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Abstract: Both theoretical linear stability analysis and the direct numerical simulation are performed to
study the transition flow between rotating discs. This paper reports about the three-dimensional spiral
and annular patterns computed with a high-order (spectral) numerical method in the Bödewadt layer of
a cylindrical rotor/stator cavity. The characteristic parameters of these boundary layer instabilities are
compared with the theoretical results and interpreted in terms of type I and type II generic instabilities.
The absolute instability regions are theoretically identified and the critical Reynolds numbers of the
convective/absolute transition in both layers are given. The absolute or convective nature of the flows
is determined by examining the branch-points singularities of the dispersion relation.

Keywords: instability and transition in rotating flows, convective and absolute instability

1. Introduction
The investigation of the laminar-turbulent transition process inside the inter-disc three-

dimensional rotating flow is of great interest for the internal aerodynamics of engines,
especially for the optimization of turbomachinery air-cooling devices.

In the past decades, numerous works have been devoted to the investigation of
the flow structure and to the instabilities associated to the single rotating-disc [1–3]
and to the differentially rotating discs [4–7]. Non-isothermal flow conditions have also
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been considered [6], showing that the thermal effects and the rotation-induced buoyancy
become influential on the stability characteristics and on the critical conditions. All these
investigations revealed that for sufficiently high rotation rate, the primary bifurcation occurs
in the boundary layers of the Batchelor flow, composed of two different boundary layers
close to the discs (Ekman and Bödewadt type close to the rotating and the stationary disc,
respectively) and separated by an inviscid geostrophic core. Two basic types of the linear
instability for co-rotation of the fluid and the disc, referred to as type I and type II, have been
documented both experimentally and theoretically. The type I instability (also referred to as
a “crossflow” instability observed in the flow over a swept wing) is due to the presence of an
unstable inflection point in the boundary layer velocity profile. The mechanism for type II
instability is related to the combined effects of Coriolis and viscous forces. The onset of the
type II instability corresponds to a lower local critical Reynolds number than for type I [8].
The convective nature of spirals in the Ekman layer has been experimentally demonstrated
by studying the response of the flow over a single rotating disc to a local perturbation [3].
In addition, the convective/absolute nature of the transition in the boundary layer flow over
a single rotating disc has been evidenced in both theoretical and experimental studies [2, 3].
For the rotating flow over an infinite stationary disc, Lingwood [9] also found theoretically
the existence of this convective/absolute transition. The recent experimental results of the
instability of the flow between a stationary and a rotating disc, have also revealed that the
flow exhibits a convective/absolute transition in a rotor/stator cavity [10].

In the present paper, we investigate more precisely the character of boundary layer
instabilities in the viscous flow between two coaxial rotating discs. A linear stability theory
(LST) is performed in order to enlighten the numerical results obtained in a cylindrical
rotor/stator cavity in terms of type I and type II instabilities. The characteristic parameters
of the annular and spiral patterns exhibited by direct numerical simulation (noted DNS) are
shown to be in good agreement with the theoretical results corresponding to the I and II type
generic instabilities. The absolute instability regions are theoretically identified, extending
the approach of Lingwood [2, 3, 9] for a single disc to the case of the rotor/stator flow.

2. Geometrical and mathematical models
The geometrical model is a rotor/stator cylinder of radius R. Using LST, R is

considered to be infinite, whereas in the case of the direct numerical approach the discs
are bounded by a stationary cylinder of height 2h (called the shroud). The rotor (upper
disc) rotates at uniform angular velocity � =�ez, ez being the unit vector on the axis. The
equations governing the flow are the 3D Navier-Stokes equations written in velocity-pressure
formulation, together with the continuity equation and appropriate boundary and initial
conditions. It is convenient to write these using a cylindrical polar coordinate system (r ,z,'),
relative to a stationary observer with the origin at the centre of the cylinder. The scales
for the dimensionless variables of space, time and velocity are h, �−1, �R, respectively.
The two dimensionless parameters that characterise the problem are the Reynolds number
Re =�(2h)2/v and the aspect ratio L = R/2h (in the case of confined cavity).

