|Bi , @

@x

−
A

þþþþ 1
RB

þþþþA×, and
@

@x

−
B

þþþþ 1
RA

þþþþB×. (53)

In other words, only two-center integrals provide contribution to @Etot
@x . During execution,

the COMPFD module:
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• appeals to the HCORE module to calculate Etot and P,
• appeals to the DSIJ1 module to calculate @

@x hA|Bi,
• appeals to DMC1 to calculate @

@x hAA|BBi,
• appeals to DTAB to calculate @

@x



A
þþ 1

RB

þþAÞ and @

@x



B
þþ 1

RA

þþBÞ,
• appeals to DFAB to calculate @Fij

@x ,

• appeals to NUCLR to calculate @EAB
nuc
@x ,

• appeals to DPOLE or DLPOLE to calculate field-induced corrections for @Etot
@x [52, 53],

• calculates the derivatives @Etot
@x .

Algorithm for calculating @H
@x and @F

@x is in much similar to that used in constructing
the matrices F and H:

• finding a self-consistent solution (P, Etot ) (by using HCORE) for given xi , yi ,zi ;
i 2 1, NAT ,

• for all i 2 2, NAT (A is the i-th atom, NAT is the number of atoms),
• for all j 2 1, i −1 (B is the j -th atom),
• calculating @

@xi
hA|Bi (in this case, @

@x j
hA|Bi= − @

@xi
hA|Bi, this holds also true for other

integrals),
• calculating @

@xi
hAA|BBi,

• calculating @

@xi



B
þþ 1

RA

þþBÞ and @

@x



A
þþ 1

RB

þþAÞ,
• calculating @EAB

nuc
@xi

,

• calculating @Etot
@xi

and @Etot
@x j

.

Module COMPFG calculates the derivatives of the total energy Etot with respect to
the internal coordinates q (bond length, valence and dihedral angles):

@Etot

@qk
=

3×N ATX
i=1

@Etot

@xi
×
@xi

@qk
, (54)

where @xi
@qk

is determined by numerical (5-point) differentiation. During execution, COMPFG

appeals to COMPFD to calculate @Etot
@xi

, i 2 1,3× NAT . The COMPFD and COMPFG modules
are of key importance in the optimization of molecular geometry (see Figure 4).

Modules POLE, LPOLE, DPOLE, and DLPOLE are used in determining the
molecular structure in the electric field of any configuration [52, 53].

5. Parallel implementation of the NDDO-WF approximation
in the MP-ZAVA package

The sequential algorithms of CLUSTER-Z2 similarly to other QC programs, represent
a structure with a massive parallelism [54]. In Figures 1, 2, 3, and 4, these structures are
allocated with color. For an estimation of the contribution of each computing modules in
general time of calculations, profiling the sequential program was carried out. As show
results:

• diagonalization – 40–60%,
• calculation of the density matrix – up to 40%,
• construction of the Fock matrix (calculation of intergrals of interelectronic interaction

and overlap) – up to 5%,
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Figure 4. Optimization of molecular geometry
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• construction of the core Hamiltonian – up to 10%,
• calculation of the derivatives – up to 15%.

Note that this distribution markedly depends on the type of computation proced-
ure (one-point calculation, optimization of molecular geometry), the type of system (ri-
gid/nonrigid systems, open/closed shells, etc.), and on other factors. Table 3 shows results
obtained for a model C-300 molecule (referred to below as carbon-graphite strip).

Table 3. Profiling the main algorithms of CLUSTER-Z2: C-300 molecule

Algorithm Number of calls Time, s %

Diagonalization 1390 64470 33.34
Construction of the electron density matrix 1387 80090 41.42
Calculation of the derivatives 188 23400 12.10
Construction of the Fock matrix 1575 6869 3.55
Construction of the core Hamiltonian 188 16480 9.75
Read/Write hAA|BBi from the disk 79070550 5216 2.70
Total time, s 193351 100.00

5.1. Parallel implementation of the diagonalization module
In the NDDO-WF approximation, the most labor-costly is repeated diagonalization,

that is, the solution of the equation FC = CE and finding the eigenvalues E and eigen-
vectors C. Parallel realization of this procedure has been made on the basis of libraries
ScaLAPACK [55], BLACS [56], and MPI [30]. The eigenproblem was solved by apply-
ing the PDSYEVX procedure from the ScaLAPACK library. The matrix of eigenvectors
were found by using the PDLACP3 procedure from the same library. The obtained data are
collected in Tables 4 and 5. As show results of testing the PDSYEVX is efficient in the
case of sufficiently large matrices (N ½ 1200). For lower N , the procedure exhibits poor
scalability: for 8 processors, the speedup Sp � 5. In view of this, the procedure was used
only for N > 250; otherwise, the use was made of the serial Givens algorithm [57]. This
also implies that the use of 8 – 16 processors is inexpedient.

