
TASK QUARTERLY 6 No 1 (2002), 127–142

MODERN FINITE VOLUME METHODS
SOLVING INTERNAL FLOW PROBLEMS

KAREL KOZEL AND JAROSLAV FOŘT
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Abstract: The paper deals with explicit and implicit finite difference and mainly finite volume
schemes that have been commonly used in last years for compressible and incompressible fluid flow
problems. Mainly we mention schemes used for transonic flow computation (inviscid as well as viscous
models) in internal and also external aerodynamics. We prefer modern schemes like RK multistage
schemes, TVD and ENO schemes, implicit schemes or higher order schemes.

Some results of numerical computation or numerical simulation are presented in the second
part of the paper, including 2D and 3D transonic flow through a channel and a cascade (mainly of
turbine type), 2D and 3D backward facing step flow (laminar and turbulent), 2D and 3D impinging
jet flow (comparisons of some turbulent models). The last two cases have been computed only for
incompressible viscous flows. Some tests for the efficiency of higher order scheme (4th–6th order) are
presented for the backward facing step problem.

In many examples we also present a comparison of numerical and experimental results.

Keywords: finite volumes, modern numerical schemes, internal aerodynamics

1. Introduction
Since 1970 we can observe fast progress in numerical solution of transonic

flows in external and internal aerodynamics. Allow us to mention first two methods
published in 1969 and 1971. The first one was the method of Murman and Cole [1]
based on numerical solution of the small disturbance potential equation and the second
one was the method of Magnus and Yoshihara [2] solving numerically the system of
Euler equations. These two original methods were the starting point of a new period in
development of numerical methods and successful computation of inviscid and viscous
transonic flow. Mainly the second method initiated (with development of computers)
a fast progress in numerical analysis and construction of new schemes, which have
been used for numerical simulations of important engineering and physical problems
in external and internal aerodynamics.

Transonic flow (2D cascades) was first solved in the Czechoslovak Republic by
some extension of the Murman-Cole method. The model of the small disturbance
potential equation was solved in a non-orthogonal grid by a second order finite differ-
ence non-conservative method and later by a finite-volume conservative method [3, 4].
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Then we extended the method for the full potential equation in 2D. The achieved res-
ults and their comparison with experiments show suitable properties of the developed
methods. Figure 1 shows measured and computed results of transonic flows through
a DCA 8% cascade. The measurements carried out at IT CAS – Figure 1a. The
numerical method was developed at CTU Prague (small disturbance potential equa-
tion) – Figure 1b. The last picture (Figure 1c) shows results of Akay, Eccer (USA),
computed by the finite element method for the full potential equation, achieved in
1981. The agreement between the experiment and numerical solution (Figure 1a, b)
validated the fact that flow through the DCA 8% cascade is realized also for slightly
higher M∞ than Mc

∞, where Mc
∞ denotes the lowest value of inlet Mach number for

which the sonic line closes the blade channel. Figure 2 shows results of transonic flow
(M∞< 1) through a compressor cascade of the ČKD Compressors factory (computed
choked flows – with the full potential equation). Later we developed several methods
to solve the system of Euler and Navier-Stokes equations.

(a)

(b)

(c)

Figure 1. Transonic flow in DCA 8% cascade of IT CAS, measured and computed results

2. Mathematical models

Generally speaking compressible flows could be described by an inviscid is-
entropic model (small disturbance or full potential equation), the system of Euler
equations (inviscid model) and system of Navier-Stokes equations. All the mentioned
mathematical models can be written in nonconservative and also in conservative
forms. An incompressible viscous flow is described by the system of Navier-Stokes
equations. In many cases one does not use the full system of Navier-Stokes equations,
but other models derived from this system, e.g. models based on the stream function
and potential function, or stream function and vorticity or momentum equations and
Poisson equation for pressure. We also have a chance to use several mathematical
modifications of the system of Navier-Stokes equations in 2D and 3D, e.g. artificial
compressibility, dual time stepping. In some cases these modifications could reduce
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Figure 2. Compressor cascade of ČKD compressors Ltd. Prague;
computation of chocked flow (full potential equation)

the number of unknowns or help in construction of an efficient method – used grid,
numerical algorithm.

