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Abstract: This paper presents the basic principles of construction of numerical models for 3D viscous
turbulent flows through multi stage turbomachines. The great attention is given to such properties of the
methods as accuracy, linear and non-linear stability, robustness and computational efficiency. It is shown that
these properties can be guaranteed if the implicit Godunov’s type ENO scheme is used. A 3D code FLOWER
has been developed within this concept. Using the code the numerical results are obtained for flows through
high loaded compressor cascades, a turbine stage, a low-pressure multi stage turbine and a centrifugal
compressor stage. The results of optimisation of a low-pressure turbine last stage are presented.
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1. Introduction
The last twenty years are marked by quick development of the computational fluid

dynamics (CFD). On the one hand the progress in this field was caused by the necessity to
solve new tasks of aerodynamics but on the other, it became possible due to truly fantastic
growth of computing power. This progress also affected turbomachinery CFD. Figure 1
displays the main changes which occurred over the last years in the field of simulation of
turbomachinery flows.

Up to quite a recent time, flows through isolated cascades or stages have been
considered. Often the two-dimensional flow model was used. The flows were usually
described by Euler equations which were solved either by second-order accurate central-
difference schemes with artificial viscosity or by first-order accurate upwind schemes. Such
approaches cannot ensure the accurate simulation and robustnes of the algorithms. In most
cases we can rely on qualitative simulation only.
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Figure 1. Progress in turbomachinery CFD

The modern problem statement considers 3D viscous throughflow in multi stage
turbomachine as a whole. The 3D Reynolds-averaged Navier-Stokes (RANS) equations are
solved numerically for these purposes. The turbulent effects are simulated with advanced
turbulence models. The governing equations are numerically integrated with high-resolution
ENO schemes of second (or higher) order of accuracy and it is possible to obtain
mathematically accurate and physically valid results for a wide range of flow parameters. We
can perform quantitative simulation in CFD now. Robustness, reliability and computational
efficiency of numerical algorithms have grown so much that CFD solvers can be used for
blade shape optimisation.

In the present paper the basic principles of modern approach of numerical simulation
of 3D viscous turbomachinery flows are described.

2. Multi stage turbomachinery flow model
As it has been noted the advanced problem statement considers the model of flow

through multi stage turbomachinery including axial and radial elements (Figure 2). For
successful simulation the model must describe all basic properties of the flow under
consideration, in particular compressibility, viscosity, 3D effects, unsteadiness, effects
caused by various design features of turbomachine, namely radial gap flow, leakages etc.
The 3D RANS equations are deemed to be the minimum possible level of the models to
simulate these properties and effects. Today the flow models based on more simple Euler
equations as well as 2D models can be considered as artefacts of the past century. At best
they can be used as proof ground for new numerical technologies.
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Figure 2. Computational domain

The RANS equations can be written for a local curvilinear body-fitted coordinate
system [1] in the form suitable for numerical integration:
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cp(¼m/Prm +¼t /Prt ); p, ², u, v, w are pressure, density and velocity components; 2 is
rotational speed of local curvilinear co-ordinate system (¾ ,�,� ); −mi j , −ti j , −i j are tensors
of laminar, turbulent and total viscous stresses; Si j is mean strain rate tensor; T = p/(²R)
is temperature; ¼, ¼m , ¼t are coefficients of viscosity, molecular viscosity and turbulent
viscosity; ½, ½m , ½t are thermal conductivity, molecular thermal conductivity and turbulent
thermal conductivity; Prm , Prt are laminar and turbulent Prandtl numbers; q = −½rT is
heat flux; r is radius vector. Here and below the subscripts i , j take values 1, 2, 3, which
correspond to Cartesian coordinate axes x , y, z. It is suitable for numerical solution to
present the viscous stress tensor and the heat flux in curvilinear coordinates too. The
RANS Equations (1) can be written for multi-component and multi-phase flows as well
as for an arbitrary equation of state but in the present paper the case of perfect gas is only
considered.
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3. Turbulence modelling
The Navier-Stokes equations are generally assumed to completely simulate the

