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Abstract: The paper presents problems connected with solving 3D circulation problems. The
existence of vortex singularities in the flow behind a body is a characteristic feature of such problems.
The vortices influence the velocity and pressure fields in the vicinity of a body. A proposition of
rational merging the methods based on the N-S equation together with vortex methods (based on
the vorticity equation) is discussed. Such a connection enables accurate and efficient determination
of vortex singularities in the flow behind a body.
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1. Introduction

A free foil, whose mean lines are characterised with nonzero camber, placed
in uniform flux in infinite space and fixed with a certain angle of attack may be
considered as the simplest case of a 3D circulation problem. A lift force L is induced
on the foil (Figure 1).

Figure 1. A lift force induced on the foil
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Airplane wing, screw propeller blade, axial-flow pump blade, water or steam
turbine blades, compressor blade, fan blade and guiding vane, etc. serve as the
examples.

Circulation around the foil (guiding vane) section, as well as variation of
circulation along the foil span are the most remarkable features of such flows (3D
flows).

The characteristic feature of such a flow is that a vortex singularity appears
behind a foil (blade). Within the classical approach the singularity is modeled as a
non-deformable vortex layer [1–3]. In reality such a layer deforms, winds up, creates
concentrated structures and dissipates simultaneously (Figure 2), [2, 4, 5].

Within the simplest, classical approach the presence of free vortices influences
the velocity and pressure fields on the foil (blade) surface significantly. The following
example may serve as the confirmation of the above. The lift coefficient for rectangular
foil, characterised by aspect ratio λ = 3 and positioned with 3̊ angle of attack
calculated neglecting free vortices equals CL = 0.63. Pressure coefficient distributions
along particular foil sections are presented in Figures 3a and 3b by solid lines.

Figure 2. Vortex lines around the foil in real flow

The calculations carried out for the same foil and free vortices taken into ac-
count (as in the classical approach) provide the value CL∼= 0.50. Velocity distributions
corresponding to identical foil sections are marked in Figures 3a and 3b by dashed
lines. The differences are distinct.

Enabling the separation of the vortex layer from the blade surface (double
layer lifting surface model) brings the model closer to reality [6]. A vortex “pocket”
appears close to the blade tip. The flow around the sections in the blade tip vicinity
is significantly influenced by deforming vortex structures. It is not only the matter
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Figure 3. Pressure coefficient distributions along foil sections with or without free vortices at
mid-span and 40% from the tip

of the calculation model. The experimental investigation of vorticity behind a blade
indicates the appearance of such regions containing strong vorticity. The results of
measurements behind the blade tip are presented in Figure 4. The measurements
were carried out at the Institute of Fluid Flow Machinery (Gdansk, Poland) in the
cavitation tunnel with the use of a rotameter. The rotameter’s vane diameter was
equal to 3mm. Within the section distanced x= 0.145mm from the rectangular blade
(breadth c = 0.12m, length L = 0.26m) axis, the vorticity field was obtained. The
maximum vorticity value was equal to ω= 50 1/sec.
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The theorem concerning vortex flow stability (the second Helmholtz law)
indicates the strict interdependence between the vorticity attached to the blade and
vorticity shedding from the blade [1, 4]. Each variation of the circulation around a foil
section manifests in the form of free vortices. The maximum circulation around a foil
(blade) equals the circulation around the set of trailing edge free vortices (Figure 2).
The flows around tips and between the pressure and suction side close to the fluid
flow machinery blade root are called the secondary flows and correspond to the same
physical mechanism.

It is not enough to know the vorticity field ~Ω(~r) behind a body. This field
induces the velocity field in front, as well as in the vicinity of the considered body
(foil, blade). As it is presented in Figure 3, the differences are substantial, even when
classical approach concerning bounded vorticity is applied. As far as screw propeller
theory is considered the capability of calculation of the velocity field due to free
vortices determines the accuracy of pressure field prediction on the propeller blade.
Consequently it determines also the reliability of cavitation and acoustic pressure field
predictions.

Figure 4. The results of measurements of vorticity (Ω [1/sec]) behind the blade tip

2. Solution of 3D problems with circulation
In order to obtain accurate results of calculations based on the N-S equation,

boundary conditions have to be precisely defined. The presence of free vorticity set
behind a body determines velocity and pressure fields in the sections behind it. For
example, such a set of free vortices, for which the field of ~Ω(x,y) in a certain section
is presented in Figure 4 alternates significantly the surrounding pressure and velocity
fields. This field varies with the distance from the body, because the set of free vortices
undergoes certain deformation and simultaneously dissipation. The specification of
boundary conditions at the presence of free vortices basing only on solutions of the
N-S equations causes difficulties and is considerably time-consuming. The solution
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can be obtained only by way of successive approximations when the vorticity field
~Ω(~r) is properly specified (the theorem concerning stability of rotational motion has
to be taken into account, i.e.: in incompressible, inviscid fluid without walls and
bodies flowed around the vorticity cannot rise and the decay of vorticity is realized
by the vortices cascade. The possibility of obtaining the correct solution applying
the methods based exclusively on the Navier-Stokes equations or their modified form
– the Reynolds equations cannot be negated. The attention should be focused on
rationality of such methods. In the case of 3D circulation problems it can be more
reasonable to merge together the methods based on the N-S equations and vortex
methods. Namely for the 3D problems with circulation vortex methods may serve as
the first approximation. Further calculations can be carried out basing on the N-S
equations, taking advantage of the already determined set of vortices.

