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Abstract: The versality of the compact disc (CD) has quickly become apparent to manufacturers
and users alike. Exceeding the expectations of even its most ardent supporters, the CD holographic
disc storage system has become one of the most successful consumer electronics products ever
introduced. The phenomenal success of the audio CD on the eager worldwide marketplace has
encouraged rapid development of CD technology and spawned entirely new high tech applications
for the dimpled disc. The Mini Disc (MD), for instance, occupies about one-fourth the area of the
standard CD-Digital Audio (CD-DA) format yet provides an identical playing time through efficient
data reduction. The essence of digital audio lies in its numerical basis. It is the aim of the present
paper to elaborate the mathematical principles underlying the audio CD as far as they are concerned
to the format’s electronic and holographic principles.
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Dedicated to the memory of Claude Elwood Shannon (April 30, 1916 –
February 24, 2001), the pioneer of digital information processing.

He changed our real life.

1. Introduction
An important aspect of all information transmission is the storage and detection

of encoded information. Information technology (IT) deals with the implementation
of these modalities. Specifically storing audio information places great demands on
a digital medium. A 60-minute musical program recorded in stereo channel modality
with pulse-code modulation (PCM) at a standard time sampling frequency of 44.1kHz
and with 16-bit amplitude quantization level every 23µs, for instance, generates over
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5 billion bits of information in all. Because error correction, synchronization and
modulation are obligatory requirements for successful audio information storage and
detection, the total capacity required with random access capability is over 15 bil-
lion bits. Thus digital audio’s requirements are considerable. The storage of visual
information for parallel image processing [1–3] is, of course, even more demanding
than the storage of audio information. Holographic methods are particularly efficient
for storing image data.

The original Compact Disc–Digital Audio (CD-DA) format was developed
to meet these demands at low costs. A frame structure provides such a format.
The frame as the irreducible unit of data representation in the CD format is the
smallest recognizable section of data on a disc surface. It furnishes a means to
distinguish the data types: audio data and its parity, synchronization word, and
subcode. The information contained in a CD frame prior to modulation contains
a 27-bit synchronization word, 8-bit subcode, 192 data bits, and 64 parity bits. CD
frames are assembled when the master disc is encoded. Assembly of the frame involves
several processing steps as well as modulation and the addition of merging bits.

The encoding process begins with placing serial strings of audio data on the
CD data surface. Six 32-bit PCM audio sampling periods, alternating from 16-bit
left and right channels, are grouped in a frame, the left channel preceding the right.
Each 32-bit sampling period is divided to yield four 8-bit audio symbols. The original
16-bit number is called a word, and it is split into two 8-bit symbols. After grouping
audio data into symbols, error correction takes place. This step employs a combination
of interleaving and parity to make the data more robust against errors encountered
during storage.

Following encoding, an 8-bit subcode symbol is added to each frame. Although
the user cannot access the subcode directly, it provides much of the information for
proper disc playback as well as front panel controls and display. To interpret and
utilize this information, the CD player collects subcode symbols from ninety-eight
consecutive frames to form a subcode block, with eight 98-bit words. Only two bits are
used in audio CDs. Included is information specifying the total number of selections
on the disc, their beginning and ending points and timings, the index points within a
selection, the program lead-in and lead-out points, and updated information on the
pickup’s position as the disc is played. The other 6 bits are available for encoding other
information on audio CDs. After the audio, parity, and subcode data are assembled,
the bit stream is modulated using eight-to-fourteen modulation (EFM). Blocks of 8
data bits are translated into blocks of 14 bits, known as channel bits, using a read-
only-memory (ROM) dictionary which assigns an arbitrary and unambiguous word
of 14 bits to each 8-bit word. In EFM, each 8-bit word is translated to a 14-bit word
selected for its specific bit pattern. With 14-bit words, more unique patterns can be
selected. Thus EFM provides a kind of error correction.

The blocks of 14 bits are linked by 3 merging bits. Two merging bits, always
0s, are required to prevent the possibility of successive 1s between serial words. The
additional merging bit, either a 1 or a 0, depending on the preceding and succeeding
patterns, is added to each code pattern to aid in clock synchronization and to suppress
the signal’s low-frequency component. The resultant channel stream produces pits
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and lands on the CD data surface which are at least 3 channel bits and no more than
11 channel bits long. The tracks of pits on the CD data surface are the physical
manifestation of data encoding, including multiplexing, interleaving, parity, error
protection, and EFM encoding.

The high tech CD-DA system was introduced in Europe and Japan in the fall
of 1982 and in the United States of America in the spring of 1983. It has become
one of the most successful high precision microelectronic devices ever introduced.
Specifically, more than one billion CD-DAs are sold every year, and LPs have all
but vanished. Because it contains the same audio information, bit for bit, that was
recorded in the studio, the audio CD has been growing rapidly in popularity since it
was launched worldwide in the early 1980s. The commercially available CD players
represent prime examples of the benefits of digital microelectronic chips and integrated
optoelectronic systems. Due to the spinorial feature of the standard CD-DA format,
they are perhaps the most sophisticated and microelectronically subtle high tech
pieces of audio equipment to ever reach the consumer.

Although the CD-DA system has prospered beyond the wildest dreams of its
inventors, it does not signal the end of development in audio technology. Today,
the compact disc family encompasses alternative format specifications such as the
Compact Disc-Read Only Memory (CD-ROM) for professional databases and mass
storage for computer-related applications, Digital Versatile Disc-Read Only Memory
(DVD-ROM) for advanced high density storage of high fidelity audio-video frames,
and various other types of CD formats among which the interactive compact disc (CD-
I) format is a special specification of the CD-ROM format [4, 5]. The CD-I concept
was introduced in 1986, the same year that over three million CD-DA players and
over fifty-three million audio CDs were sold in the USA.

The CD-I system which permits the storage of a simultaneous combination
of digital audio, video, graphics, text, and data, all functioning in an interactive
format, with user control over presentation, on a 12-cm diameter optical disc, was
launched in 1991. The CD-I system is thus a multimedia extension of digital audio
found on CD-DA discs. It proves that the compact disc is highly suitable for non-
audio applications. Because CD-I players reproduce conventional CD-DA discs, CD-I
forms also an upscale CD-DA system.

The CD-I format defines both hardware and software standards, much like
the audio CD format. Although CD-ROM can also store text, graphics, video and
audio, CD-I defines a special integration of such functions. Because CD-I represents
an interactive medium, its information may be accessed through a dialogue procedure.