turbulent phenomena occurring in the flow. However, to ensure such simulation it is
necessary to use extremely refined grids sufficient for resolution of small-scale turbulent
vortices. According to this, the direct numerical simulation of turbulence for engineering
purposes is a task of a far future. Up to date using this approach and supercomputers the only
results that have worked out were simple simulative solutions [2–4]. For the same reason, the
development turned out to be retarded for another promising approach, namely large-eddy
simulation (LES) [1, 5], which assumes the direct calculation of large-scale vortices only,
whereas the small-scale (subgrid) vortices are simulated. Therefore the main direction of
CFD progress, so far, is the solution of the RANS Equations (1). The RANS equations are
not closed; therefore it is necessary to simulate turbulent effects using turbulence models.

The development of advanced turbulence models is one of the main tasks of today.
Accuracy and reliability of simulation of elementary turbulent effects determine the accuracy
of computations of such flow phenomena as separation, laminar-turbulent transition, wakes,
boundary layers etc.

Although the first investigations of turbulent flows began more than one hundred
years ago, the results in this field are not as impressive as wanted. Moreover, it is
considered that universal adequate models simpler than Navier-Stokes equations themselves
are impossible [6]. Therefore appearance of new more accurate turbulence models [7, 8] is
encouraging.

Up to now CFD solvers have used mainly algebraic [9, 10] or two-equation [11–13]
models of turbulent viscosity. The basic common drawback of these models is insufficient
accuracy for flows with high adverse pressure gradients. The most popular k-" turbulence
model [12] must be especially considered. Some terms that are important near walls were
omitted in equations, and the model, which performs well for free stream, is incorrect
for more or less complicated wall flows with pressure gradient [14–16]. Recently many
modifications of two-equations turbulent models have been suggested. According to opinion
of some investigators [17, 18], today the shear-stress transport (SST) model developed by
Menter [7] is among the most promising ones. The SST model combining k-" and k-! ones
inherits the best features of them. The SST model equations can be written as follows:
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k is turbulent kinetic energy; ! is specific turbulent dissipation rate (turbulent frequency);
� is magnitude of mean vorticity; n is distance to the nearest wall. The constants of the
model are the following: Þ = 0.31; þŁ = 0.09; ¦k1 = 1.176; ¦k2 = 1.0; ¦!1 = 2.0; ¦!2 = 1.168;
þ1 = 0.075; þ2 = 0.0828; 1 = 0.553; 2 = 0.44. The major feature of the SST model is
switching from k-" model in freestream to k-! one near walls. The softness of the switch-
ing is provided by the blending function F1. The definition of turbulent eddy viscosity in the
model is based on Bradshaw’s assumption that the principal shear stress is proportional to
the turbulent kinetic energy over most part of the boundary layer. This definition improves
the prediction of flows with strong adverse pressure gradients and separation. The function
F2 is included to prevent the singular behaviour of the model in the freestream where the
vorticity can vanish.

4. Boundary conditions
Specification of boundary conditions for the RANS equations is more or less

recognised. The number of boundary conditions at the inlet and exit permeable boundaries
is determined by the characteristic analysis. To calculate the flow parameters at the
boundary points, the compatibility relations or extrapolation are applied. This definition
is supplemented by the “soft” conditions for derivatives of velocity components and
temperature.

At walls the impermeability condition is imposed. Besides it is necessary to specify
the heat flux or wall temperature. The wall pressure is usually determined from the following
equality for transverse pressure gradient

@p
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that is true for thin infinite boundary layers. For a more accurate pressure definition it is
necessary to use relations derived from Navier-Stokes equations [19]:
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where V Ł /J = (ux� +vy�+wz�)/J is covariant velocity component that corresponds to the
grid cross-direction �. If r ? � then the last term in Equation (3) is identically equal to
zero.

Sometimes one can use the so-called “reflection” conditions according to which the
computational domain is supplemented by “ghost” cells. The pressure and density in these
cells are imposed to be equal to those in the adjacent “real” cells whereas the opposite sign
is assigned to the velocity components. Careful analysis shows that “reflection” conditions
are incorrect since they are true only for boundary layers and in general case they contradict
the Navier-Stokes equations.