3. Direct numerical simulation (DNS)
The numerical solution is based on a pseudospectral collocation Chebyshev-Fourier

Galerkin method. The use of the Gauss-Lobatto collocation points in the radial and axial
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directions, directly ensures high accuracy of the solution inside the very narrow wall layers.
The time scheme is semi-implicit and second-order accurate. It corresponds to a combination
of the second-order backward differentiation formula for the viscous diffusion term and
the Adams-Bashforth scheme for the nonlinear terms. The velocity-pressure coupling is
performed with an improved projection algorithm [11]. A dependent variable transformation
is introduced in order to deal with the lack of physical boundary condition at the axis in
the case of the first Fourier axisymetric mode as proposed by Serre and Pulicani [11]. The
disturbance equations are obtained by writing the velocity, temperature and pressure fields,
as a superposition of the basic state and a perturbation field.

4. Linear stability theory (LST)
The disturbance equations are obtained by expressing the velocity and the pressure

fields, as a superposition of the basic state and a perturbation field. We assume the flow to
be locally parallel and the perturbation quantities have the following normal-mode form:

[u0,v0,w0, p0]T = [ Ou, Ov, Ow, Op]T exp(ÞŁrŁ+m'−!ŁtŁ)+cc, (1)

where Ou, Ov, Ow, Op are the dimensional amplitudes of three components of velocity (in rŁ,
zŁ, ' directions) and pressure respectively, ÞŁ and þŁ = m/rŁ are the components of wave
number kŁ in the radial and circumferential directions, respectively, !Ł is the frequency and
tŁ is time. Asterisks denote the dimensional values. The linear stability theory equations
plus the homogenous boundary conditions create an eigenvalue problem which is solved
with a global manner [6]. As in the direct numerical approach, a spectral collocation method
based on Chebyshev polynomials is used for discretisation of the LST equations.

To check the character of instability, the flow is impulsively exited at a certain location
in space and time. The response of the boundary layer shows whether the flow is absolutely
or convectively unstable. The flow is defined as absolutely unstable if its impulse response
grows with time at every location in space [12]. If the response decays at every location in
sufficiently large time, the flow is convectively unstable. The response of a linear system to
the forcing input can be determine by the Green function G(x , t):

G(x , t) =
1

(2³)2

Z
F

Z
L

ei(kx−!t)

D(k,!;ReŽ)
d! dk, (2)

where path F in the complex plane of wave number k is initially taken to be the real axis.
The contour L in the complex frequency plane ! is chosen so that the causality is satisfied:
G(x , t) = 0 everywhere when t < 0. In most cases the Fourier-Laplace integral (2) cannot be
evaluated for arbitrary chosen time; however, for a general dispersion relation one may obtain
the time asymptotic Green function. From this asymptotic solution a general mathematical
criterion based on the properties of the dispersion relation in complex k and ! planes has
been derived to determine the nature of instability [12]. According to this criterion the
absolute instability can be identified by singularities in the dispersion relation called pinch-
points. The pinch-points are located in a process of consecutive contour deformations in
which L is deformed toward the lower half of the ! plane [13]. We have the following criteria
for absolute instability. The flow is absolutely unstable if so called absolute amplification
rate !oi is positive (!oi > 0). Additionally, for contour L located high enough in the ! plane
the spatial branches k+(!) and k−(!) must lie in different halves of the k plane.
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5. Numerical results. Annular and spiral patterns in a Bödewadt layer
The chosen aspect ratios are L = 2 and L = 5. The numerical strategy consists in

increasing step by step the rotation rate from the base steady state to more complex
flow regimes. Due to the nonlinear effects close to the axis, the grid refinement is rather
important: N × M × K= 64×64×48, 123×123×48 for Re = 4000, L = 2 and 123×33×48 for
Re = 1600 and L = 5. The time-step incorporated is Žt = 10−3 (Serre and Pulicani [11]).

5.1. Axisymmetric instability
The annular patterns occur on the stator disc only – the Ekman layer on the rotating

disc remains stable – for Re = 4000, L = 2 and Re = 1600, L = 5. For the aspect ratio L = 2,
a Hopf bifurcation is observed and the angular frequency ¦ = !Ł/� = 0.9 is very close to
the rotation frequency (¦ = 1). This solution is characterised by four to five pairs of circular
vortices with a radial wavelength 10� ½Łr /Ž� 21 increasing with the radius, where Ž =

p
v/�.