The CD-ROMs which store 600 megabytes on one side of the 5 inch disc
are the logical extension of the CD-DA format toward the broader application of
information storage on a digital medium. The CD-ROM standard, unlike the CD-
DA standard, does not link CD-ROM to any specific application of IT. The spinorial
format is thus transparent and offers a cost-effective way of distributing large amounts
of information, especially information not requiring frequent updating. Of course,
various more advanced concepts such as the computationally highly demanding mini
disc (MD) adaptive transform acoustic coding (ATRAC 3) format, supported by the
technological and signal theoretic progress made since the launching of the original
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CD-DA format, are under the way to open a new market for the information storage
and signal retrieval industry.

The ATRAC encoder divides the PCM data into segments in intervals up to
20 ms long. Fast Fourier transform (FFT) software analyzes the wavelet data in each
segment and generates corresponding frequency component data. Using psychoacous-
tic modeling, the system identifies the audio components that are audible and en-
codes them, assigning bits as needed according to the amplitude of audible frequency
components. Other inaudible data is discarded. Following ATRAC encoding, data
undergoes Cross Interleave Reed-Solomon Code (CIRC) and EFM encoding and is
recorded to disc along with subcode and address information.

Audio data reduction techniques such as ATRAC are based on the working
of the human ear and assume that the information capacity of the ear is less than
the CD standard provides. To ascertain which data may be discarded, psychoacoustic
models of the ear have been devised which demonstrate that in theory a data rate of
less than 100 kbps per channel may be adequate, if properly encoded.

Elementary signal theoretic techniques such as the Shannon time sampling
process and amplitude quantization modes of IT form the basis of digital audio.
Without them, the CD-DA system would not be a viable reality. Both sampling and
quantization are parameters which determine the limitations of an audio digitization
transducer. Therefore all digital audio system architectures use these parameters to
record and reproduce signals.

There are various different ways to encode serial strings of digital data [6].
Modulation is the process of encoding source information prior to transmission and
detection via information channels and storage. Among these techniques, PCM is one
of the most efficient high performance encoding methods. The PCM hardware design
is routinely used for telemetry of images from space vehicles and forms the most
popular digital audio system architecture, owing to its error-free properties.

PCM is a modulation process in which the instantaneous amplitude of an analog
signal is converted to a binary number by a A/D converter and then transmitted as
a serial string of bits. The encoded signal is fully compatible with digital circuitry
which is usually designed to operate with a binary code. Because of its efficient use
of bandwidth and its compatibility with off-the-shelf circuitry, PCM has proven to
be an expedient means of representing audio data for recording and signal retrieval.
The adaptive delta PCM (ADPCM) combines elements of PCM encoding and delta
modulation (DM) encoding. Because of its ability to store digital data with fewer
bits, ADPCM is extremely efficient. On the other hand, ADPCM requires additional
processing steps beyond regular PCM for both encoding and decoding.

The PCM format like various other coding schemes of IT requires wider
bandwidth than the corresponding analog signal. However, PCM data is easily
multiplexed, that is, several data channels may be merged to form one channel of
data. Therefore the majority of digital recordings are mastered on PCM digital audio
recorders. At the output of a CD player which provides access to any part of the
audio program within a second or less, the data returns to its PCM format at the
D/A converter. A D/A converter does the opposite IT job of an analog-to-digital
(A/D) converter. It takes a train of binary-coded words as its input and produces a
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continuous-time output proportional to the value of the digital input by means of the
impulse response of the Heaviside zero-order hold. The input sample-and-hold (S/H)
circuit, sometimes called an aperture circuit, which is the next integrated circuit
following the D/A converter and installed on the same D/A microelectronic chip,
performs a hold function to buffer instability in the analog signal and correct for
high-frequency roll-off. When the D/A output voltage is stable and any glitches have
passed, the S/H output forms a pulse amplitude staircase signal.

The S/H circuit is essentially made of a capacitor and switch. It tracks the signal
until the sample command causes the switch to open, isolating the capacitor from the
signal. The capacitor holds this analog voltage during conversion. The timing of the
sample command must be carefully controlled to prevent jitter, the phenomenon of
imprecise sample times. Then the pulses in the output are the width of a sampling
period. Reconstruction requires pulses of infinitely short duration. This is impossible
to achieve because it would require infinitely large current amplitude flow. Because
of the finite duration of the output samples, a filtering effect occurs in which the
amplitude response declines to zero at the sampling frequency. This is beneficial
because image spectra are attenuated.

To summarize the hardware design which realizes an audio PCM digitization
transducer, its recording section consists of input amplifiers, a dither generator, input
anti-aliasing low-pass filters, S/H circuitry, A/D converters, a multiplexer, digital
processing and modulation circuitry, and a storage medium such as optical disc. On
the digitization transducer’s output side are demodulation and processing circuits, a
demultiplexer, D/A converters, S/H aperture circuitry, output anti-imaging low-pass
filters, and output amplifiers. From the mathematical point of view, the transducer’s
input-output reflection symmetry is of particular importance.

The essence of digital audio lies in its numerical basis. Usually, the mathematical
interest of digital audio storage media such as the CD-DA format is restricted to
the error correction which is performed by the cornerstones of error correction:
interleaving and parity. Interleaving is employed to guard against the occurrence of
burst errors. The parity bit added to every data word represents the redundancy
contained in the correction codes. The parity bit is chosen so that the total numbers
of ones and zeros in the data word plus parity bit is even or odd. Due to extra data
created from the original data to help detect errors, the chance to correct errors is
easier with digital data than with acoustic analog signals. The particular algorithm
commercially used in the CD-DA information transmission channels is the Cross
Interleave Reed-Solomon Code (CIRC). The CIRC circuit uses two correction codes
for additional correcting capability and three interleaving stages to encode data before
it is placed on the disc. Similarly, CIRC performs error correction while decoding the
serial string of data during playback.

Upon playback, following demodulation, data is transmitted to a CIRC decoder
for de-interleaving, error detection, and correction. The CIRC decoding process
utilizes parity from two Reed-Solomon decoders and scatters consecutive errors by
de-interleaving. In this way, errors become more likely random errors which are more
easily corrected.

In contrast to the treatments of coding algorithms, the present paper deals with
the temporal data readout of the CD-DA. It shows that the timing defined by the real
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Heisenberg nilpotent Lie group G is behind the holographic readout procedure of the
spinorial format and that the metaplectic group leaving the one-dimensional center
C of G pointwise fixed dictates the optical focusing as well as the discrete time data
sampling process of IT [7, 8]. Although there are, independently of the summation
formulae approach, very short proofs and many rigorous derivations of the Shannon
time sampling theorem available, the approach based on a central projection has to
be given preference, at least from the methodological and the epistemological point of
view, because G is a relatively elementary non-compact non-abelian Lie group which
allows to define in a conceptual way the filter banks of IT.