2.1. 2D governing equations
Let us consider the following system of governing equations.

a) The small disturbance potential equation in nonconservative form:

(K1−K2ϕx)ϕxx+ϕỹỹ = 0, ỹ= δ2/3y, K1> 0, K2> 0 (1)

or in conservative form

(K1ϕx−K2ϕ
2
x)x+(ϕỹ)ỹ = 0 Ki =Ki(M∞,δ), i= 1,2, (2)

where the unknown variable ϕ is the potential of the disturbed velocity.
b) The full potential equation in nonconservative form

(a2−Φ2
x)Φxx+2ΦxΦyΦxy+(a2−Φ2

y)Φyy, a2 = a2(Φ2
x+Φ2

y) (3)

or conservative form

(ρΦx)x+(ρΦy)y = 0, ρ= ρ(Φ2
x+Φ2

y), (4)

where the unknown variable Φ is the velocity potential, ρ is the density.
c) The system of Euler equations in conservative form

Wt+Fx+Gy = 0, (5)

where W = [ρ,ρu,ρv,e]T are conservative variables and
F = [ρu,ρu2 + p,ρuv,u(e+ p)]T , G = [ρv,ρvu,ρv2 + p,,v(e+ p)]T are physical
fluxes (inviscid).

d) The system of Navier-Stokes equations in conservative form

Wt+Fx+Gy = Rx+Sy, (6)

where R = [0,τxx,τxy,uτxx+vτxy +kTx]T , S = [0,τxy,τyy,uτxy +vτyy +kTy]T ,
τxx =µ(4/3ux−2/3vy), τxy =µ(uy+vx), τyy =µ(−2/3ux+4/3vy), µ is viscosity
coefficient, R, S are so-called viscous physical fluxes.
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All 2D equations are commonly used for computation, the system of Navier-
Stokes Equations (6) describes the so-called laminar flow. The Navier-Stokes equations
for incompressible flows have the following form

R̃W+Fx+Gy = ν(Rx+Sy), (7)

where W = [p,u,v]T , F = [u,u2 + p,uv]T , G = [v,uv,v2 + p]T , R = [0,ux,vx]T ,
S = [0,uy,vy]T , ν =µ/ρ0, p=P/ρ0, P denotes pressure and ρ0 is density (constant),
R̃= diag(0,1,1).

2.2. Boundary conditions
Formulation of boundary conditions for the potential equation is relatively clear

(e.g. we have a mixed boundary value problem for one partial differential equation of
second order in the case of subsonic flow near inlet and outlet boundaries). Upstream
boundary conditions for Euler equations, where M∞,n (Mach number of upstream
normal velocity component) is subsonic in 2D, are considered in a form of three
conditions for the components of W. For the downstream part of the boundary with
M2,n < 1, one condition (e.g. pressure) is given. When M∞,n > 1, all 4 components
are given and for M2,n> 1 no boundary condition is prescribed. On the wall, for the
case of Euler equations ρqn = 0, where qn is the component of vector (u,v)T normal
to the boundary (wall). Non-slip boundary conditions on the walls are considered,
temperature T is given or ∂T/∂n = 0 on the wall for the case of Navier-Stokes
equations. The numerical method usually extrapolates some variables to complete
the conditions for unknown components of W at the corresponding boundary.

3. Numerical solution
Numerical methods based on the potential model are not frequently published

last time, mainly Euler equations or Navier-Stokes equations (laminar or RANS)
are used as the basic mathematical models. Three traditional methods are used for
solving CFD problems: finite difference method, finite volume method and finite
element method. For transonic flow problems, the first two methods are most popular,
finite element method is not frequently used, but the method is in fast progress
(discontinuous Galerkin method [5, 6]) at this time.

One of the main concerns of numerical solution of Euler or Navier-Stokes
equations seems to be an approximation of the convective terms. It necessarily

Figure 3. Finite volume Di and neighbour volumes Dj , j= 1,...,n
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has a part called artificial viscosity term that is included in upwind schemes or
added in central schemes. The other important concern is choice of grid (structured,
unstructured, adaptive, ...) or multi-grid method, used mainly for steady state
problems, to achieve fast convergence. Mesh can very much influence numerical
results, and adaptivity of the grid during the solution can improve the results
of numerical simulation. The type of finite volume method is very important for
numerical approximation of boundary conditions in connection with the scheme and
grid (cell centered, cell vertex, cell edged, dual finite volumes or its combination used
at quadrilateral grid, triangular, ...). Similar is also true for turbulence models and
RANS (Reynolds Averaged Navier-Stokes) equations.