Two-equation turbulence models require imposing additional boundary conditions.
At no-slip surfaces turbulence kinetic energy is considered to be equal to zero, k = 0.

The turbulent frequency at walls is determined from the asymptotic relation [7]:

! =
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1

,

where n1 is the normal distance from the wall to the nearest cell centre.
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At the inlet it is necessary to specify two additional parameters, namely the turbulent
kinetic energy k and turbulent frequency !. Imposing the turbulence kinetic energy k turns
out to be convenient enough since it can directly be tied to the inlet turbulence inten-
sity Tu as:

k = 1.5.Tu ·U∞/
2 , (4)

where U∞ is the velocity of external flow at the inlet.
At the same time, imposing the inlet turbulent frequency sometimes leads to insuper-

able obstructions, since neither theoreticians nor engineers know what it must be equal to.
Often instead of turbulent frequency, !, one specifies the turbulence scale, which is more
physically representable but is no more a univocal quantity. It is evident that such boundary
conditions for ! have serious drawbacks. Firstly, quantities k and !, specified in such a way,
generally correspond to a non-equilibrium turbulence state therefore the appreciable alter-
ation of turbulent flow is expected near the inlet boundary. In the issue the inlet turbulent
intensity can essentially differ from the specified one. Secondly, this approach does not take
into account the effect of inlet boundary layers. Thirdly, as it has been noted, the turbulent
frequency and turbulence scale are the quantities that cannot be determined with required
accuracy for real flows.

In the present paper it is proposed to determine the inlet boundary condition for !
from the local equilibrium of turbulence. The inlet turbulent frequency can be determined
from Equations (2) as:
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assumption [7, 20, 18]) or by S� (hypothesis of Kato and Launder [21]).
The kinetic energy of turbulence at the boundary layer can be represented as

k = l2�! [22], where l = min(�y,þŁŽ) is mixing length, � = 0.41 is Kármán constant, Ž
is boundary layer thickness. Combining this representation with Equation (4) yields finally:
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The use of Equations (4)–(6) as the inlet boundary conditions for the SST turbulent model
is very convenient and leads to good results.

5. Difference scheme

The choice of a difference scheme is a key issue, and unfortunately insufficient
attention is often given to this question although the bad choice of a scheme can reduce to
nothing any attempt to achieve more or less feasible results. The difference schemes must
satisfy many acknowledged requirements.

The most important of these requirements are displayed in Figure 3. Firstly it
is necessary to demand the accuracy of approximation. Practical experience in solving
complex CFD problems shows that at least second-order accurate schemes are preferable.
Such choice is motivated by the fact that the first-order accurate schemes used for non-
linear equations at irregular grids can introduce the error which cannot be eliminated by
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Figure 3. Principal requirements for difference schemes

grid refinement [23]. At present the first-order accurate schemes are not used for serious
investigations [24].

At the same time formally high scheme accuracy by itself means nothing if the
scheme is not stable enough or is not stable at all. The scheme stability is determined
largely by the manner of approximation of convective derivatives. It is a well-known fact
that the downwind approximation leads to absolutely unstable schemes. On the contrary,
the upwind schemes are known to be highly stable. The central-difference schemes are
intermediate in their properties; usually they are not stable enough even in the linear sense.
The evident explanation of this fact is that the upwind schemes are compatible with zones
of influence in the flow but other schemes are not. For the reason mentioned above, it is
advisable to use upwind schemes only.

The non-linear stability of the scheme is greatly important in the first place for
transonic and supersonic flow computations. It is well known that the excessive numerical
dispersion attending high-order accurate schemes can lead to spurious oscillations in the
regions with high flow gradients. Often in this case the convergence of the solution is
generally not achieved with the grid refinement [25]. Even if the oscillation amplitude is
not large and reduces with the grid refinement, it is difficult to use the solutions obtained
to determine flow derivatives, shock positions etc. Moreover, the oscillations pinch on
flow field processing and analysis of computational results. In the worst case the solution
failure is possible at intensive shocks and expansion waves. Therefore it is desirable to use
the monotonicity-preserving schemes. Ensuring this property and second-order accuracy
simultaneously is possible with ENO reconstruction only.