Vortex methods – prevailing during design calculations and determination of
hydrodynamic, cavitation or acoustic characteristics of screw propellers are consider-
ably effective and accurate. The accurate design of screw propeller can be carried out
on a PC in seconds and the analysis of propeller operation in a non-uniform velocity
field can be done in few minutes. More complicated calculations concerning tip vor-
tices and associated with them hydroacoustic pressure usually take less than twenty
minutes.

3. Theoretical background of vortex method

The vortex methods in general are based on vorticity equation, which is a form
of the N-S equation, subjected to the rotation operator. The vorticity equation for
viscous, incompressible liquid, including the body force potential gains the following
form [1, 2, 4, 3]:

∂~Ω
∂t

+rot(~Ω× ~V ) =
∂~Ω
∂t

+(~V ·∇)~Ω−(~Ω ·∇)~V = ν∆~Ω, (1)

where ~Ω = rot~V . The considered domain is the vorticity field ~Ω(~r,t).
The molecular vorticity diffusion term ν∆~Ω (vorticity dissipation) has to be

taken into account in the above equation only within the regions of high vorticity
concentration [7], for example where free vortices form concentrated structures. When
such a concentration does not appear, this term can be neglected and the third
Helmholtz equation can be obtained:

d~Ω
dt
−(~Ω ·∇)~V = 0. (2)

Combining the above equation with the Stokes equation∮
l

~V d~l=
∫
S

~n ·rot~V dS (3)

enables evaluation of the series of theorems concerning velocity field – Helmholtz and
Kelvin. Those equations create the base for development of vortex models.

In general the vortex model consists in determination of the distribution of
vorticity in the liquid, which represents the foils (blades) and vortex wake behind
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them. Such a time- and space-dependent distribution serves as the starting point for
determination of the induced velocity field.

If at any arbitrary moment t= t1, a spatial distribution of vorticity ~Ω(~r1t1) in
a liquid volume is known, then the induced velocity field can be determined by way
of applying vector analysis laws. The following formula can be obtained:

~V =
1

2π
rot
∫
τ

~Ω(~r)
r

dτ. (4)

When the vorticity distribution is given in the form of vortex filaments distribution:

~Ω(~r)dτ = Γd~l, (5)

then the Biot-Savart law (6) can be derived from Equation (4). This law is widely
applied in vortex methods:

~V =
Γ
4π

∫
L

d~l×~r
r3 . (6)

According to circumstances vortex models are more or less complicated. Within
the classical screw propeller theory approach (single layer lifting surface) the model
consists of the set of bounded vortices distributed over the surface created by chords
or mean lines of blade sections and the set of helicoidal free vortices. More complex
approach (double layer lifting surface model) presumes that vortices are distributed
both on pressure and on suction sides of a blade. The system of free vortices undergoes
deformation as well as free vortices can detach from the blade surface.

Figure 5. Hydrodynamic characteristics of screw propeller KT – thrust coefficient;
KQ – torque coefficient; η – efficiency

The considered flow around propeller blades or elements of fluid flow machines is
characterized by high Reynolds numbers. The boundary layer at the design operation
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point is thin and there is no viscous flow separation. In such a case, modeling
of the boundary layer with the thin vortex surface does not introduce substantial
errors during calculation of the velocity field (e.g. of normal velocities on blades,
when Neumann’s boundary condition is applied). Therefore vortex methods provide
valuable results concerning screw propellers. The accuracy of design calculations is
verified by way of experimental model testing (more than ten such tests are carried
out annually in Poland). The error concerning global thrust or torque is usually less
than 1% (Figure 5). It confirms the practical efficiency of vortex methods.

Therefore it seems reasonable that, when it is necessary to determine velocity
field within the boundary layer on a foil (blade) accurately and solve a 3D circulation
problem, the application of the N-S equations methods can be preceded by the use
of vortex method. This first step of velocity field analysis serves as the rational first
approximation. Further calculations, with already evaluated induced velocities taken
into account can be carried out on the basies of N-S methods.

4. Concluding remarks
In order to solve 3D circulation problems it seems advantageous to merge

together the two following methods:

• based on the N-S equation (operating within the velocity field domain),
• based on the vorticity equation (operating within the vorticity field domain).

Such a symbiosis is much more desirable in the case of 3D circulation design
problems. It is possible to determine the blade shape (including sections geometry)
providing the appropriate pressure distribution with the use of vortex methods
exclusively. Viscosity can be taken into consideration in the further step of calculations
based on the N-S equations. The system of free vortices can be obtained during the
initial, preliminary step of calculations.

Therefore it is impossible to agree with categorical statements that the methods
applying vortex equation can be successfully replaced by the methods based exclus-
ively on the N-S equations. Such efforts are irrational.

It should be emphasized that viscous drag of propeller blades at the design
operation point usually equals to 2%–4% of the total induced lift force. Therefore
the main effort is directed towards accurate determination of thrust. For this purpose
vortex methods serve as excellent tools. Viscous drag can be determined with the use
of approximate methods based on empirical knowledge or applying integral methods.
Long-term practice indicates that the application of numerical algorithms based on
vortex models enables determination of screw propeller performance with error less
than 1%. Moreover such a phenomenon as cavitation can be predicted with high
accuracy.

I am convinced that the calculation methods elaborated for screw propellers
can be successfully applied to other fluid flow machines. Whenever the more exact
knowledge about velocity field is necessary (within the boundary layer) it is possible
to continue calculations with the use of N-S equations methods.
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