Consider the finite volume method now. The domain of solution is divided into
small subdomains Di, where

⋃
iDi =D and Dj∩Di = 0, see Figure 3.

Then in the cell centered form (Wi is mean value of W in Di) we have after
integration of (6) over Di and using the mean value theorem and Green’s theorem

Wn+1
i = Wn

i −
∆t
µi

(∮
∂Di

Fdy−Gdx+
∮
∂Di

Rdy−Sdx
)
, µi =

∫ ∫
Di

dxdy. (8)

In the numerical scheme we fulfill

Wn+1
i = Wn

i −
∆t
µi

N∑
k=1

(F̃k−R̃k)∆yk−(G̃k− S̃k)∆xk, (9)

where F̃k is the numerical flux (approximation of the physical flux), and similarly for
G̃k, R̃k, S̃k. Terms F̃k, G̃k are inviscid and R̃k, S̃k are viscous fluxes.

Only central schemes (central differences) are commonly used for approximation
of dissipative terms. Therefore we deal more with an approximation of convective
terms. When we want to explain some ideas how to construct a numerical scheme
in most multi-dimensional cases, we start with a 1D nonlinear scalar model of Euler
equations (Cauchy problem)

ut+f(u)x = 0 x∈ (−∞,∞), t > 0

u(x,0) =u0(x)
(10)

One can consider the scheme (conservative) in the form

un+1
k =unk−

∆t
∆x

(f̃k+1/2− f̃k−1/2), (11)

where f̃ is the numerical flux as some approximation of the physical flux f in (10).
The consistency of the scheme (11) is fulfilled if

f̃k+1/2(u,u,...,u) = f(u). (12)

In most cases one can express

f̃k+1/2 =
1
2

(fk+1 +fk)+
1
2
Qk+1/2(uk+1−uk), (13)

whereQ does not decrease the order of consistency and depends on u and derivatives of
u (expressed in a numerical way). In the term Q one can imagine e.g. some limiters.
A wide range of numerical schemes contains more or less traditional schemes, like
the upwind scheme and Lax-Friedrichs scheme (first order) or Lax-Wendroff scheme
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(second order). Some relatively new, popular and efficient schemes are TVD schemes
or ENO schemes. New but not so frequent are composite schemes ([7–9]) or schemes
using some filter to eliminate oscillations near shock waves. When somebody wants to
find some details about higher order upwind or central schemes for 1D scalar equation
or 1D system of Euler equations see e.g. [10]. For symmetric TVD schemes or some
simplified TVD schemes see e.g. [11].

The 2D and 3D models of Euler equations have to be used in real numerical
simulation. In multidimensional case nobody is still able to prove that scheme is
TVD. Commonly a proper multi-dimensional extension of a 1D TVD scheme is used
without theoretical background, but on the other hand the achieved results often
showed similar quality of numerical solution like for the 1D problem (accuracy, not
oscillated result near the shock wave, proper motion of the shock wave, ...). When one
uses as a governing system the multi-dimensional system of Navier-Stokes equations,
the convective part is usually approximated by multi-dimensional extension of the
mentioned schemes and dissipative part by central differencing using some type of
approximation (e.g. auxiliary finite volumes).

Our group followed trends described above and during last years developed
several 2D and 3D methods for computation of transonic flows in internal and external
aerodynamics based on following schemes (finite volume methods):

a) older version of Mac Cormack scheme and two TVD versions of Mac Cormack
scheme (simplified and full version [12, 13]),

b) cell vertex Ron-Ho-Ni scheme [14],
c) several TVD upwind schemes based on MUSCL interpolations and then

approximative Riemann solver or Lax-Friedrichs flux [15, 16],
d) TVD implicit scheme based on first order preconditioning and Osher

method [17],
e) ENO and WENO method [8],
f) composite scheme on basic triangular grid and dual grid (predictor-corrector

scheme) in cell vertex form 2D, 3D [9],
g) Runge-Kutta multistage scheme based on the idea of Jameson, Turkel and

Schmidt.