Table 4. Execution time for PDSYEVX diagonalization for matrices of various dimension, s

Number of processors
Size of matrix

1 2 4 8

2000 1094.00 609.00 251.60 144.23
1800 810.74 399.95 184.96 108.53
1600 564.71 272.55 124.74 81.09
1400 359.58 176.35 80.72 58.33
1200 213.89 105.75 51.09 43.1
1000 113.02 56.00 29.68 29.31
800 51.91 27.89 17.10 19.68
600 21.07 12.27 8.92 12.35
400 6.27 4.62 4.04 6.72
200 1.19 1.18 1.28 2.95
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Table 5. Speedup of the PDSYEVX diagonalization

Number of processors
Size of matrix

1 2 4 8

2000 1.00 1.80 4.35 7.59
1800 1.00 2.03 4.38 7.47
1600 1.00 2.07 4.53 6.96
1400 1.00 2.04 4.45 6.16
1200 1.00 2.02 4.19 4.96
1000 1.00 2.02 3.81 3.86
800 1.00 1.86 3.04 2.64
600 1.00 1.72 2.36 1.71
400 1.00 1.36 1.55 0.93
200 1.00 1.01 0.93 0.40

5.2. Implementation of parallel calculation of the density matrix
Another time-consuming procedure is calculating the electron density matrix. These

calculations are within a three-level nest of cycles (Figure 5): two outer ones successively
bypass the lower triangle of the density matrix along with the diagonal elements that are
stored in a linear massive P(L), where L = 1, N O×(N O+1)/2.

Mapping the position of the (I , J) element from the lower triangular matrix onto the
appropriate positions L in the data file P is performed by the following algorithm:

I × J! L : L = (I −1)× I /2+ J .

The reverse transform is carried out by the algorithm:

L! I × J :

8><>: I =

(q
2L+ 1

4 + 1
2 , I 6= Jq

2L+ 1
4 − 1

2 , I = J

J = L−(I −1)× I /2

.

Calculations of all elements within each cycle are independent, so that it can readily be
transformed into a linear parallel cycle according to L = 1, N O × (N O + 1)/2, NPROC,
where NPROC is the number of parallel processes. Figures 6 and 7 illustrate the cyclic and
block variants of data decomposition and organization of calculations for which MYID2 0
and NPROC-1 are the process identifiers. In a given procedure, we use the block scheme
of decomposition. The above fragment of the three-level nest of cycles, but of parallel
computation, is shown in Figure 8.

5.3. Parallel implementation of SCF calculations, computing the Fock
matrix F, the core Hamiltonian H, and gradients of the total energy Etot

over the Cartesian coordinates
Sequential fragments of all procedures are lumped in the cycles of identical structure,

which makes possible the use of the same scheme of parallelization. For the sake of
brevity, we will consider here only the parallel realization of computing the two-center
components of the Etot gradients with respect to the Cartesian coordinates of atoms (see
Equations (52), and (53)). The corresponding sequential algorithm is lumped in the cycle
shown in Figure 9. Just as in the case of the density matrix, the algorithm performs bypassing
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Figure 5. The structure of sequential cycles in the BORDER module

Figure 6. The cyclic scheme of data decomposition and organization of parallel computing

Figure 7. The block scheme of data decomposition and organization of parallel computing

Figure 8. The structure of parallel cycles in the BORDER module
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Figure 9. The structure of sequential algorithm in the COMPFD module

the lower triangular matrix F(I , J) and stores the results in a one-dimensional massive
G. As before, all calculations are independent. To perform the algorithm transform, let
NATA=NAT×(NAT−1)/2 denote the number of different atomic pairs. Let NPROC be the
number of parallel processes (preset at program start-up and defined by MPI tools [30]
when running the program). As previously, we have to carry out two transformations: (a)
mapping the I × J! L positions of the (I , J) element of the lower triangular matrix onto
the appropriate positions L (that assign the linear numeration of pairs) and (b) the reverse
transform L! I × J .

Transform (a) is carried out by the algorithm:

I × J! L : L = (I −3)× I /2+ J +1.

