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Abstract: In this paper a formal system called collection of dynamical systems with dimensional
reduction is considered. This is a multiscale method of mathematical description which allows to
consider molecular dynamics and continuum mechanics within one theoretical framework. Transition
between molecular dynamics and continuum mechanics is realized by means of the dimensional
reduction procedure. In order to realize such a procedure the formulation of continuum mechanics
is modified. This modification consists in incorporation scale of averaging for properties of processes
considered during modelling into this formulation. As a result we introduce finite-dimensional fields
on continuum only. All fundamental terms of continuum mechanics are now joined with an elementary
dynamical system. In such a case continuum mechanics can be obtained by means of the dimensional
reduction procedure applied to the elementary dynamical system. A numerical example of vibrating
chain of material points is realized in order to show how in practice the dimensional reduction can
be carried out. In this example decomposition of processes into slowly and quickly varying parts is
accomplished. To this end a finite element representation of averaged fields is applied. Solutions of
equations of the elementary dynamical system and the dimensionally reduced dynamical system are
compared.

Keywords: continuum mechanics, molecular dynamics, multiscale modelling

Nomenclature
EDS – elementary dynamical system
SDS – skeletal dynamical system
RDS – dimensionally reduced dynamical system
πT – mapping which transforms processes between scales
πfT – mapping which transforms forces between scales
VT – space of processes of EDS
V̄T – space of processes of SDS
B – continuous body
χ – deformation function

Gx – mapping which assigns zero-dimensional geometrical objects to subsystems
GL – mapping which assigns one-dimensional geometrical objects to subsystems
GS – mapping which assigns two-dimensional geometrical objects to subsystems
GV – mapping which assigns three-dimensional geometrical objects to subsystems
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1. Introduction
Modelling behaviour of solids is predominantly based on two approaches. The

first one describes evolution of atoms represented by a set of material points. Let
us mention molecular dynamics as the most successful method of this kind [1, 2].
The second one is based on continuum description [3], where averaging of properties
of processes occurring in materials is considered. Both mentioned approaches enable
modelling and simulation of a large variety of phenomena in solids.

Complexity of physical processes in materials forces considerations and model-
ling of rather some distinguished and separate phenomena only if we take into account
present possibilities of numerical calculations. Simulation of the whole complexity of
processes seems to be possible when we organize cooperation of various methods.

The problem of cooperation between atomistic models and continuum mech-
anics has been considered for a long time. Let us note that formulation of statistical
mechanics was directed towards explanation where the averaged properties of multi-
atomic systems, usually described by continuum mechanics, follow from. Nowadays,
relations between molecular dynamics and continuum mechanics are of great interest.
Let us mention Parrinello Rahman method [4, 5] or smooth particle applied mechanics
developed by Hoover and Posch [6–8].

In general, solution of the problem of cooperation between the discussed meth-
ods of modelling is rather difficult. Let us discuss several obstacles. The first one is
connected with a large number of processes in materials, associated with intermedi-
ate scales. The last term means that the scale of averaging necessary for description
of these phenomena is placed between the atomic one and that corresponding to
continuum modelling. Continuum models are connected usually with a scale larger
than one micrometer. Let us mention for instance the crystal plasticity which ap-
plies gradient of deformation as a measure of plastic deformation [9] or models of
the martensitic transformation based on micromechanics [10, 11]. However, the most
elementary mechanisms associated with the slip plasticity or the martensitic trans-
formation are placed below 100 nm. Indeed, this is a distance between single slip sur-
faces or interfaces between various martensite variants. Furthermore, transformation
of a martensite variant into another one changes also slip systems, which additionally
complicates the situation when we would like to describe interactions between these
phenomena.

Consequently, it is difficult to use atomic models for determination of properties
of a material within a representative volume related to scale above 1µm when so
complicated processes can appear there. This suggests directly that it would be
convenient to develop models of some intermediate scales. Nanoscale seems to be
the most convenient to obtain this. Nanoscale models for plasticity and martensitic
transformation have been discussed in [12] and [13]. In order to incorporate them
into a multiscale approach, methods of transition between various scale descriptions
should be elaborated.