All mentioned schemes have been commonly tested not only for simple cases,
but also for more complicated physical and engineering problems. Some results
achieved in several tests will be mentioned in the next section. The results show
accuracy of the method, properties of artificial viscosity terms, properties of grid
used in solution, and so on.

4. Some numerical examples of transonic flow
We developed several tests of 2D transonic flows. The first test case is the

inviscid steady transonic flows in the so-called GAMM channel (see Figures 4 and 5)
with M∞= 0.675 and bump of 10% (one half of 20% DCA symmetrical airfoil). The
well known feature (computation) is maxM ≈ 1.37−1.38, as well as the location of
a shock wave and appearance of the so-called Zierep singularity behind the shock
wave when one considers the distribution of Mach number along the wall with a
bump (lower wall). Figure 4 shows a numerical solution in the form of Mach number
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Figure 4. GAMM channel: distribution of M along walls
and details near upper and lower part of shock wave

distribution on the walls (lower, upper) computed by several developed methods,
Figure 5 shows results in the form of iso-Mach lines only for two computed cases,
because the picture of results using isolines is very similar for all results. Results
achieved by a higher order Osher scheme with WENO reconstruction on an adapted
grid are used as reference values on both left and right parts of Figure 4, details of
main graphs near the upper and lower part of the shock wave are located below each
part. Results achieved by central type schemes on a structured grid are plotted in the
left part. We can observe that these methods without any grid adaptation reach the
expected maximum of Mach number in front of the shock wave. The method with
a TVD type of artificial viscosity term does not produce any oscillations and maps
more correctly the region of Zierep singularity than the method with Jameson’s type
of artificial viscosity. The right part compares results achieved by upwind schemes of
second (reference) and first order with and without adaptation. One can observe that
the first order method (modified Roe scheme) cannot reach the expected maximum
of Mach number. Several steps of grid adaptation can increase the maximum of Mach
number, and presence of the Zierep singularity is observed. We can mention that the

Figure 5. GAMM channel: Iso-Mach lines; TVD MC (left), Osher implicit method
on adapted grid (right)
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(a)
(b)

(c) (d)

Figure 6. Turbine cascade SE1050: Iso-lines of Mach number and experiment – strips of constant
density; (a) TVD Osher scheme, H type grid (b) TVD Osher scheme, adapted triangular grid

(c) TVD Roe scheme, adapted triangular grid (d) interferogram of IT CAS

higher order version of the method (MUSCL reconstruction) with grid adaptation
yields a result very similar to the reference one.

The second test case is inviscid steady transonic flow through an SE1050 turbine
cascade measured by IT CAS (interferometric measurements). The main features of
flow are: subsonic inlet, transonic outlet (M2is ' 1.198), compression domain in the
second part of the channel between the blades, closed sonic line, structure of shock
waves and reflected shock waves in the downstream part of the flow field. Figure 6a
shows numerical results using iso-Mach lines computed by the implicit TVD method
and H-type grid, Figure 6b – using the same method but on a triangular grid with
adaptation, and Figure 6c – computed by the explicit TVD method (Roe) in the
form of Mach number isolines. It is possible to compare all achieved results with
experimental interferometric data of IT CAS shown in Figure 6d. The H-type grid of
quadrilaterals does not capture correctly the profile geometry near the leading edge
and therefore one can see the influence of entropy production in a layer near the
suction side of the profile and behind the trailing edge – like a wake (Figure 6a). This
phenomenon is effectively suppressed by an adaptive triangular grid (Figure 6b, c).
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We can also see that the left running shock wave is captured better on a quadrilateral
(Figure 6a) than on triangular grid independent of the type of upwind scheme.

The third test case is transonic flow through a DCA 8% cascade of IT CAS
computed for inviscid flow and also for laminar viscous flow. This viscous test case is
more academic than real, but can show strong influence of artificial viscosity effects
in computation of viscous flows. We consider Re = 6450 and M∞= 0.76, α= 2̊ . The
first numerical results of this case were achieved by [18] and multistage Runge-Kutta
methods. The flow was computed as steady flow. Our results were achieved later by
the TVD Mac Cormack method (or not far from TVD) and by WENO scheme of
high order. These results plotted in a form of iso-Mach lines show unsteady regimes
and for the same time T one can compare results achieved by different methods.
Both methods are less dissipative than the Runge-Kutta method and WENO is
less dissipative than the Mac Cormack method. Both methods achieved an unsteady
solution with a Kárman vortex street in the wake, see Figure 7, 8, and confirmed that
our older results achieved by the multistage RK method [18] were not very accurate!