Next to audio information, visual information plays a major role in human
communication and orientation. It is estimated that about 80% of all information
received is of visual nature. It is not surprising, therefore, that with the advent
of electronic data processing the desire arose for the data acquisition, processing
and analysis of pictures and sequences of images by digital computers. Since the
first trials some 30 years ago, image processing has developed into a broad scientific
discipline which intensively interacts with several other topics such as phase coherent
optics, quantum statistics of radiation, information theory and signal processing,
pattern recognition, and artificial intelligence [9–12] . As an outlook to advanced
phase coherent summation imagery, the paper refers to a two-dimensional imaging
implementation of this system which leads to the non-invasive diagnostic modality
of clinical magnetic resonance tomography [3, 13, 14]. In fact, an understanding
of the CD-DA system forms an excellent preparation for the understanding of the
much more sophisticated modality of clinical magnetic resonance imaging (MRI)
and synthetic aperture radar (SAR) imaging [1, 12]. Both are holographic imaging
modalities which are highly demanding with respect to their conceptional as well as
technical implications. Both have made substantial technical advances in the past
decade.

It was the field of optical holography which gave birth to the CD-DA system.
In 1969, Dutch physicist Klaas Compaan learned that engineers at RCA had devised
an inexpansive way to manufacture optical holograms by using a master stamper
with microscopic formations to press copies. After a dozen years of research and
development, he believed that the filter bank technique could be used to produce
optical discs holding video images. He related the brilliant idea that would result
in one of the most successful consumer electronics products of all time, the CD,
to his colleague Piet Kramer in 1970, and, together in Eindhoven they completed
a prototype glass disc with a series of 1-mm square black and white images that
could be projected onto a screen. They decided it would be more efficient to record
a video signal, rather than images themselves, and to use a track of dimples to
holographically encode the analog frequency modulated signal. Moreover, they found
that a laser source was needed to coherently recover the signal from the hologram. In
July 1972, they publicly demonstrated a color prototype. Meanwhile, in 1972 large
scale integrated (LSI) circuits were introduced by various manufacturing companies
such that microprocessors could evaluate the serial string data of the filter banks
and drive home the point that small size is key. The develoment of very large scale
integrated (VLSI) technology supported these ideas.
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Whereas the RCA company indirectly helped to holographically develop the
CD-DA system, with the exception of the EMI company in Britain, the first manu-
facturers of the X-ray computerized tomography (CT) scanner, industry took little or
no notice of the clinical MRI modality. The early prototype EMI scanner, an X-ray
projection-reconstruction system producing high-quality cross-sectional images, ini-
tially of the head and subsequently of the whole body, formed an invention which has
revolutionized radiologic diagnosis for which Godfrey N. Hounsfield shared the 1979
Nobel prize for medicine. His co-recipient, Allan M. Cormack, received recognition for
the development of accurate reconstruction algorithms for ill-posed problems, work
which began in the late 1950s and came to fruition in the early 1960s. It is inter-
esting to note that Hounsfield devoted the latter part of his Nobel prize address to
a discussion of the future of nuclear magnetic resonance (NMR) rather than X-ray
CT techniques. Today, MRI is a billion-dollar industry; thousands of MRI scanners
are helping patients the world over. Now considered the premier diagnostic imaging
modality, clinical MRI not only competes with X-ray CT scanners but many diagnosti-
cians believe that MRI will eventually replace X-ray CT scanners in the radiological
departments.

The theory of Lie groups and Lie algebras is a fundamental part of mathem-
atics because it allows to rigorously investigate basic internal and external symmetry
principles. According to Wolfgang Ernst Pauli (1900-1958), symmetry forms the fun-
damental organising principle of physics and the natural sciences. In signal processing,
symmetries are used to implement fast processing algorithms by sophisticated special-
purpose processors. Among these, spectrum analyzers implementing the FFT are par-
ticularly popular [6]. Albert Einstein’s intuitive treatment of relativity was followed
shortly by a more sophisticated treatment by Hermann Minkowski (1864–1909) in
which Lorentz transformations were shown to constitute a Lie group of rotational col-
lineations. Similarly, shortly after Werner Karl Heisenberg (1901–1976) introduced his
famous Commutation Relations in quantum physics, which underlie his Uncertainty
Principle, Hermann Weyl used the Lie commutator bracket [ . , . ] to show that they
could be interpreted as the structure relations
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for the canonical basis of the real Lie algebra Lie(G) of the real Heisenberg nilpotent
Lie group G. Unexpectedly, the Heisenberg Lie group G is also at the basis of optical
holography and thus conclusively explains the filter bank concepts holographically
implemented by CD, MRI, and SAR.

This paper presents an introduction of harmonic analysis on the “almost
abelian” Heisenberg Lie group G to information theory with an outlook to the
enchanting area of theta identities, such as the Jacobi and the Landsberg-Schaar
identities, and the field of phase coherent summation imagery which is conceptually
based on the filter bank concept well known from multirate signal analysis or subband
coding.
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2. The holographic data readout procedure of IT

Many methods of audio storage and detection have evolved since Thomas Alva
Edison (1847–1931) made the first audio recording in 1877 on a cylinder covered with
tin foil. Ironically, the invention of the analog phonograph was performed while he
was experimenting with a device for storing digital data, a telegraphic code repeater.
Early acoustical recordings were made on wax cylinder and shellac disc. Subsequently,
numerous magnetic tape formats were developed. However, all of these audio systems
recorded and reproduced analog signals by using a mechanical pickup. Because optical
holography was far ahead, conceptionally as well as technically, time was not mature
for the highly complex process of disc manufacturing.

Figure 1. Visualization of the tracks of pits on the metalized CD data surface by use of a
scanning electron microscope. The horizontal line of the scan indicates a scale of 5µm. The track
pitch, the distance between adjacent laps of the pit spiral, is 1.6µm so that there are about 600

tracks to a mm. Each pit has a width of about 0.5µm. In comparison, the cross-section of a human
hair has a width of 75µm. The minimum pit length is 0.833µm to 0.972µm, the maximum pit
length is 3.05µm to 3.56µm so that a track of pits might contain about 3 billion pits precisely

arranged on a spiral. Unspiraled, the track would stretch about 3.5 miles. Because each outer track
revolution contains more pits than each inner track revolution, the CD must be slowed down as it
plays in order to maintain a constant rate of data. Based on the timing of the master clock, the
CD player automatically regulates the disc rotational speed to maintain a constant bit rate of

4.3218MHz during holographic readout

In IT the CD is certainly one of the most advanced storage media available.
The CD-DA format stores its information digitally and uses a laser optoelectronic
pickup. The length of its data represents the binary bits which represent the original
audio signal. A laser beam of carrier frequency ν is focused to read the data stream.
The data is physically contained in the disc’s pits which are impressed along its top
surface and are covered with a 50 to 100nm metal layer. The data storage in pits on
a flat surface is not directly visible to the naked eye. A scanning electron microscope
is needed to get a sufficiently good look on the track of pits (Figure 1) arranged in
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a continuous spiral running from the inner circumference to the outer one. Another
10µm to 30µm plastic layer protects the metalized pit surface. The laser beam is
focused on the metalized data surface embedded inside the disc and passes through
the transparent plastic substrate and back again.