These vortices travel inward (indicated by a negative speed velocity) along the Bödewadt
layer with a phase velocity varying over the range −0.08 � V Ł� /�rŁ � −0.02 (V Ł� being
measured from numerical solutions), to a local radius, corresponding to a local Reynolds
number ReŽ = 21 (ReŽ = rŁ/Ž), where they completely disappear. For the larger aspect ratio
L = 5, the solution is time-dependent with a primary frequency ¦ = 4 and characterised by
vortices of the radial wavelength 8� ½Łr /Ž� 17 that vanish at ReŽ = 27.

5.2. Three-dimensional instability
The three-dimensional flow was obtained by using as an axisymmetric solution and

a three-dimensional perturbation of general form QÞ sin(p�) the initial condition: p is an
arbitrary number corresponding to an azimuthal wavelength and QÞ is the amplitude rate of
typical value 0.05 [7]. The orientation of the wave front is measured in terms of the angle
" with respect to the azimuthal direction of the geostrophic flow and is defined positive
when inclined towards the axis. The wavelength of the spiral patterns can be defined by ½Ł,
as ½Ł = (2³rŁ/n) jsin"j, where n is the number of arms over 2³ at the radius rŁ.

For L = 2 and Re = 4000, 3D spirals develop after the disturbance is superposed
onto the axisymmetric flow previously described. The temporal behaviour exhibits now a
quasi-periodic flow with two major frequencies equal to ¦ = 0.9 and ¦ = 2.8. Here four
to five pairs of rolls are observed on the stationary disc, with a radial wavelength that
remains close to ½r = ½Łr /Ž = 25. The rotating disc layer and the near-axis region remains
unperturbed as in the axisymmetric solution, in agreement with the local Reynolds number
criterion for the onset of the Ekman layer instability. The critical Reynolds number ReŽc is
roughly 33 on the stationary disc, very close to the experimental criterion determined by
Savas [14], ReŽc = 35. During the transient period, axisymmetric patterns are also observed
in the intermediate radial region corresponding to 33�ReŽ � 63.5 where the axisymmetric
rolls immediately transform into spiral structures farther from the axis. The axisymmetric
structures then vanish and only six spiral arms are observed after stabilization. The angle "
significantly decreases with the radius, 7°� "� 25.7°. The corresponding wavelengths vary
over the range 16.1� ½Ł/Ž� 28.5.

For L = 5 Re = 1600, we observe the coexistence of stable circular and spiral patterns
inside the Bödewadt layer as well as dislocation phenomena (Figure 1). The solution is
time-dependent, with a dominant angular frequency nearly equal to the rotation frequency.
Eight pairs of rolls of radial wavelength 8.8 � ½Łr /Ž � 17 decreasing with radius, move
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Figure 1. Co-existing annular and spiral patterns related to types II and I instabilities, respectively,
of the Bödewadt layer. Isolines of the fluctuations of the axial component of the velocity

in both (r , −0.96, �) and (r , z, ³ /4) planes. Cylindrical cavity L = 5, Re = 1600

Figure 2. Projection of the fluctuating velocity field in the plane (r , z, ³ /4) emphasizing the most
unstable zone of the Bödewadt layer (26.64�ReŽ � 173). Cylindrical cavity L = 5, Re = 1600

downstream to ReŽ = 26.64 with phase velocity −0.27� V Ł� /�rŁ � −0.02 (Figure 2). For
26.64� ReŽ � 86.5, five circular waves evolve. As in recent experiments [9, 15], spiral
structures evolve at a larger distance from the axis, 86.5�ReŽ � 173, with angles varying
as 7°� "� 28°; the spiral arms exhibit dislocations.

6. Linear stability theory results
We focus on the characteristics of these instabilities which are shown to be the most

unstable. The onset of the type II instability in the Bödewadt layer (stator) has been
found at ReŽc II = 35.5 with the wave angle " = 34.6°, the wave number k components in
radial and azimuthal directions Þ = ÞŁŽ = 0.179, þ = þŁŽ = 0.1237 and the phase speed
V Ł� /�rŁ = !r /k = −0.2526 (¦ = !ReŽ). The results have shown that type II instability can
only exist in a narrow range of ReŽ, disappearing at ReŽ = 68. Type I instability occurs
at ReŽc I = 47.5 with " = tan−1(Þ/þ) = −0.8°, Þ = 0.2959, þ = −0.00413, ½r = 21.23 and
V Ł� /�rŁ = −0.06175. The exemplary isolines of the temporal amplification rate !i in the

tq0405i7/561 26I2002 BOP s.c., http://www.bop.com.pl



562 E. Tuliszka-Sznitko, C. Y. Soong, E. Serre and P. Bontoux

plane of the wave angle and number (",k) obtained at the boundary layer of the stationary
disc and also of the rotating disc are shown in Figure 3a and 3b, respectively. On the
stationary disc, two separate regions of instability exist (Figure 3a) at ReŽ = 65. The first
pick obtained for higher wave number with the maximum at k ³ 0.28 and " ³ −5° is
identified as the type I instability. The second pick with maximum at k ³ 0.2 and "³ 30°
corresponds to the type II instability.