The reverse transform (b) is defined as:

L! I × J :
²

I =
q

2L+ 1
4 + 1

2

J = L−(I −3)× I /2−1
In the interest of time, we will perform the transform only once. For this to be done, let us
preliminarily load the indices of each pair I and J into arrays ISM and JSM, respectively.
Thus, for NAT= 4 we will obtain the set of indices I , J , and L shown in Table 6. Calculations
of all elements within the cycle are independent, so that the latter can be easily transformed
to a linear parallel cycle over the number of pairs L = 1, NAT×(NAT−1)/2, NPROC, where
NPROC is the number of parallel processors (Figure 10). In this case, we use the cyclic
scheme of distribution (Figure 6). Each process has its own copy of array G. For NAT= 4
and NPROC= 2, the distribution of data is presented in Table 7. Pairs 1, 3, 5 will be
processed by the zeroth processor while pairs 2, 4, 6, by the first one. Therefore, some
portion of G(1) terms turns out in the zeroth processor (from pair (2,1)), some portion in
the first one (from pairs (3,1) and (4,1)), etc. The final result is obtained by summation of
G(1) from the 0-th and 1-st processor (Table 7) by applying the MPI REDUCE reduction
procedure. Other G arrays are treated similarly. The obtained result (total NAT elements)
is put into the working array GBUF of the 0-th processor, write into the G array, and then
distributed by the MPI BCAST function over other processors.

Brought together and applied to all respective sequential cycles of CLUSTER-Z2, the
above parallel cycles are united by the MP-ZAVA program.

6. Speedup and efficiency of program MP-ZAVA
Let us determine the speedup (Sp) and scalability of the MP-ZAVA program for two

model systems taken as some examples. We will start with a model C-300 molecule (carbon-
graphite strip with 894 AOs, Figure 11) treated in the sp-basis. Table 8 shows the profiling
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Figure 10. The structure of parallel algorithm in the COMPFD module

Table 6. Relation between I , J and L indices (direct mapping)

L 1 2 3 4 5 6

ISM 2 3 3 4 4 4
JSM 1 1 2 1 2 3

Table 7. Calculation of array G

L
Process

1 2 3 4 5 6

0 G(2), G(1) G(3), G(2) G(4), G(2)
1 G(3), G(1) G(4), G(1) G(4), G(3)

of the main algorithms of MP-ZAVA for different number of the processors MIPS R10000
of the RM600 E60 system while Table 9 and Figure 12 present the obtained speedups.

The dissociative adsorption of water on the (101) surface of TiO2 (rutile) was
modeled [58] in the spd-basis for a cluster of 369 atoms (2014 AOs), hereinafter termed
the ‘TiO2 + water’ cluster (see Figure 13). In computations, we used both the SMP-RM600
E60B system and the Cluster Intel PIII system with distributed memory. The data obtained
for the former system are collected in Tables 10, 11, and Figure 14, while those for the
latter, in Tables 12, 13 and Figure 15. Let us analyze these data with regard to the main
algorithms of MP-ZAVA.

Diagonalization PDSYEVX. As follows from Tables 8, 9, and Figure 12, when
calculating the 300-atoms carbon-graphite strip in the sp-basis, a maximum value of
SP = 2.51 is attained in case of 4 processors. This is in line with the data of test
calculations based on the algorithm PDSYEVX for matrices with N � 1000. In this case,
the diagonalization algorithm is obviously a rate-limiting factor that makes efficient use of
a higher number of processors impossible.

tq0305a7/293 26I2002 BOP s.c., http://www.bop.com.pl



294 P.K. Berzigiyarov, V.A. Zayets, V.F. Razumov and E.F. Sheka

Figure 11. A model C-300 molecule (carbon-graphite strip): large balls stand for
carbon atoms, while small ones – for hydrogen atoms

Table 8. Execution time for the main algorithms of MP-ZAVA for the SMP-system RM600 E60: C-300
molecule, s

Number of processors
Algorithm

1 2 4 8

Diagonalization 64470 40140 25650 37820
Construction of the electron density matrix 80090 47660 25930 18760
Construction of the core Hamiltonian 16480 9703 4392 2373
Calculation of the derivatives 23400 13380 5884 2984
Construction of the Fock matrix 6869 4424 2356 1669
Read/Write hAA|BBi from the disk 5216 3484 1793 993
Total time 193351 119068 69388 70573

Figure 12. The speedup of the main algorithms of MP-ZAVA in the SMP-system
RM600 E60: C-300 molecule