The fact that the laser beam passes the disc substrate provides one of the
significant assets of the CD system. The plastic substrate has refractive index of
1.55 whereas air has normalized refractive index 1.0. The speed of light slows from
c= 3 ·108 m/s to c′= 1.9 ·108 m/s and changes the carrier frequency ν to the fraction
νy. It is the instantaneous frequency νy which characterizes the frequency modulation
of the carrier frequency ν induced by the substrate. Because of the refractive index,
the thickness of the CD, and the numerical aperture of the objective lens, the size of
the laser beam on the disc surface is approximately 2µm. Hence, the laser beam is
focused to a point slightly larger than a pit width but does not overlap the tracks of
pits (Figure 1).

The reflective flat surface, called land (Figure 2), causes almost ninety percent
of the laser light to be reflected into the optoelectronic pickup. When considered
from the laser’s perspective, the pits are viewed as tracks of bumps. The height of
each bump is between 0.11µm and 0.13µm. This height is slightly smaller than the
semiconductor laser’s wavelength λ= 780nm in air. Inside the polycarbonate substrate
with a refractive index of 1.55, the laser’s wavelength is about λ′= 500 nm. The height
of the bumps is therefore approximately 1

4 of the laser’s wavelength λ′ inside the disc
substrate.

Figure 2. For holographic data readout, the semiconductor laser beam passes the disc substrate.
The refractive index of the substrate contributes to the optical focusing of the laser beam. The

transparent plastic substrate forms most of the CD’s 1.2mm thickness
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Notice that light striking land travels a distance 1
2λ further than light striking

a bump. This creates a phase difference

x=
1
2
λ

between the part of the beam diffracted from the bump and the part reflected from the
sourrounding land (Figure 3). The phase difference x causes the two parts of the beam
destructively interfere with and cancel each other. Actually each pit edge, whether
leading or trailing, is a one and all areas in between, whether inside or outside a pit,
define zeros. This holographic technology is a more efficient storage technique than
coding the binary bits directly with pits. Combinations of the varying lengths of the
pits encode the binary data stream to holographically be read by the semiconductor
laser beam. Because the holographic readout procedure is non-invasive, the CDs are
completely immune to damage from repeated playing.

Figure 3. Data is physically contained in pit tracks which are impressed along the CD top surface
and are covered with a thin 50 to 100nm metal layer. Another thin 10 to 30µm plastic layer

protects the metalized pit surface. A semiconductor laser beam is used to read the data. In the
laser illumination, a pit height causes a wavelength path difference of x= 1

2λ relative to
surrounding land. The laser optoelectronics, servo system for automatic focusing and tracking,

control microprocessors, and integrated output D/A circuitry are all high, high tech

The pits on the CD data surface are the physical manifestation of data encoding,
including multiplexing, interleaving, parity, error protection, and EFM encoding, all
of which take place at the lathe when the master disc is cut. A CD might contain
3 billion pits precisely arranged on a spiral track. The optoelectronic pickup has to
focus on, track, and read that data spiral. To achieve sharp focus within a ± 2µm
tolerance on the data surface, and proper frequency modulation for the definition of
the disc data y, a monochromatic illumination of the CD data surface is required.
Otherwise the phase interference between the direct and reflected laser light is lost
along with the audio data, as well as the tracking information, and, ironically, the
focusing information itself. The objective lens must therefore be able to refocus as
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the disc surface deviates vertically. A servo-driven auto-focus system manages this
control problem of the spinorial readout procedure.

Auto-focus control is an absolute prerequisite in a laser optoelectronic pickup
system. Disc warpage and other irregularities would place the data out of the pickup’s
depth of focus, making it impossible to holographically create the necessary phase
interference pattern with the pit height and land. Specifically, phase coherence is
vital to implement phase cancellation in the near-infrared light beam produced by
disc pits so that disc data x can be read. Both specifications can be accomplished by
a laser diode placed at the focus of the collimator lens with a long focal length. A
monitor diode stabilizes the semiconductor laser’s output.

Any optoelectronic pickup system must, of course, control both tracking and
focusing simultaneously. When the auto-focus is not operative, the system pulls the
objective lens back to prevent damage to the lens or CD.

Because the parameters x and y have timelike character, a spindle motor is
used to rotate the CD with constant linear velocity, a phase coherency condition in
which a uniform relative velocity is maintained between the disc and the pickup. To
achieve this, the rotation speed of a CD has to vary depending on the position of the
pickup underneath the surface. Because each outer track revolution contains more
pits than each inner track revolution, the CD must be slowed down as it plays in
order to maintain a constant rate of data.

When the laser beam is reflected at the revolving disc surface during playback,
the response is detected by a photodiode sensor. The optoelectronic pickup’s servo
loops use electric signals to control motors to mechanically adjust the pickup’s
position horizontally and vertically, relative to the disc surface. In another servo loop,
information from the data itself is used to determine the disc’s precise rotational
speed, and maintain the proper data stream rate. It is the voltage stemming from the
sensor which is ultimately transformed into the analog audio signal output from the
CD player. The encoded data from the pickup must first be decoded.

In the CD-DA player, the numerical aperture of the objective lens, wavelength of
the semiconductor laser, thickness and refractive index of the disc, and size and height
of the pits all work together to allow data to holographically be read from the disc. The
various subsystems in a CD player are closely interrelated with a tightly interlocked
timing relationship: The audio data rate is 176.4 kbytes per second. Because there are
24 audio bytes in a frame, the frame rate is 7350Hz and the master clock 4.3218MHz.
A single master clock is employed for all the signal processing circuitry, including the
oversampling filter bank and D/A converters. The master clock establishes that the
CD forms a temporal device. As a result, the data stream of the CD-DA player is
synchronous, preventing any internal beating.

While CD-ROM uses a data format similar to that of the CD-DA format, the
players are not compatible. A CD-ROM player contains laser optics, modulation,
and error correction, but D/A conversion and audio output sections are replaced
with a computer interface to output the ROM data to a host computer. Data is
transmitted to the host computer in blocks of 2 kbytes. Because they are not tied to
one specific operating system or data processor, CD-ROM devices can be interfaced
with all existing computer systems. CD-ROM is limited only by the capabilities of
the operating system and microprocessor of the host computer.
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A DVI (Digital Video Interactive) all-digital optical disc is a CD-ROM format
containing DVI specific data of reproducing full-motion, full-screen video, computer
generated video graphics, and digital audio via a CD-ROM drive [15]. Although data
on DVI discs is formatted to CD-ROM specifications and can be played on a CD-ROM
drive, special DVI decoding technology is required. The DVI format is incompatible
with the CD-I format and diverse other CD-ROM implementations. Interestingly, CD-
I was the first large volume application of the Moving Picture Experts Group (MPEG)
international standard for coded representation of moving pictures, associated audio,
and their combinations when used for storage and signal retrieval on digital storage
media. The MPEG audio and video coding algorithms allow use of video sequences
coded with a variety of CD-I picture formats, as well as a variety of CD-I audio
formats.