Figure 7. WENO scheme, 50000 time steps (left), 50200 time steps (right)

Figure 8. TVD Mac Cormack scheme, 50000 time steps (left), 50200 time steps (right)

The next test case is 3D transonic flow through a turbine cascade of Škoda
Pilsen. Transonic flow through the stator and rotor blade row has been computed by
the cell centered (TVD Mac Cormack scheme) and cell vertex (modified Ni scheme)
schemes on the same relatively simple H type grid. Outlet flow parameters computed
for the stator blade were recomputed into the relative frame of reference and have
been used (in proper form) as inlet parameters for computation of flow through the
rotor blade row. Figure 9 compares results of both methods for the stator, Figure 10
for the rotor blade row in the case when body forces were not taken into account. Both
results are plotted in a form of iso-Mach lines for several cross-sections in different
positions in the span-wise direction.

We can generally observe a good agreement between the results achieved by
both methods. Some differences are in the mapping of the shock wave structure in
the cross-section of the stator blade near the hub, results differ a little bit more for
the highly twisted long rotor blade of the low pressure turbine stage. The next figure
(Figure 11a) also shows a very good agreement of the computed radial distribution
of inlet and outlet parameters for the rotor blade. Figure 11b shows a significant
redistribution of inlet flow parameters (near the hub) for the case when body forces are
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(a) (b)

Figure 9. 3D stator axial turbine blade row: Iso-Mach lines;
(a) TVD MacCormack scheme, (b) Ni’s scheme

(a) (b)

Figure 10. 3D rotor axial turbine blade row; Iso-Mach lines;
(a) TVD MacCormack scheme, (b) Ni’s scheme

considered. Both methods use central Lax-Wendroff type schemes of second order. To
achieve the presented agreement of results is not so simple for such complex industrial
problems. It needs proper mathematical formulation of boundary conditions, grid,
parameters of the method (e.g. coefficients in artificial viscosity terms). Comparisons
of results achieved by independent methods (it means different e.g. grid, scheme and
artificial viscosity, finite volume, approximation of boundary conditions) are necessary
for validation of results of numerical simulations used for industrial purposes especially
in cases when experimental data are not available.

The next figure compares results of transonic flow for the radial stator turbine
cascade computed by the method of first order (Roe type Riemann solver) and higher
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(a) (b)

Figure 11. 3D rotor blade; (a) inlet and outlet Mach number distribution,
(b) inlet and outlet Mach number distribution

order method (Osher Riemann solver, WENO reconstruction) on a triangular grid
(iso-Mach lines). The main features of transonic flow through this cascade are the
significant acceleration of flow in the downstream direction and strong shock waves
crossing the outlet part. We can see a very good agreement of the computed results in
Figure 12a, b although the first method is higher order and the second one only first
order. The pressure distribution along the profile surface shows that the influence of
the grid near the leading and trailing edges (Ni scheme has been used on an H type
grid) is more important than the numerical scheme in this case.

5. Turbulent flows

There are several ways to compute turbulent flows:

a) mostly preferred RANS equations (Reynolds Averaged Navier-Stokes equa-
tions) in the laminar (formally) form (or modified at the right hand side by
some additional terms or source terms) and some special way to compute the
so-called turbulent viscosity coefficient,

b) RANS equations and for micro-turbulent structure LES in the form the Smagor-
insky model,

c) DNS for some special forms of turbulent flows or to investigate the transitional
part between laminar and turbulent flows.