Table 9. Speedup for the main algorithms of MP-ZAVA for the SMP-system RM600 E60: C-300
molecule

Number of processors
Algorithm

1 2 4 8

Diagonalization 1.00 1.61 2.51 1.70
Construction of the electron density matrix 1.00 1.68 3.09 4.27
Construction of the core Hamiltonian 1.00 1.70 3.75 6.94
Calculation of the derivatives 1.00 1.75 3.98 7.84
Construction of the Fock matrix 1.00 1.55 2.92 4.12
Read/Write integrals 1.00 1.50 2.91 5.25
Overall speedup 1.00 1.79 2.79 2.74
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Figure 13. A model ‘TiO2 + water’ cluster: the largest balls stand for Ti, medium (dark) ones – for O,
and the smallest (light) balls correspond to H atoms [58]

As established earlier, PDSYEVX becomes efficient for matrices with N ½ 1200. This
is well supported by the data obtained for the ‘TiO2 + water’ cluster with 2014 AOs.
As follows from Table 11, on going from 2 to 8 processors in the SMP-system RM600
E60, the speedup is 2.91. Large speedup relative to 1 processor is a result of exceedingly
low productivity of the 1-processor scheme (execution time 12 days). With regard to this
circumstance, a real value can be expected to be around 5. For the Cluster Intel PIII system,
the speedup for 8 processors attains a value of 2.09 (Table 13). Such a relatively low
value can be attributed to a low carrying capacity of the commutation compared to the
communicating subsystem SMP in the RM600 E60 system that utilizes scalable coherent
interface [59].

Calculation of the electron density matrix. Generally, our data are indicative of a fairly
good speedup attained in case of 8 processors: SP = 4.27−7.14 (see Tables 9, 11, 13). This
algorithm is scalable, at least for a relatively low number of processors (P � 16). As for
massively parallel systems, a major rate-limiting factor here is the mounting of all matrix
segments by executing the MPI ALLGATHER procedure whose efficiency depends on the
realization quality for any system.

Construction of the core Hamiltonian. In case of 8 processors, SP = 6.94−7.36, which
is indicative of good scalability. This is important for calculations with a relatively large
contribution of the integrals to be calculated.

Calculation of the derivatives. For the derivatives @

@x hAA|BBi, @

@x hA|Bi, @

@x



A
þþ 1

RB

þþAÞ
and @

@x



B
þþ 1

RA

þþBÞ), the process is characterized by a high speedup close to limiting values
found for 8 processors: SP = 7.84−7.97. It is necessary to note high efficiency and scalability
the parallelization procedure.

Construction of the Fock matrix F. The algorithm is characterized by a relatively high
value of SP = 4.12.

READ and WRITE hAA|BBi from/on the disk. Just as in the most of QC programs,
such as MOPAC [16], CLUSTER-Z1 [18], CLUSTER-Z2 [22], GAMESS [60, 61] etc.,
repeated computing of integrals (whose number may be large) is avoided by their recording
on the disk followed by their multiple readout as required. Ineffective realization of this
procedure may strongly decrease the program’s performance. In order to improve the
program’s efficiency, this procedure was also parallelized. Each processor performs the
recording of calculated integrals into its own file. Accordingly, each processor is using only
the integrals that have been obtained in a given processor. This is attained upon coordination
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Figure 14. The speedup of the main algorithms of MP-ZAVA in the SMP-system RM600 E60:
‘TiO2 + water’ cluster

Table 10. Execution time for the main algorithms of MP-ZAVA in the SMP system RM600 E60:
‘TiO2 + water’ cluster, s

Number of processors
Algorithm

1 2 4 8

Diagonalization 657280 158900 72250 60160
Construction of the electron density matrix 333824 177100 88620 46780
Construction of the core Hamiltonian 73920 36810 18530 10050
Calculation of the derivatives 117780 58860 29430 14820
Total time 1145030 453557 224870 156273

Table 11. Speedup for the main algorithms of MP-ZAVA in the SMP system RM600 E60:
‘TiO2 + water’ cluster

Number of processors
Algorithm

1 2 4 8

Diagonalization 1.00 4.14 9.10 10.93
Construction of the electron density matrix 1.00 1.88 3.77 7.14
Construction of the core Hamiltonian 1.00 2.01 3.99 7.36
Calculation of the derivatives 1.00 2.00 4.00 7.95
Overall speedup 1.00 2.52 5.09 7.33

of the parallelization schemes for appropriate procedures: calculating and writing, on the
one hand, as well as reading and use in further calculations, on the other. As a result, the
procedures of computing, writing, reading, and subsequent using turn out independent in
the framework of individual processes. In case of 8 processors, we found that SP = 5.25.