As a subset of the CD-ROM data format, the CD-I system offers five levels of
audio quality, to be selected according to the need for fidelity, and calls for a total
storage capacity of approximately 650 megabytes. Because a CD-I disc is recorded with
constant linear velocity, a constant readout rate of 75 frames per second is achieved.
The adaptive delta pulse code modulation (ADPCM) is employed in the CD-I audio
format as a hybrid encoding technique that correlates successive data samples to
adapt to changes in the signal. It uses 4- or 8-bit words, depending on the level of
sound quality required, and can be considered as a bit rate reduction technique. Since
each of the quantization levels is assigned a step-size scale factor, step sizes may be
adapted with greater accuracy, because more step-size information is available. The
scale factors are based on the statistics of the signal itself. For instance, scale factors
for an ADPCM circuit designed to process speech would be selected differently from
those for a system designed to process music. Decoding is accomplished in the CD-
I player. EFM demodulation and error detection/correction decoding are effected.
Interpolation is performed if error flags are present, and ADPCM audio data is block-
decoded and expanded to linear 16-bit form. Digital-to-analog (D/A) conversion,
low-pass filtering, and de-emphasis complete the audio processing of the CD-I audio
format. As implemented in the CD format, ADPCM’s fidelity is lower than the PCM
signal on an audio CD, but it is suitable for many CD-I applications, particularly
when speech composes the audio program.

3. Harmonic analysis on the real Heisenberg Lie group
Taking into account the aforementioned parameters detected by the laser

optoelectronic pickup, the real Heisenberg group G collects the phase difference x,
the local frequency νy, and the real variable z dual to the carrier frequency ν into an
upper triangular matrix with real entries:

g=




1 x z
0 1 y
0 0 1


 .

The transversal trace of the element g ∈G is given by:

g0 =




1 x 0
0 1 y
0 0 1


 (x∈R,y ∈R).
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The group law of G is matrix multiplication:

g1 ·g2 =




1 x1 z1

0 1 y1

0 0 1


 ·




1 x2 z2

0 1 y2

0 0 1


=




1 x1 +x2 z1 +z2 +x1y2

0 1 y1 +y2

0 0 1


 ,

so that G forms a non-commutative real Lie group of dimension 3. The inverse of the
element g ∈G is given by:

g−1 =




1 −x −z+xy
0 1 −y
0 0 1


 .

The center C ↪→G is formed by the subgroup of matrices


1 0 z
0 1 0
0 0 1


 (z ∈R),

and is therefore isomorphic to the real line R. The matrix exponential, which maps
the Lie algebra Lie(G) onto G, projects the one-dimensional center of Lie(G) of all
matrices 


0 0 ζ
0 0 0
0 0 0


 (ζ ∈R)

onto the real line C. If the elements g ∈G are written as triples of real numbers (x,y,z),
then the elements of C are identified with the real numbers z ∈R. The non-trivial
unitary characters of C are then given by the functions

z; e2πiνz (ν 6= 0).

For the next step of reasoning it is important to note that the physical meaning of
the elements g ∈ G and its applications to IT becomes apparent only by unitarily
representing the Lie group G.

Let SC(R) denote the Schwartz space of infinitely differentiable complex-valued
functions ψ on the real line R which are, as well as all their derivatives, rapidly
decreasing at infinity. For each real number ν 6= 0, the Lie group G acts time generating
on the waveform ψ ∈SC(R) according to the temporal rule

ρν

(



1 x z
0 1 y
0 0 1



)
ψ(t) = e2πiν(z+yt)ψ(t+x) (t∈R).

Then there is a unique unitary linear extension of ρν from SC(R) to the standard
complex Hilbert space L2

C(R). The unitary linear representation ρν of G in L2
C(R)

is irreducible. It is called the linear Schrödinger representation of G [7] associated
to the carrier frequency ν 6= 0. Because the irreducible unitary linear representation
ρ1 is square integrable mod C, it admits a reproducing kernel K allied to the global
Frobenius reciprocity theorem [16, 17]. In terms of multirate signal analysis or subband
coding, the transversal linear mappings

ρ1

(



1 x 0
0 1 y
0 0 1



)

:L2
C(R)−→L2

C(R) (x∈R,y ∈R)

defined by the transversal traces g0 ∈G are called filter bank operators associated to
the linear Schrödinger representation ρ1 of G.
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Often the linear Schrödinger representation of G is confused with the Schrö-
dinger equation of quantum mechanics. Whereas the Schrödinger equation is related
to the probabilistic detection of signals and therefore not invariant under the action
of the Lorentz group, the irreducible linear Schrödinger representation of G describes
the time modi of information transmission by phase coherent signal processing. An
important consequence of the irreducibility is that the unitary linear representations
ρν and ρν′ of G are inequivalent for ν 6= ν ′ [7]. As a consequence, the associated
diffraction patterns do not interfere so that audio signals can be conveyed from one
device to another with a minimum amount of confusion. Specifically in the DVD-
ROM format this consequence of the fundamental Stone-von Neumann theorem [7]
is used to increase the information content by stacking several transparent slices of
pit tracks. The transmission of digital data streams, however, is a great deal more
complicated on account of the potential disagreements of the sampling frequency,
the synchronization method used, and the block length. In this case, a time-sharing
multiplexing transmission channel transmits or receives frames, each containing left
and right channel data alternatively. The transmission rate corresponds exactly to
the source sampling frequency. When the time sampling frequency is 44.1kHz, the
CD-DA format allows to transmit 44100 frames per second. One frame consists of
two subframes, labelled left and right stereo channel, each containing 32 bits of audio
information.