We prefer at our group now mainly part a) and we have some experience with
part b). In part a) mainly algebraic, one-equation, two-equation and RSM (simplified)
models are used to compute turbulent flows. More frequent models are:

α) algebraic:
• Baldwin-Lomax,
• Johnson-King,
• some RNG versions,

β) among one-equation models mainly the Spalart-Almaras model,
γ) among two-equation models k-ε, k-ω or some modifications of the mentioned

models. Recently, the SST model of Menter [19] seems to be very successful.
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(a)

(b)

(c)

Figure 12. Turbine radial stator cascade: (a) Osher scheme, WENO reconstruction,
(b) first order Roe scheme, (c) Pressure distribution along profile

We have an experience (numerical) with the Baldwin-Lomax model and two-
equation model (k-ω) for 2D transonic flows in external aerodynamics. Another part
of our group has an experience with several two-equation models (k-ε, k-ω), see
Figure 14, for 2D and 3D incompressible turbulent flows. Recently, the best results
have been achieved with Menter’s SST model [19].

We have developed several numerical methods (2D and 3D) [20, 21] computing
the incompressible viscous (laminar or turbulent) flow based on:

a) Mac Cormack scheme,
b) RK-multi stage scheme,
c) Crank-Nicholson (CN) and some modification of CN scheme,
d) AUSM scheme,
d) Kuwahara modified scheme.
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The last two schemes have high accuracy, order ≥ 3 for convective terms (3rd,
5th order) and order ≥ 2 for dissipative terms (2nd, 4th, 6th order).

Figures 13 and 14 compare computed results of 2D incompressible impinging
jet flows (IJF) for a 2D ERCOFTAC case achieved by several turbulence models.
Figure 15, 16 show 3D results for Re = 23000 (turbulent).

Figure 13. Isolines of velocity for 2D jet, linear (left) and non-linear (right) SST model

(a) (b)

Figure 14. 2D impinging jet: (a) friction velocity, (b) velocity on jet axis

Figure 15. 3D impinging jet: isolines of velocity (left) and of k (right)

Figure 17, 18 show the computation of a turbulent case of backward facing step
flows (BFS) for Re = 13333. Figure 17 then shows details of the computed results
near the corner.

Using some examples, we showed that numerical simulation can be successful
only if one uses:

a) suitable mathematical and physical model (including turbulence modelling),
b) suitable mesh appropriate for the geometry of the solved problem and scheme

(with second or higher order accuracy) that is chosen sufficiently dissipative,
but not too much for the case of high Reynolds number flow,
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(a) (b)

Figure 16. 3D impinging jet: (a) r/D= 0.5, (b) r/D= 2.5

Figure 17. Flow field behind the step: velocity vectors and streamlines; Re = 13 333

Figure 18. Isolines of velocity (above) and turbulent kinetic energy (below) in 2D, Re = 13 333

c) suitable and sufficiently accurate results with the examined rate of convergence
or compared to experimental or other numerical results or analytical results. In
this case adaptation of the grid and multi-grid solution is very often used.

We do not know the best schemes or turbulent models or grids. It is possible to
mention more or less suitable schemes or turbulent models for a given case of flow and
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geometry. We can say that mainly the recently published schemes ‘not far’ from TVD
schemes (ENO, WENO, RK, ...) or not very dissipative TVD schemes are commonly
used in numerical simulation with sufficient success.

6. Closure
The development of numerical methods at CTU Prague and IT CAS CR is

shortly described mainly for transonic flows in internal aerodynamics. Then some
commonly used mathematical models and numerical methods mainly based on the
system of Euler and shortly on the system of Navier-Stokes equations were described.
We deal more with numerical approximation of the convective part of the equations
for high upstream velocity (high Reynolds number) than with the dissipative part.
We mentioned TVD, ENO, composite and other schemes for a relatively general
finite difference and finite volume mesh (structured, unstructured, adaptive) in several
examples of 2D and 3D transonic flows. Also some numerical results of turbulent flow
were mentioned and presented.

The paper shows that the numerical solution realized at modern and efficient
computers, carefully using modern as well as traditional schemes (taking into account
the influence of grid, scheme, adaptation, turbulence model...), is at this time a very
strong tool to find main properties of the flow. Numerical solution is also helpful for
modern design in turbomachinery. Not only experimental and theoretical research
seems to be a strong support in turbomachinery but also numerical simulation, as
some application of mathematics, numerical mathematics, engineering and physical
sciences is now a more and more important part of design of new modern aircrafts,
turbines, power plants, etc. Theory as well as experimental and numerical research
are now means to continue progress and better description of fluid flow problems.
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