(a)

(b)

Figure 3. The isolines of !i = const.: (a) stationary disc (Bödewadt layer), ReŽ = 65;
(b) rotating disc (Ekman layer), ReŽ = 400

In the rotating disc flow, the onset of type II instability has been found in the present
work at ReŽc II = 90.23 with " = −26.3°, Þ = −0.1098, þ = 0.22 and V Ł� /�rŁ = 0.39. The
type I instability occurs at ReŽc I = 278.6 with " = 10.9°, Þ = 0.4173, þ = 0.080322 and
V Ł� /�rŁ =0.0185. Two separate regions of instability also on the rotating disc at ReŽ = 400
(Figure 3b). The first pick, obtained for the lower wave number with the maximum at
k = 0.177 and " = −6.8°, is identified as the type II instability. The second pick, with
maximum at k = 0.4 and " = 12° corresponds to the type I instability.
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(a) (b)

Figure 4. Temporal branches obtained for þ = −2.2: (a) ReŽ = 45; (b) ReŽ = 55. Stationary disc

Figure 5. Spatial branch in Þ-plane: Re = 45, þ = −2.2. Stationary disc

Our linear stability results characterising the type I and type II instabilities are in very
good agreement with Itoh’s theoretical results [5] and also with the experimental results of
Savas [14] who obtained ReŽc II = 35.0 in the case of the Bödsewadt layer. Itoh [5] gives for
the same geometrical configuration: ReŽc II = 38.6, ReŽc I = 48.1 for the Bödewadt layer and
ReŽc I = 281, ReŽc II = 85.3 for the Ekman layer. The type I instability critical parameters are
also in good agreement with critical parameters obtained by Lingwood [9] for the stationary
waves (V Ł� /�rŁ = 0.0) of the Ekman layer: Þ = 0.528, þ = 0.14, " = 14.5°. However, there
is a large difference between the present critical Reynolds number of the type I instability
ReŽc I = 278.6 and that obtained for the Ekman boundary layer by Lingwood ReŽc I = 116.3.
This discrepancy is probably due to influence of stationary disc in present investigation in
contrast to the infinite domain in Ekman flow.

7. Convective/absolute instability
The Briggs [12] criterion with a fixed wave number in the spanwise direction þ has

been used in order to determine the region of absolute instability. In Figure 4, the exemplary
temporal branches obtained on the stationary disc boundary layer for Re = 1000, " = 45°
(Figure 4a) Re = 55 (Figure 4b) are displayed. The tip of a cusp like form indicates the pinch-
point in the complex ! plane. If the imaginary part of ! in the tip of the cusp like form is
positive !oi > 0 (Figure 4b) the flow is absolutely unstable. In Figure 4b !oi = −0.0118 and
the flow is convectively unstable. The progression of the two spatial branches in Þ-plane
given by the horizontal line !i = −0.0118 for the wave angle " = 45° is shown in Figure 5.
The arrows on the spatial branches indicate the direction of increasing !r .
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Our LST results show that almost the whole boundary layer on the stationary disc is
absolutely unstable. The critical Reynolds number of the absolutely unstable flow has been
found at ReŽca = 47.5 with þ = −0.038, Þr = 0.199, Þi = 0.065 and !r = −0.03. The marginal
curves for absolute and convective instability are shown in Figures 6a and 6b.

(a) (b)

Figure 6. Marginal curves for absolute (——) and convective (– – –) instability. Stationary disk

On the rotating disc, the critical Reynolds number of the absolutely unstable flow
found in the present analysis is ReŽca = 578 (with Þr = 0.2669, Þi = −0.139, þ = 0.158,
!r = −0.0284).

These results complete the results of Lingwood [9] limited to the case of the flow
over a single disc. Lingwood obtained ReŽca = 21.6, þ = −0.117, Þr = 0.34, Þi = 0.076 and
!r = −0.218, for the Bödewadt layer, and ReŽca = 198, Þr = 0.379, Þi = ±0.195, þ = 0.184,
!r = ±0.0397, for the Ekman layer.