The next important requirement is the scheme consistency. We would like to consider
this property in a wider sense than usually. Difference scheme consistency may not only
be a correspondence of difference approximation to original difference equations and to
as many of their corollaries as possible (e.g. conservation laws in various notations). The
consistency of the scheme with fundamental physical laws, such as the second law of
thermodynamics, is very important. Thus the scheme is consistent if it is at least conservative
and satisfies the entropy condition [26]. For the flows with strong discontinuities the use
of non-conservative schemes leads to the significant errors at finite grids. The conservative
property of the scheme is ensured by the control volume technique.
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If the scheme does not satisfy the entropy condition then the numerical solutions can
be incorrect, in particular non-physical expansion shock is possible! It is necessary to note
that even for fully subsonic flows the zones with reduced entropy can be observed if one
uses the scheme that does not satisfy the entropy condition. Such behaviour of numerical
solution fatally corrupts an estimation of losses in the flow. The correct solution of the
problem consists in the construction of the schemes with entropy enforcement that satisfies
the entropy condition. The Godunov’s Riemann solver that selects physical solutions [27]
turns out to ensure both, the scheme upwinding property and entropy enforcement.

The robustness of a scheme also plays a pivotal role. Besides, if the CFD solver
is designed for optimisation problems then it is necessary to guarantee fail-safety of
the software for an arbitrary computational domain geometry and computational grid.
Otherwise, the determination of an optimal solution can be impossible.

The monotonicity preserving upwind schemes are known to be robust. On the contrary,
the non-monotonous schemes behave “capriciously”, which leads to negative values of
pressure and density at intensive shocks and expansion waves. In such cases the continuation
of computations is either impossible at all or makes no sense. Thus the ENO scheme using
the Godunov’s Riemann solver turns out to satisfy automatically the robustness.

The computations of high Reynolds number turbulent flows require very fine grids
with refinement near walls. It leads to an increase in computational time. Insufficient
computational efficiency of a difference scheme can hamper the usage of software if one
flow computation takes a few tens or hundreds of hours on high performance computers.
Therefore often it is not efficient to use explicit schemes. The implicit schemes permit the
significant increase of a time step and as a result acceleration of the convergence. Therefore
the latter are more preferable. Besides, various convergence accelerators such as multi grid
techniques, local time stepping can be used if it is possible.

Unfortunately one often ignores such important scheme properties as monotonicity-
preserving, upwinding and entropy conditions. In this case the artificial viscosity is declared
to be a remedy for all numerical troubles. However, the addition of artificial viscosity
inevitably leads to a decrease in accuracy. If artificial viscosity is commensurable with the
physical one a correct estimation of losses is not possible. It is especially unpleasant that
the artificial viscosity does not completely eliminate numerical troubles, which evoke it!
Incompletely smoothed oscillations and zones with reduced entropy often mark the obtained
solutions. Besides, the stability of schemes with artificial viscosity is worse than that of the
upwind monotonicity-preserving ones.

On a balance, we can conclude that the use of the second order-accurate implicit ENO
scheme based on Godunov’s Riemann solver is the most advisable at present. The first such
scheme appears to be suggested by Yershov [28, 29].