In the case of a unique slice as in the CD-DA format it is convenient to normalize
the carrier frequency scale such that ν= 1 holds. Then the Levi-Cività mapping

J :




1 x z
0 1 y
0 0 1


;




1 −y z
0 1 x
0 0 1


 (z ∈R)

forms an automorphism of period 4 of G which leaves the center C ↪→G pointwise
fixed. Of course, the elements




1 0 z
0 1 0
0 0 1


∈C

are the only fixed points of the mapping J . It is not difficult to establish that the
Fourier cotransform F̄ :SC(R)−→SC(R) which is defined by the assignment

F̄ψ(s) =
∫

R
e2πistψ(t)dt (s∈R)

satisfies the intertwining identity

F̄−1 ◦ρ1(g)◦F̄ = ρ1
(
J(g)

)

for all matrices g ∈ G. It follows that the linear Schrödinger representation ρ1 is
isomorphic to the unitary linear representation ρ1◦J of G. The unitary isomorphism is
given by the Fourier cotransform F̄ . It is immediate that its inverse F̄−1 is associated
to the automorphism

J−1 :




1 x z
0 1 y
0 0 1


;




1 y z
0 1 −x
0 0 1


 (z ∈R)

tq0206f5/296 27III2002 BOP s.c., http://www.bop.com.pl



Digital Information Processing: The Lie Groups Defining... 297

of G, and the Fourier transform F :SC(R)−→SC(R), where

Fψ(t) =
∫

R
e−2πitsψ(s)ds (t∈R).

It is immediate that both F̄ and F admit unique extensions to L2
C(R). The mappings

J and J−1 are entangled elements of the metaplectic group and can be associated with
the entangled symplectic matrices

(
0 −1
1 0

)

and (
0 1
−1 0

)
,

respectively. It makes sense to denote them also by J and J−1 =−J , respectively.
The entangled symplectic matrices J and J−1 represent turns of 90̊ of opposite

orientation in the affine Euclidean plane R⊕R (Figure 4). They suggest a complexi-
fication of the plane R⊕R in order to identify the matrices J and J−1 with i and
ī in C, respectively. Because the Shannon sampling process reflects the symplectic
structure of the Levi-Cività matrices, the CD-DA system is actually two-dimensional.
This aspect does not only contribute to the high precision, the insight into this as-
pect also makes the understanding of the CD-DA system an excellent preparation of
the clinical MRI modality which has enjoyed, along with the art of electronics, an
explosive development in the last decades [3, 6, 18, 19].

Figure 4. Simplified block diagram of a coherent radar system. The metaplectic group provides
coherent signals via mixers which are indicated by the symbol ⊗. In the receiver, the phase delay

of −90̊ implements the element of the metaplectic group associated to the matrix −J
(fIF = intermediate frequency, fRF = radio frequency, COHO = coherent oscillator, LO = local
oscillator, STALO = stable local oscillator). The two output channels of the receiver I, Q feed

A/D converters which are the most critical and costly components
in a reliable audio digitization transducer
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4. The Shannon time sampling process
Sampling means dividing a signal into evenly spaced discrete points in time and

smoothing by linear convolution. If the two-dimensional lattice Z⊕Z is considered as
a subgroup of R⊕R, periodization of ρ1 modZ⊕Z transforms:

G3




1 x z
0 1 y
0 0 1


; ρ1

(



1 x z
0 1 y
0 0 1



)
ψ(t)∈C

(
ψ ∈SC(R)

)
,

where t∈R, into the equivalent mapping

G3




1 x z
0 1 y
0 0 1


;

∑

n∈Z

e2πi(z+ny)ψ(x+n)∈C.

It is actually sufficient to assume that the function ψ is continuous on an interval
of periodicity and to understand convergence in the distributional sense. The central
projection z = 0 provides the periodized filter bank operator, and subsequently an
application of the mapping J under which the two-dimensional digitization lattice
Z⊕Z is invariant provides the Poisson summation formula in its symmetrized form
originally due to G. H. Hardy [20]:

eπixy
∑

n∈Z

e2πinyF̄ψ(n+x) = e−πixy
∑

n∈Z

e2πinxψ(n−y)
(

(x,y)∈R⊕R
)
.

The projection y= 0 of the two-dimensional digitization lattice Z⊕Z yields the less
symmetric Poisson summation identity [8]:

∑

n∈Z

F̄ψ(n+x) =
∑

n∈Z

ψ(n)e2πinx (x∈R).

Suppose that F̄ψ ∈L1
C(R) holds. Since

∫

R
|F̄ψ(s)|ds=

∑

n∈Z

∫ n+1

n

|F̄ψ(x)|dx=
∑

n∈Z

∫ 1

0
|F̄ψ(n+x)|dx

is finite, the series on the left hand side of the Poisson summation identity converges for
almost all x∈R to a periodic integrable function. Invoking a mathematical principle
first explicitly enunciated and systematically exploited by Erich Hecke: “A periodic
function should always be expanded in a Fourier series”, the kth Fourier coefficient is
given by the resonance identity:

∑

n∈Z

∫ 1

0
e−2πikxF̄ψ(n+x)dx=

∫

R
e−2πikxF̄ψ(x)dx=ψ(k) (k∈Z),

the term-by-term integration of the Laurent joined series being justified by the
dominated convergence theorem. Hence the Laurent joined series on the right hand
side of the Poisson summation identity is the Fourier series of the function on the left
hand side. Multiplication by the character

s; e−2πixs (x∈R)

of the additive group R, and integration over the symmetric unit interval
[
− 1

2 ,+
1
2

]

of low frequencies s gives:
∑

n∈Z

∫ + 1
2

− 1
2

e−2πixsF̄ψ(n+s)ds=
∑

n∈Z

ψ(n)
∫ + 1

2

− 1
2

e2πi(n−x)sds=
∑

n∈Z

ψ(n)
sinπ(x−n)
π(x−n)
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and so
∑

n∈Z

ψ(n)
sinπ(x−n)
π(x−n)

=
∫ + 1

2

− 1
2

e−2πixsF̄ψ(s)ds (x∈R).

But

ψ(x) =
∑

k∈Z

∫ k+ 1
2

k− 1
2

e−2πixsF̄ψ(s)ds=
∫ + 1

2

− 1
2

e−2πixsF̄ψ(s)ds,

and so

ψ(x)−
∑

n∈Z

ψ(n)
sinπ(x−n)
π(x−n)

=
∑

k∈Z

(
1−e2πikx

)∫ k+ 1
2

k− 1
2

F̄ψ(s)ds (x∈R).

If ψ is a bandlimited function so that the symmetric spectral condition

F̄ψ(s) = 0 (|s| ≥ 1
2

)

indicates the cut out procedure performed by the stop-band, the cardinal series
representation of signal theory follows [21–23]:

ψ(x) =
∑

n∈Z

ψ(n)
sinπ(x−n)
π(x−n)

=
∑

n∈Z

ψ(n)sinc(x−n) (x∈R).

Claude Elwood Shannon himself did not prove the cardinal series represent-
ation; his derivation was purely heuristic and did not specify the sense of conver-
gence [24]. However, “A Mathematical Theory of Communication”, published by him
in the same year 1948 when John Bardeen, William Bradford Shockley, and Walter
Houser Brattain invented the transistor, formed a real landmark, because it contained
work on information theory, including a measure of information and the capacity of
a data transmission channel. In point of fact the sampling theorem had been known
under the name of cardinal series at least since 1915.

