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Abstract: We deal with the numerical simulation of flow through a steam turbine. The system
of the compressible Navier-Stokes equations accompanied by the state equation of perfect gas are
numerically solved. We propose a new approach for the numerical solution of the Navier-Stokes
equations, where the inviscid part is discretized by the finite volume method and the viscous part
by the finite element method. To capture precisely the position of shock waves, the suitable mesh
refinement method has to be applied. Therefore the anisotropic mesh adaptation technique equipped
with some suitable modification for viscous compressible flow is used. The suitable application of the
mentioned numerical adaptive method allows us to obtain sufficiently precise results without much
requirement on CPU-time and computer memory.

Keywords: compressible Navier-Stokes equations, combined finite volume-finite element method,
anisotropic mesh adaptation

1. Introduction

The results of aerodynamic research tests of profile cascades at transonic flow
velocities are invaluable for improvements of new machine designs and verification on
the routine test methods. Higher efficiency and operational reliability of new turbines
and compressors are attainable largely due to such experimental research programs.

Our aim is a numerical simulation of transonic flow past a plane turbine
cascade SE 1050 (ŠKODA – Etalon 1050) which approximates the flow through a
steam turbine. The rotational symmetry of the turbine allows the 2D computation
(see [1, 2]). Then the region occupied by the fluid is represented by a plane infinitely
connected domain Ω̃, bounded in one space direction (say x1) and unbounded but
periodic in the other direction (x2). Assuming also the periodicity of the flow field,
we can choose the computational domain Ω in the form of one period of the original
domain Ω̃, Figure 1. The boundary ∂Ω is formed by disjoint parts ΓI ,ΓO,ΓW ,Γ+ and
Γ−. The parts ΓI and ΓO denote inlet and outlet of the computational domain Ω,
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respectively, and ΓW denotes solid walls of a blade of the cascade. Moreover, the arcs
Γ− and Γ+ are piecewise linear artificial cuts such that

Γ+ = {(x1, x2 +q); (x1,x2)∈Γ−}, (1)

where q > 0 is the width of one period of the cascade in the direction x2.

Figure 1. Cascade SE 1050 with the computational domain Ω, boundary parts ΓI , ΓO, ΓW and
artificial periodical cuts Γ+ and Γ−

2. Problem formulation

The behaviour of a gas in the steam turbine is described by basic conservation
laws: conservation of mass, momentum and energy. We consider a viscous compressible
fluid of Newtonian type, i.e. the dependence of stress tensor on the deformation
velocity tensor is linear. We neglect outer volume forces and heat sources. The heat
conduction is given by the Fourier law. To close the system of equations we add the
state equation of perfect gas.

Therefore, the complete system for viscous compressible flow consisting of the
continuity equation, Navier-Stokes equations and energy equation is written in the
(dimensionless) form

∂w

∂t
+

2∑
s=1

∂fs(w)
∂xs

=
2∑
s=1

∂Rs(w,∇w)
∂xs

in QT . (2)
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This form is obtained by dividing the original conservation laws by the reference flow
parameters, see [3]. Here

w= (w1,w2,w3,w4)T = (ρ,ρv1,ρv2,e)T ,

w=w(x,t), x∈Ω, t∈ (0,T ),

fs(w) = (ρvs,ρvsv1 +δs1p,ρvsv2 +δs2p,(e+p)vs)T ,

Rs(w,∇w) =
(

0,τs1,τs2,τs1v1 +τs2v2 +
γ

RePr
∂θ

∂xi

)T
,

τsr =
1

Re

[(
∂vs
∂xr

+
∂vr
∂xs

)
− 2

3
divvδsr

]
, s,r= 1,2.

(3)

From thermodynamics we have

p= (γ−1)(e−ρ|v |2/2), e= ρ(θ+ |v |2/2). (4)

We use the standard notation for dimensionless quantities: t is time, x1, x2 are
Cartesian coordinates in IR2, ρ is density, v = (v1,v2) is velocity vector with com-
ponents vs in the directions xs, s = 1,2, p is pressure, θ is temperature, e is total
energy, τsr are components of the viscous part of the stress tensor, δsr is Kronecker
delta, γ > 1 is Poisson adiabatic constant, Re is Reynolds number, Pr is Prandtl
number. Moreover, we define M = |v |/(γp/ρ)1/2 for the local Mach number.

The system (2) – (4) is equipped with the initial condition

w(x,0) =w0(x), x∈Ω (5)

(which means that at time t= 0 we prescribe, e.g. ρ, v1, v2 and θ) and boundary
conditions.

The correct setting of the boundary conditions for the system (2) is still an
open problem because, from the mathematical point of view, there is nothing known
about the existence and uniqueness of its solution. So based on several heuristic
consideration (see [3, 4]) and vast numerical experience, we prescribe the following
boundary conditions:

(i) ρ= ρ∗, vs = v∗s , s= 1,2, ∂θ
∂n = 0 on ΓI ,

(ii) vs = 0, s= 1,2, ∂θ
∂n = 0 on ΓW ,

(iii)
2∑
s=1

τsrns = 0, r= 1,2, ∂θ
∂n = 0 on ΓO.