An increment of conservative variables ŽQ at time step − is determined by volume
integration of Equations (1) over cell (i , j ,k):
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where 1¾ , 1� and 1� are spatial steps. Equation (7) represents finite difference equations
in the finite volume form and therefore it ensures conservative property of a solution.
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The fluxes E, F and G at the cell surfaces are calculated with Godunov’s Riemann
solver [27], which ensures upwind differencing and enforcement of entropy condition [26].
Initial values for the Riemann solver are calculated with spatial-temporal interpolation of
primitive variables q as follows:
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where subscript m corresponds to the centre of a current cell.
Equations (7) and (8) define a wide family of locally second-order schemes [30, 31,

23] (etc.) differing in ways of approximation of derivatives @�/@ . The monotonocity-
preserving uniformly second-order accurate scheme can be built with ENO reconstruction
for characteristic variables � [29]:
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where  is grid direction ¾ , � or � ; 1mq = qm −qm−1; L is matrix of left eigenvectors of
Jacobian of Equations (1); Þ and þ are constants, minmod function is defined as:

minmod(a,b) = sign(a)max
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. (12)

For Þ +þ = 1 in particular Þ = þ = 1
2 , we have an ENO scheme that is uniformly second-

order accurate in time and space. For Þ = 2þ = 2
3 , the scheme is locally third-order

accurate, remaining at least second-order everywhere. The irregular grid requires to correct
Equation (10) for non-uniform spatial steps as well as to adjust coefficients Þ and þ to take
into account a spatial step size and a direction of disturbance propagation.

The computational efficiency of the scheme (7)–(12) can be increased by an implicit
operator presented in Ž-form [29]. The implicit step can be represented as a sequence of
matrix transformations performed with the conservative variable vector ŽQ, obtained after
the explicit step (7):
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5) transformation to characteristic variables with regards to coordinate �
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10) inverse transformation to primitive variables
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11) calculation of primitive variables in a subsequent time step n+1

qn+1 = qn +Žqn . (23)

The Equations (7)–(23) represent the high-resolution implicit ENO scheme used in
the code FLOWER.

6. Grid construction
Traditional approaches of construction of structural grids for computational domains

with complex geometry encounter serious difficulties, which can sometimes be insuperable.
There are two different ways to solve the nascent problems. The first of them consists
in changing from structured rectangular grids to the unstructured triangular ones. The
drawbacks of this approach are evident. On the one hand, the numerical algorithms become
extremely complicated since there is no general way to tie the index of an arbitrary cell with
neighbouring cell indexes. It leads to the significant increase of computational expenses. On
the other hand, numerical schemes based on triangular grids are characterised by the larger
scheme diffusion than the analogous ones with traditional grids. The grid refinement near
walls leads to extremely elongated cells and generates additional large irreducible errors.

The second approach consists in the use of composition of blocks with rectangular
grids. For complicated computational domains, the blocks can be disposed irregularly and
in this case the computational grid is disordered as a whole but structured for each block
in itself. The main drawback of this approach is always deemed to consist in the reduction
of accuracy caused by the use of interpolations and truncated stencils at the boundaries
of adjacent blocks. Rusanov [32, 33] has suggested new computational technology, namely
the algorithm of uniform multi block calculation (UMC), according to which there are no
computational differences between internal cells and those at the permeable boundaries of
blocks. Owing to the splitting of difference equations, the computational process under
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this technology ensures thorough calculations along grid lines at each step of numerical
integration. Therefore UMC algorithms are equal in accuracy to traditional structural grid
ones and are not computationally expensive. One implementation of this approach is given
in [33]. More advanced implementation of the UMC algorithm developed is being tested
now.

7. Numerical simulation of 3D viscous turbomachinery flow
Most calculations have been performed with fine grids that approximately consist

of three–five hundred thousand cells in each spatial blade-to-blade passage. Usually two–
three thousand iterations are needed for solution convergence. The optimisation of stage
has been performed with the coarse grid that is about 50 thousand cells in each blade row,
nevertheless the fine grid was used for verifying calculations that were the base for flow
analysis cited there.

7.1. Rotor37
In the first place, numerical results concerning 3D flow through Rotor37 cascade will

be considered. It is a highly loaded compressor cascade (pressure ratio is 2.1) with high
rotation velocity (17188rpm), large Mach numbers (up to 1.8) and low stability margin (less
than 8 per cent of the flow rate from the choking condition). The flow through Rotor37
is characterised by intensive shock waves and massive separation over a wide range of
conditions.