To reproduce ψ from its bi-infinite sequence of samples
(
ψ(n)

)
n∈Z, the amp-

litude response function

sincx=

{ sinπx
πx

for x 6= 0

1 for x= 0

denotes the sinus cardinalis filter of spline theory. Due to the normal convergence of
the series

∑
n≥1

z2

n2 for z ∈C, the canonical product expansion of the window function

sinc : C3 z;
∏

n≥1

(
1− z

2

n2

)

discovered by Euler in 1734 extends to an even entire holomorphic function of
exponential type. Therefore the discrete time data sampling process of IT is closely
allied to Carlson’s theorem of complex variables which states that the trivial function
is the only entire holomorphic function of exponential type <π that vanishes at the
set of integers (Section 5 below).

The cardinal series representation permits to spot the multiresolution flavor
of IT [25]. Each sample value is multiplied by the appropriate sinc coefficient
corresponding to its contribution to the overall impulse response of the filter. The
products are summed to produce the output filtered sample. It thus digitally simulates
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the impulse response of an analog filter. The Shannon time sampling theorem dictates
that the frequency content of the audio signal be less than or equal to the half-
sampling frequency. The input signal may contain frequencies greater than the half-
sampling frequency. A low-pass filter removes high frequencies to produce a spectrum
of frequencies below the half-sampling frequency. Using the procedure repeatedly, the
final approximation space obtains.

From this procedure another technique of multirate signal analysis called
oversampling design becomes immediate. The oversampling filter bank is utilized in
today’s CD players in which additional sample values are computed by interpolating
between original sample values on board a dual-channel linear-phase finite impulse
response (FIR) digital filter chip. In view of the fact that additional samples have
been generated, the sampling rate of the output signal is greater than the input
signal. The spectrum of the signal is changed, with the images appearing at multiples
of the oversampled sampling rate. Because the distance between the baseband and
sidebands is larger, a gentle analog filter bank design can be used to remove the images
without causing phase shift or other artifacts [5].

5. A reproducing kernel Hilbert space

Filtering is a fact of life for digital audio systems. An input anti-aliasing filter
must precede the sampler to uphold the symmetric spectral condition for bandlimited
and thus lossless sampling. Similarly, the output anti-imaging filter must filter out all
frequencies above the half-sampling frequency.

The time sampling identity of the filter specified by the sinc function allows
an extension to the Paley-Wiener space [26]. The entire holomorphic functions of
exponential type at most π that are square integrable on the real axis forms a complex
vector space PW(C). Under its natural scalar product, the complex Hilbert space
PW(C) is isometrically isomorphic to the standard complex Hilbert space of low-
pass filtering L2

C

( [
− 1

2 ,+
1
2

] )
. Let the reflection

w; w̄

denote the unique involutory automorphism of the field C different from idC with fixed
point set R, and therefore given by complex conjugation. The uniquely determined
reproducing kernel ([17, 27, 28]) of the Paley-Wiener space PW(C) is defined by the
holomorphic-antiholomorphic function of positive type

K : (z,w) ; sinc(z− w̄)

on the space C×C. The function K reflects the global Frobenius reciprocity by
incorporating production and reproduction simultaneously. As a consequence, the
convolution representation or low-pass filter identity

ψ(z) =
∫

R
ψ(s)sinc(z−s)ds (z ∈C)

holds for every function ψ ∈ PW(C). From the convolution representation specified
by the sinc filter it is immediate that the Paley-Wiener space PW(C) of reproducing
kernel K is closed under the operation of differentiation.
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6. Basic theta identities
A classical example of an application of the Poisson summation identity referred

to above is the Jacobi identity for the theta null function:
∑

n∈Z

e−πn
2τ =

1√
τ

∑

n∈Z

e−
πn2
τ (τ > 0)

which has also the computational merits of convergence acceleration for small values
of the parameter τ > 0 [29]. As a matter of fact, one of the main benefits of the
Poisson summation formula is the systematic supplying of analytic and arithmetic
approximations.

Due to its quantum mechanical background, harmonic analysis on the real
Heisenberg nilpotent Lie group G is, of course, not restricted to the derivation of the
time sampling process of IT and the reproducing kernel K of PW(C) appears as
a valuable by-product for signal retrieval. An analysis based on the dual stochastic
aspects of quantum physics, [11, 12], and the Maslov index, however, leads via the
longitudinal evolution operator associated to the Schrödinger equation or the method
of path integration of the longitudinally driving Lévy stochastic process to the deep
Landsberg-Schaar identity for quadratic Gaussian sums [30, 31]:

1√
p

∑

0≤n≤p−1

e2πin
2q
p =

1√
2q
e
πi
4

∑

0≤n≤2q−1

e−πi
n2p
2q (p> 0,q > 0),

valid for positive integers p and q. The standard proof of the Landsberg-Schaar identity
is by putting

τ = 2i
q

p
+ε (ε> 0)

and then letting ε→ 0+ in the Jacobi identity. This method invokes an example of
another mathematical principle first explicitly enunciated and sytematically exploited
by Hecke: “Exact knowledge of the behaviour of a holomorphic function in the
neighbourhood of its singularities forms a source of arithmetic theorems”. In view of
the Lévy-Khinchin spectral trace formula [32, 33], the Landsberg-Schaar identity may
be considered, however, as dual to the Jacobi identity for the theta null function. The
geometry of the Lévy-Khinchin formula strikingly disproves that the one-dimensional
unitary representations of G are “substantially uninteresting” [34, 35]. Actually these
unitary characters of G are of substantial interest for the detection procedure because
they represent the collapsed states of phase coherent quantum field theory [12, 36].

In elementary number theory the Landsberg-Schaar identity plays a central
role underpinning key results relating to the law of quadratic reciprocity in terms of
Legendre symbols:

(
p

q

)(
q

p

)
=
(
−1
) p−1

2
q−1

2 (p> 0,q > 0)

for odd integers p and q, and characters. Indeed, the concept of Heisenberg group
G may serve “à une démonstration de la loi de réciprocité quadratique, apparentée
à celle qui figure au dernier chapitre du livre classique de Hecke sur les corps de
nombres algébriques” [8]. Shor’s algorithm for quantum computing suggests a close
interrelation between elementary number theory and quantum information, too.
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Figure 5. Radar imaging: The dynamics of pack ice in the Beaufort sea, located in the north of
Canada and Alaska, has been observed and updated every three days by Radarsat. The channels,

so called polynjas, have been created in the arctic ocean within nine days. Radarsat telemetry
established that the lengths of some of the polynjas is up to 2000 kilometers

7. An outlook: phase coherent summation imagery

A central goal of signal processing is to describe real life signals by the concept
of filter bank. Filter banks represent coherent arrangements of low-pass, band-pass,
and high-pass filters used in IT for the spectral decomposition and synthesis of
signals. Motivated by optical holography, they play an important role in modern
signal processing applications because they easily allow the extraction of spectral
components of a signal while providing very efficient implementations.