8. Conclusions
Travelling stable circular waves have been observed for ReŽ > 21 (L = 2, Re = 4000)

and for ReŽ > 27 (L = 5, Re = 1600). During the transient to a three-dimensional state (L = 2,
Re = 4000) circular patterns have also been temporarily obtained in the region corresponding
to 33 < ReŽ < 63.5. This range of ReŽ agrees well with the range where the type II instability
is predicted to exist according to our LST (i.e. 35.5 < ReŽ < 68.0). The annular waves
immediately mute into three-dimensional spiral vortices for higher ReŽ where the type I
instability is dominant according to the linear stability theory. The same good agreement
between DNS and LST results have been found for a larger aspect ratio L = 5. In this case,
both circular and spiral patterns are stable and coexist; circular waves of type II evolve in
the range 26.6 < ReŽ < 86.5 while type I spiral vortices expand at larger ReŽ. Moreover, very
recent theoretical results [16] that are based on spatial non-parallel linear calculations and
are devoted to the Bödewadt flow, also confirm that the annular structures near the stationary
disc can be related to the type II instability. Indeed, the relevant parameters at the critical
point, ReŽc II = 19.8, ¦ = 2.1 (i.e. ! = 0.106), Þ = 0.482, þ = 0.0, " = 0.0°, V Ł� /�rŁ = −0.22,
determined by Feria [16], are very close to the characteristics obtained numerically. All
these results are summarised in the Tables 1 and 2.

The DNS calculations show that the annular instability and the three-dimensional
spirals only appear in the boundary layer of the stationary disc (Figure 2), while the boundary
layer of the rotating disc remains entirely stable at least up to ReŽ = 173, which compares
well with our present linear analysis.
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Table 1. Characteristic parameters of the type II instability of the Bödewadt layer. Present DNS and LST
results and literature results

Authors ReŽ " ½r V Ł� /�rŁ ReŽc II ¦

Feria [16], PST 19.8 0.0° 12.3 −0.22 19.8 2.1

Itoh [5], LST [38.6, 60] [29.8°, 27°] [34, 35.6] [−0.23, −0.20] 38.6 —

Savas [14], Exp. — 0.0° 19 −0.1 35 —

Present results, DNS, L = 2 [21, 126.5] 0.0° [10, 21] [−0.08, −0.02] 21 0.9

Present results, DNS, L = 5 [27, 173] 0.0° [8, 17] [−0.13, −0.21] 27 4

Present results, LST [35.3, 60] [34.6°, 31.3°] [28.8, 30.5] [−0.25, −0.23] 35.5 1.94

Table 2. Characteristic parameters of the type I instability of the Bödewadt layer. Present DNS and LST
results and literature results

Authors ReŽ " ½r V Ł� /�rŁ ReŽc I ¦

Itoh [5], LST [48.1, 200] [1.6°, −14°] [23.7, 24.16] [−0.077, −0.02] 48.1 —

Lingwood [9] 27.4 13.3° 13 0.0 27.4 —

Present results, DNS, L = 2 [63.2, 126.5] [7°, 25.7°] [28.5, 16.1] [−0.062, −0.68] 63.5 [0.9, 2.8]

Present results, DNS, L = 5 [86.5, 173] [7°, 28°] [8.8, 17] [−0.02, −0.27] 86.5 1

Present results, LST [47.5, 200] [−0.8°, −10°] [21.2, 24.35] [−0.062, −0.018] 35.5 0.9

The absolute instability regions are also theoretically identified. Our linear results
show that the critical Reynolds numbers of the absolutely unstable flow are ReŽca = 47.5
and ReŽca = 578, for the Bödewadt and the Ekman layers, respectively. These results complete
well the results of Lingwood [9] limited to the case of flow over a single disc and extend
on the case of confined inter-disc flow and convectively unstable character of the Ekman
layer type II instability, which will be the topic of a forthcoming paper.

The study on non-isothermal flows has shown that the thermal buoyancy effects
induced by the rotational forces in a non-isothermal temperature field do alter the onset
condition and the related critical parameters for this rotating mixed convection. The coupling
nature of the flow and thermal characteristics results in a quite complicated physical
phenomenon. Further study is worthwhile for its better understanding.
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