The flows through high-loaded compressor cascades still remain extremely difficult
for numerical simulations. This is largely due to non-adequacy of most turbulence models
for flows with adverse pressure gradient that tend to yield unrealistic massive separations.
Mainly due to these peculiarities, the computation of Rotor37 flow is the admitted test for
numerical methods [24]. According to the opinion of many CFD experts the code that had
not successfully passed a test with Rotor37 flow should not be used for design purposes.

The Mach number contours at the midspan section for the choking condition are
displayed in Figure 4a. The complicated flow pattern is observed to include reflected and
closure shocks as well as bow shocks. The Mach number contours at midspan section for
98% flow condition are given in Figure 4b. It is clearly seen that the bow and closure shocks
combine and form a single strong shock in this case. The flow at suction side separates
after the shock. Numerical results show that the lower the mass flow rate the larger the
separation region. In the issue it causes the loss of stability. The present results are in good
agreement with experimental data [34].

(a) (b)

Figure 4. Mach number contours at midspan section of Rotor37:
(a) choking condition; (b) 98% of choking mass flow rate
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The total pressure ratio as a function of mass flow rate is presented in Figure 5 (top).
Here the results obtained experimentally and numerically by other authors are compared
with the present computations. The analogous plot is given for adiabatic efficiency in
Figure 5 (bottom). The measurement error is shown in both plots [34]. The numerical results
obtained with code FLOWER are seen to be in good agreement with experimental data.

Figure 5. Total pressure ratio and adiabatic efficiency for Rotor37: D experiment [34];
S FLOWER; T Hirsch and Kang [35]; C Denton and Xu [34]

It should be emphasised that the use of algebraic turbulence models (such as Baldwin-
Lomax model [9]) for simulation of Rotor37 flow leads to significant difficulties, which are
caused by non-adequacy of these models for separations and adverse pressure gradients.
Most likely the correct simulation of the near stall condition with algebraic models is not
possible at all.

7.2. Compressor cascade K11
Analogous results can be presented for other compressor cascades [36]. The Mach

number contours at K11 cascade [20] are presented in Figure 6a for calculations using the
Baldwin-Lomax algebraic turbulence model. The extended separation zones are observed
at the suction and pressure sides of the blade. As a result the flow cannot reach high speed
and the maximum Mach number at the suction side is about 1. The application of the
SST model reduces the extension of the separation zone (Figure 6b). The maximum Mach
number at the suction side for this case is about 1.27, which is in good agreement with the
result obtained with code TASCFLOW at Aviadvigatel Ltd, Perm, Russia [20].

7.3. Gas turbine stage
Similar tendencies are observed for transonic flow within turbine cascades [36]. The

Mach number contours at the midspan section of the gas turbine stator are given in Figure 7.
The computation using the Baldwin-Lomax model (Figure 7a) shows non-physically large
separation. The SST model gives more realistic results (Figure 7b). Reciprocally, in the last
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(a) (b)

Figure 6. Mach number contours for K11 cascade

case the flow at the suction side of the blade reaches higher speed and it results in a more
intensive and sharp shock wave. The analysis of numerical data shows interesting properties
for the results obtained with the SST model. The secondary flows are characterised by larger
intensity. The secondary vortices are disposed closer to the endwalls and more compact.

(a) (b)

Figure 7. Mach number contours at midspan section of gas turbine stator

7.4. Low pressure multi stage turbine
The computation of throughflow within low-pressure multi stage turbine has also been

performed. The first turbine stator was installed so that the throughflow it is radial. The
velocity vectors at the midpitch meridional section of the flowpath are presented in Figure 8.
Enlarged fragments of the turbine passage are shown for regions of extractions and leakages.

7.5. Centrifugal compressor
The viscous flow through a three-row centrifugal compressor is considered [37]. The

compressor comprises a centrifugal wheel, radial vaned diffuser and converse radial vaned
diffuser (Figure 9).