A symplectic extension of the summation formulas leads to filter banks which
are at the holographic basis of clinical magnetic resonance tomography (MRI) and
synthetic aperture radar (SAR) imaging (Figure 5). Both of these imaging modalities
are based on the hologram idea in the radiofrequency and the microwave range,
respectively [3]. In contrast to the cardinal series filter implemented by the CD-DA,
the construction of a filter bank performs the recovery of the image. The output of
the A/D converter installed in the CD-DA player is parallel data in which all 16 bits
of the data word appear at once on 16 lines. Yet electronical storage devices permit
storage only of serial string data in which the bits appear one after another. Data is
therefore converted from parallel to serial format.

The symplectic extension to optical holography, however, allows the parallel
processing modes of the SAR and MRI modalities by holographically implemented
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filter banks. The recovery of the image is then performed by an application of
the symplectic Fourier transform to the modulation transfer function [1, 3]. The
intrinsic symmetry of the symplectic Fourier transform allows to accelerate the image
reconstruction process without severe degredation of the picture.

Clinical MRI which is based on intrinsic differences between normal and
abnormal tissues, provides a multitude of image contrasts [3, 18, 19]. Due to this
advantage of spin dynamics, MRI is the non-invasive imaging modality of choice
in the majority of all cases of clinical diagnosis. Differences in longitudinal and
transversal relaxation, spin density, macromolecular composition, diffusive motion,
and bulk flow can be underscored by a variety of specifically designed pulse trains
of suitable duration, orientation, and frequency. The subject of pulse train design is
excitingly helpful and the clinical imaging results are cute (Figures 6 and 7).

Magnetic resonance angiography represents a category of non-invasive imaging
techniques that seek to define the anatomy and morphology of vascular structures us-
ing the methods of clinical MRI. It consists of a spectrum of techniques using magnetic
resonance pulse trains specifically devised to provide angiographic contrast, allowing
depiction and characterization of blood vessels. Broadly speaking, these techniques

Figure 6. High resolution clinical magnetic resonance tomography: Sagittal cross-section of the
neurocranium along the falx cerebri within the longitudinal interhemispheric fissure demonstrating

midline sagittal neuroanatomy of the outwardly rounded gyri and inwardly invaginating fissures
and sulci of the human brain. The various portions of the corpus callosum shown include the

rostrum, genu, body and splenium, pineal gland, quadrigeminal plate, infundibulum, third and
fourth ventricle, pituitary gland, cerebellar vermis, pons, aqueduct of Sylvius prepontine space,

and craniocervical junction. High resolution MRI scans approximate the same level of detail as cut
specimens to non-invasively depict neuroanatomy even in the deepest recesses of the brain.

State-of-the-art magnetic resonance angiography for neuroimaging allows visualization of the blood
flow without catheterization, without an external contrast agent, and with high resolution in all

three dimensions. The ability to image intravascular space even for very slow blood flow velocities
and to obtain adequate signal-to-noise ratio in a short data acquisition time

is very appealing for the diagnostician
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Figure 7. Angiography of the whole body performed by clinical magnetic resonance imaging
within two minutes of measure time. The comparison of a healthy subject (left image) with the

vessels of a 66 years old patient demonstrates various lesions (arrows) due to arteriosclerosis

may be divided into time-of-flight sequences, which take advantage of intravascu-
lar signal associated with inflow, phase-contrast pulse trains, which make use of the
phase shifts associated with blood flow; black blood methods, which selectively satur-
ate flow; and contrast-enhanced angiography, which relies on intravascular relaxation
time shortening to provide blood vessel contrast.

Magnetic resonance angiography has undergone significant development over
the past decade and is now widely used in many clinical applications. It has gone
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from being a novelty application of MRI with limited clinical use to replacing
catheter angiography in some clinical application. Substantial technical advances in
MRI scanner hardware including higher performance gradients with faster rise times,
and greater maximum amplitudes have been very beneficial for magnetic resonance
angiography when pushed to the limits of higher resolution and short data acquisition
time. Improvement in pulse train design combined with improved coil design also have
greatly improved the quality of magnetic resonance angiography possible today, even
when compared to only a few years ago. Clinical MRI with magnetic field strengths
> 1.5 T implied a significant improvement in the signal-to-noise ratio. Recently, high
resolution magnetic resonance angiographic techniques have been developed that allow
magnetic resonance angiography to replace conventional catheter angiography for
preoperative evaluation of patients before endarterectomy.

8. Conclusion

Godfrey Harold Hardy (1877–1947), “the purest of the pure” mathematicians,
thought that the existence of mathematics could only be justified as art if it could
be justified at all [37, 38]. Although he did not specify his understanding of the
metaphysics of art, he insisted on the fact that his own mathematical achievements
have been based on pure thoughts and did not admit any real life application. However,
the grand master’s elegant symmetric version of the Poisson summation formula which
has been put, independently, in its general group theoretical context by André Weil
(1906–1998), projects from the two-dimensional digitization lattice Z⊕Z onto the
Shannon time sampling theorem which, ironically enough, forms the base of the most
successful consumer electronics products, the CD-DA, ever introduced. The CD-DA
player forms the most sophisticated piece of audio electronics to reach the home.
Because all CDs and players offer considerable advantage over other audio media, the
audio CD has proved to be a technological wunderkind in the highly sophisticated
and competitive field of music and data storage. Due to their versatility which has
quickly become apparent to manufacturers and users alike, more than a billion audio
CDs are sold every year. In the extremely storage-hungry market of IT, which forced
the MD ATRAC 3 format to increase the maximum playing time of a conventional
CD-DA from 74 minutes to 320 minutes, the annual worldwide demand for CD-DAs,
CD-ROMs, DVIs, CD-Is, and DVD-ROMs is still rapidly climbing.

A central extension of the symplectic structure hidden by the projected sum-
mation formulae allows a powerful application to phase coherent summation imaging
modalities of IT such as SAR and clinical MRI. Different from Hardy’s and Weil’s
view of the Poisson summation formula, the temporal approach justifies the projec-
tion approach to the sampling processes and quantization modes of signal theory and
opens a new perspective to the innovative field of IT. In this context, basic theta
identities and the law of quadratic reciprocity are valuable by-products of harmonic
analysis on the Heisenberg nilpotent Lie group G which reveals itself as the universal
mathematico-temporal structure of multirate signal analysis governing the mathem-
atically rigorous information theoretic approach to spinorial quantum physics [11].
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