Overall speedup. For 8 processors, the speedup of the entire program SP = 2.74−5.20.
This implies that high efficiency of parallel calculation can be attained even for the
systems with relatively slow commutation. Thus, for the ‘TiO2 + water’ cluster (one point
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Figure 15. The speedup of the main algorithms of MP-ZAVA in the Cluster Intel PIII system:
‘TiO2 + water’ cluster

Table 12. Execution time for the main algorithms of MP-ZAVA for the system Cluster Intel PIII:
‘TiO2 + water’ cluster, s

Number of processors
Algorithm

1 2 4 8

Diagonalization 49290 33750 27760 23530
Construction of the electron density matrix 49940 25040 15060 9156
Construction of the core Hamiltonian 23430 12110 7917 3292
Calculation of the derivatives 33660 16120 8061 4225
Total time 173246 101756 69209 50554

Table 13. Speedup of the main algorithms of MP-ZAVA in the system Cluster Intel PIII: ‘TiO2 + water’
cluster

Number of processors
Algorithm

1 2 4 8

Diagonalization 1.00 1.46 1.78 2.09
Construction of the matrix of electron density 1.00 1.99 3.32 5.45
Construction of the core Hamiltonian 1.00 1.93 2.96 7.12
Calculation of the derivatives 1.00 2.09 4.18 7.97
Overall speedup 1.00 1.70 2.50 3.43

calculations, 8 processors of the Cluster Intel PIII system), the execution time is only 14 h
(compared to 4−10 days in the case of the sequential program). For small systems, relatively
low efficiency can be attributed to the slowness of the diagonalization algorithm. On going
to larger systems, this drawback gradually disappears. However, extensive computation with
matrices of medium size (N � 1200) will require a new (compared to PDSYEVX) and more
effective algorithm.
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7. Concluding remarks
Appearance of powerful systems with massive parallelism and inexpensive parallel

computers [62, 63] opens up access to highly productive calculations for a large range
of users. However, wide application of these systems in science and technology is still
restricted not only by high cost but also (and largely) by the complexity and labor cost of
parallel programming.

Computational quantum chemistry which requires bulky calculations is a natural field
for application of parallel computing. Parallel calculations have been reportedly involved in
such well-known complexes as MOPACK [64], MNDO94 [65, 66], and GAMESS [60, 61,
67]. Nevertheless, there still remains a current need for new parallel programs for use in
QC calculations. In this paper, we considered some aspects of parallel realization of the
semi-empirical QC NDDO-WF method [19, 20] that allows calculations in the spd-basis.
During this work, we managed to parallelize the following labor-consuming calculation
procedures:

• diagonalization,
• calculation of the electron density matrix,
• construction of the Fock matrix,
• construction of the core Hamiltonian,
• calculation of the gradients of the total energy with respect to the Cartesian coordinates

of atoms.

Our numerical calculations demonstrated the acceptable (from the practical point
of view) effectiveness of the new program MP-ZAVA. This program makes possible the
‘interactive’ real-time calculations for the systems of practical interest. The experience
assimilated in parallelization of CLUSTER-Z2 program allows us to formulate a general
approach to designing the algorithmic systems with massive parallelism. It is based on the
identification and repeated use of typical (frequently used) blocks. The effectiveness of this
approach can be confirmed by the parallelization of codes in the CLUSTER-Z1 program
that is now close to its successful completion. Repeated use of algorithmic structures with
massive parallelizm (first utilized in MP-ZAVA) allowed us to significantly shorten the lead
time for a new program package NANOPACK [68] that involves (besides NDDO-WF) also
MNDO (AM1 and PM3) computational scheme.

Meanwhile, testing the MP-ZAVA program revealed some problems whose resolution
will further extend the range of applicability for this program. One is related to the algorithm
of diagonalization. As shown previously, the PDSYEVX procedure from the ScaLAPACK
library is inefficient for the matrices of medium and low size. Moreover, this procedure
exhibits poor scalability. Another problem is the need for a lower memory capacity and
extension of the program to larger molecular systems. Its resolution is related to a refusal
from the mechanism of replication (dubbing) of arrays and going to the parallezation
scheme based on data decomposition. It will also need the replacement of the static memory
distribution with the dynamic one.
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