The velocity vectors for the midpitch meridional section of the flowpath are displayed
in Figure 9. As it is seen from the picture, the flow pattern is complex enough. The
generation of separations and vortices is observed in the flow. We can suppose that the
geometry of hub and tip endwalls is far from optimal near the channel bend where the
massive separation origins. This separation influences flow far downstream. The flow in the
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Figure 8. Velocity vectors at midpitch meridional section of low pressure multi stage turbine
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converse vaned diffuser is non-uniform and the stagnation zones appear around the main
flow jet. It is evident that such a flow structure is characterised by high losses.

It should also be stated that the secondary flows of centrifugal wheels are more
complex than those of the axial ones. In the first place, it is evidenced by generation of
passage vortices not only at tip and case endwalls but also at the pressure and suction sides
of the blades. It is evoked by the existence of both circumferential and span-wise pressure
gradients in the rotor blade-to-blade passage. The entropy contours for different cross-flow
sections of the wheel vane channel are presented in Figure 10. One can estimate the location
of vortices by the position of local maxima of the entropy. The analysis of flow pattern
permits us to describe the following main vortices: the branch of tip horseshoe vortex v1,
the pressure side passage vortex v2, the tip passage vortex v3, the root passage vortex v4,
the suction side passage vortex v5. The other branches of root and tip horseshoe vortices
are not seen in Figure 10 since they have merged with the passage vortices and due to their
small intensity and coarse picture scale.

7.6. Optimisation
The high accuracy and robustness of the solver FLOWER permit us to use it

successfully for optimisation problems [38]. In the present paper the optimisation of a low-
pressure exit turbine stage is considered as an example. The initial shape of stage blades is
shown in Figure 11. The stator blade generatrices were straight lines for the initial stage.
The following geometrical parameters were varied, stagger angles of the stator and rotor,
lean and sweep angles of the stator, two parameters of stator compound sweep at the tip
and two parameters of stator compound lean at the hub.

The shape of the blades for the optimised stage with compound lean and sweep of
the stator blade (CLS stage) is shown in Figure 12. For this stage the efficiency increase at
design conditions is almost 1.2 per cent. The dependence of stage efficiency on the mass
flow rate is given in Figure 13 for the initial stage (solid line) and for CLS stage (dashed
line). Here, the results for a modified stage with straight lean and sweep of stator blade (SLS
stage) are displayed too (dotted line). The CLS stage is more efficient for design at high
load conditions. The SLS stage is more efficient for low load conditions. For the conditions
with the mass flow equal to 26kg/s the increase of efficiency is about 10.9 per cent for CLS
stage and it is approximately 14.3 per cent for the SLS stage.

8. Conclusion – prospects of numerical models of 3D viscous
turbomachinery flows

Finally we would like to note the main promising directions of turbomachinery CFD
development. Firstly the advanced numerical methods must be extended on a working
medium with a sufficiently arbitrary equation of state, also on multi-component and multi-
phase flows.

The growth of computer power allows the calculation of flow through composite
aerodynamic devices (such as air-engine) on the whole taking into account the small details
of geometry. It must necessarily entail the solution of multidisciplinary problems that involve
aerodynamics, heat transfer, aeroelasticity, combustion etc.

The developed CFD solvers will be included in more and more complex optimisation
algorithms. It is also necessary to say about the further improvement of turbulence models.
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Figure 9. The velocity vectors at the midpitch section of three-row centrifugal compressor

(a) (b)

(c) (d)

Figure 10. Entropy function contours for cross-flow sections of rotor (percentage of chord):
(a) – 9%; (b) – 34%; (c) – 59%; (d) – 86%
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Figure 11. Initial stage Figure 12. Modified CLS stage

Figure 13. Efficiency of stage versus mass flow rate: solid line – initial stage;
dashed line – CLS stage; dotted line – SLS stage

In the first place, it concerns the refinement of laminar-turbulent transition and wall flows
with pressure gradients.

Although the accuracy of advanced numerical methods is good enough for many
engineering goals, the improvement of difference schemes is and will be one of the main
problems of CFD. Modern DES, LES and DNS techniques require developing the high-
order accuracy schemes (more than fourth-order accurate) and solving the problems caused
by enlargement of the approximation stencils.
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