(6)

Here ∂/∂n denotes the derivative in the direction of the unit outer normal n =
(n1,n2)T to ∂Ω; w0, ρ∗ and v∗s are given functions.

On Γ± we consider the periodicity condition

w(x1,x2 +q,t) =w(x1,x2,t), (x1,x2)∈Γ−. (7)

The same condition is imposed on the first-order derivatives of the vector function w.
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3. Discretisation
We consider the viscous terms Rs as a perturbation of the inviscid system of

Euler equations. Therefore, we split Eqution (2) into the inviscid system and the
purely viscous system

∂w

∂t
+

2∑
s=1

∂fs(w)
∂xs

= 0, (8)

∂w

∂t
=

2∑
s=1

∂Rs(w,∇w)
∂xs

(9)

and discretize them separately.
The time discretisation of Equations (8) and (9) is carried out with the use of

a partition 0 = t0<t1<t2< ... of the time interval (0,T ). We set τk = tk+1−tk.
The inviscid system (8) is discretized by the cell-centred finite volume (FV)

method on a mesh Dh = {Di}i∈J . Here the finite volumes Di are triangles and Dh is
a triangulation of a polygonal approximation Ωh of the domain Ω. We assume that
Dh has standard properties from the finite element method. J is a suitable index set.
The boundary ∂Di can be expressed in the form

∂Di =
⋃

j∈S(i)

Γij , (10)

where Γij is either the common side of Di and Dj or Γij ⊂ ∂Ωh. We set |Di|= area
of Di, nij = unit outer normal to ∂Di on Γij , `ij = length of Γij . S(i) is a suitable
index set. The averages of the sought solution w on Di at time tk are approximated
by values wki .

The purely viscous system (9) is discretized by the conforming piecewise linear
finite elements (FE) on a triangulation Th of Ωh, compatible with Dh in such a sense
that the set of all vertices Pi of the triangles T ∈Th consists of the barycentres of all
Di ∈Dh and the vertices of Di ∈Dh lying on ∂Ωh. We call this mesh Th adjoint to
the grid Dh.

Using the above ideas, we discretize the complete system (1) via operator
inviscid-viscous splitting. The advantage of this approach is that we easy evaluate
both the values of the physical quantities (on mesh Dh) and their derivatives (on
mesh Th). Moreover, the hyperbolic and parabolic types of the systems (8) and (9)
give a hint to use FVM and FEM, respectively.

One time step tk→ tk+1 is divided into two fractional steps:

Step I (inviscid FV step on the mesh Dh): Assume that the values wki , i ∈ J ,
approximating the solution on the finite volumes Di at time tk are known.
Compute the values wk+1/2

i , i∈J , from the FV formula

w
k+1/2
i =wki −

τk
|Di|

∑
j∈S(i)

H(wki ,w
k
j ,nij)`ij (11)

equipped with inviscid boundary conditions.
Step II (viscous FE step on the mesh Th): Define the finite element function wk+1/2

h

with values w
k+1/2
h (Pi) = w

k+1/2
i at the vertices Pi, i ∈ J of Th. At the

vertices Pi ∈ ∂Ωh, the viscous Dirichlet boundary conditions and suitable
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extrapolation are used. Compute the finite element function wk+1
h as the

solution of the following problem:

(i) wk+1
h satisfies the viscous Dirichlet boundary conditions,

(ii) (wk+1
h ,ϕh)h = (wk+1/2

h ,ϕh)h−τkah(wk+1/2
h ,ϕh) (12)

for all test functions ϕh = (φ1,...,φ4) such that φj (j = 1,...,4) is
continuous in Ωh, linear on each T ∈ Th and vanishes on the part of
∂Ωh where the j-th component wj of the state vector w satisfies the
Dirichlet boundary condition.

Now set wk+1
i :=wk+1

h (Pi) for i∈J , k := k+1 and go to Step I.

In Equation (11), H is a suitable numerical flux. We use the Osher-Solomon nu-
merical flux [5] which is an upwinding type of scheme not requiring any other artificial
viscosity term. Moreover the Osher-Solomon numerical flux contains some amount of
numerical viscosity which guarantees that we obtain the physically admissible numer-
ical solution (i.e. satisfying the second law of thermodynamic).

In Equation (12), (w,ϕ)h and ah(w,ϕ) denote the approximation of
∫

Ωh
wϕdx

and
∫

Ωh

∑2
s=1Rs(w,∇w)∂ϕ/∂xsdx, respectively, obtained with the aid of numerical

quadrature using the vertices of T ∈Th as integration points. For more detail see [4, 6].
Another approach can be found in [7].

The presented scheme is only of the first order or accuracy. To increase it (at
least to the second order) we apply the higher order reconstruction [8]. Further work
is in progress.

The accuracy of the solution of transonic flow is increased with the aid of
the automatic adaptive mesh refinement, namely in the vicinity of shock waves and
boundary layers.

4. Mesh adaptivity

To improve the quality of a solution the anisotropic mesh adaptation (AMA)
technique is applied. We adapt the triangulation in this way that the interpolation
error (defined as the distance between the exact solution and its piecewise linear
approximation) is uniformly distributed over the whole triangulation. The complete
description of the AMA technique with some theoretical results and the algorithm
with implementation was given in [9–11]. Here we present only a brief description.

Let M be a symmetric positive definite 2×2 matrix and let u = (u1,u2) be a
vector in IR2. We define the norm of the vector u corresponding to the matrix M as

‖u‖M ≡
(
uMuT

) 1
2 . (13)

Let T be a triangulation of the computational domain Ωh. Let Mk be a symmetric
positive definite 2×2 matrix defined for each edge of the triangulation Sk, k ∈K
(= an index set) by

Mk =F (H (η(Sk))), k∈K, (14)

where η is some physical quantity (we put η := Mach number), H is the Hessian
matrix of η and F :M2→M2 is a suitable function,M2 is the space of 2×2 matrixes.
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Figure 2. Density isolines (top) and the final triangular mesh (bottom)

The form of the function F follows from some heuristic considerations and numerical
experiments, see [11].

Now, we say that the mesh T is optimal if the norm of Sk corresponding to M̄k

is equal to
√

3 for all k∈K, i.e.

‖Sk‖Mk
=
√

3 ∀k∈K. (15)

It means that the error (considered as ‖ ·‖M ) for each edge of T is the same, i.e. it
is uniformly distributed over the triangulation. If Mk = I (= a unit matrix) for all
k∈K, then the optimal triangulation consists of equilateral triangles with the length
of sides equal to

√
3. (The radius of the circles circumscribing this triangles is equal
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Figure 3. The wind tunnel interferogram showing density isolines (top) and the corresponding
detail of density isolines (bottom)

to 1, this is the reason why a scaling constant
√

3 is chosen.) We define the quality
parameter

QT =
1
NT

∑
k∈K

(
‖Sk‖Mk

−
√

3
)2
, (16)

tq0106k7/183 26I2002 BOP s.c., http://www.bop.com.pl



184 V. Doleǰśı

Figure 4. Detail of final triangulation (top) and pressure distribution along the profile “full line”
compared with the measurement “separated crosses” (bottom)

where ‖Sk‖Mk
is the norm of the edge Sk and NT is the number of all edges of T . It is

evident that QT ≥ 0 and if the mesh T is optimal then QT = 0. The parameter QT is
a measure how close the triangulation T is to the optimal one. We modify the mesh T
in this way that the quality parameter is minimized. Therefore we have developed an
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iterative process which is a composition of the local operations: adding a node at the
center of an edge, removing an edge, swapping the diagonal of the quadrilateral formed
by any pair of adjacent elements, and moving a node. Each operation is performed if
after its application the parameter QT decreases.

Special attention is devoted for capturing viscous effects of a flow, namely
boundary layers and wakes. As the boundary layer thickness δ is given by

δ≈ C√
Re
, (17)

where Re is the Reynolds number and C � 1 is a “user-chosen” constant (we put
C = 10), we modify the mentioned AMA algorithm in such a way that the size of
triangles in the vicinity of ΓW is less than δ, see [10].

The multiple application of AMA algorithm yields the triangulation with a not
too large number of triangles but where satisfactory results can be obtained.

5. Numerical results
The goal was to obtain a steady state solution with the aid of the time

stabilisation for t→∞. The computational results are compared with a wind tunnel
experiment (by courtesy of the Institute of Thermomechanics of the Czech Academy
of Sciences in Prague, see [1]). The experiment and computations were performed for
the following data: angle of attack = 19̊ 18′, inlet Mach number = 0.32, outlet Mach
number = 1.18, γ= 1.4, Reynolds number Re = 1.5 ·106, Prandtl number Pr = 0.72.

In Figure 2, the final triangular mesh obtained with the aid of AMA and the
computed density isolines are plotted. Figure 3 represents the comparison of the wind
tunnel interferogram showing density isolines with detail of our results. Figure 4 shows
the detail of the final triangular mesh and the pressure distribution along the profile
compared with the measurement. We see a good agreement of the computational
results with experiment, namely the position of shock waves and the rarefaction region.
Particularly, the use of AMA enable us to capture shock waves very sharply without
much increase of the number of elements. Moreover the quantitative comparison of the
pressure distribution is very satisfactory. Our mathematical model does not contain
any model of turbulence. The results confirm the fact that the turbulence effects for
the considered problem are not leading even for Re = 1.5 ·106.

6. Conclusion
The presented finite volume – finite element scheme together with the aniso-

tropic mesh adaptation introduce the efficient numerical method for the simulation
of transonic flow problems which is confirmed by the achieved numerical results. The
future work is to develop the higher order schemes in order to increase the accuracy
of the results and to eliminate the influence of numerical viscosity.
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