Let us mention that molecular dynamics uses a finite number of atoms. Then,
simplified, more averaged models have to be characterized by smaller numbers of
degrees of freedom. In this case we encounter a new obstacle for cooperation between
the discussed methods. Namely, fields of continuum mechanics are infinite-dimensional
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in general. Consequently, formulation of the continuum mechanics has to be adapted
to cooperation with molecular dynamics.

The continuum mechanics has a bounded range of applications below a scale
which is caused by the atomic structure. On the other hand we have suggested
above application of continuum description related to various scales. Consequently,
introduction of finite-dimensional fields on continuum should be realized together with
formalization of scale of averaging. The last aspect is also helpful for determination
of methods of transition between various scale models.

Summarizing, the above discussion suggests a general way for integration of
molecular dynamics and continuum mechanics. This way is based on the following
elements:

• introduction of a concept of multiscale modelling by means of a dimensional
reduction procedure which enables transition between models related to various
scales,

• adaptation of formulation of continuum mechanics for realization of a dimen-
sional reduction procedure by formalization of scale of averaging,

• distinguishing special status for nanoscale models designed to direct cooperation
with molecular dynamics as an intermediate stage between atomic methods of
modelling and more averaged continuum models.

This is in fact very large program which cannot be realized within a single paper.
However, by this discussion a general motivation governing the approach presented
here is characterized.

The aim of this paper is to introduce a collection of dynamical systems
with dimensional reduction which is a formal system which represents methods
of multiscale modelling. This theoretical approach enables discussion of molecular
dynamics and continuum mechanics within one theoretical scheme after discussed
above modification of formulation of continuum theory.

2. Collection of dynamical systems
with dimensional reduction

2.1. General discussion

In order to integrate various methods of modelling we should consider a formal
system in which discussed methods could be immersed. It means that defined notions
associated with each method of modelling are also expressible in this more general
description.

Suggested formal system designed to integrate molecular dynamics and con-
tinuum mechanics is called here the collection of dynamical systems with dimen-
sional reduction and represents multiscale method of modelling. The most elementary
processes are described by an elementary dynamical system (EDS) by assumption.
Thus the elementary dynamical system is usually very complex. By means of the
dimensional reduction we obtain a simplified model based on theoretical foundations
provided by the EDS.
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Let us consider an elementary dynamical system in the following form:

ϕ̇=L(ϕ,f), (1)

where ϕ are variables of our dynamical system and f represents external interactions.
Transition to larger scale of averaging is connected with a simplification of

this model and corresponds to reduction of degrees of freedom. Our concept of
this simplification consists in division of the elementary dynamical system (1) into
subsystems. Division into subsystems is a starting point for introducing new variables,
representing reduced number of degrees of freedom, which describe behaviour of each
subsystem in a simplified way.

We introduce this by means of mappings πT :VT → V̄T , where VT is a space of
processes ϕ(t), t∈T on the time interval T and V̄T is a space of processes d(t) realized
by new variables. Similar mapping πfT :FT →F̄T is defined for external interactions
considered on both levels of averaging.

The main element of the dimensional reduction procedure (DR) is a skeletal
dynamical system SDS(C) depending on new variables. This is a family of dynamical
systems parameterized by constants C. Having EDS and SDS we are able to
construct two kinds of processes. The first one is based on solution ϕ(ϕ0,f)(t) of
the Equation (1) with initial conditions ϕ0 and has the form πT (ϕ(ϕ0,f)(t)). The
second one is created by solutions of equations of the skeletal dynamical system with
assumed constants C as d(C,π(ϕ0), f̄)(t), where f̄(t) = πfT (f(t)) and the mapping
π(ϕ0) transfers initial conditions into the dimensionally reduced level of description.

Let us consider the function:

H(ϕ0,f) = inf
C∈CE

ρ(d(C,π(ϕ0), f̄)(t),πT (ϕ(ϕ0,f)(t))), (2)

where CE is an admissible set of constants and ρ is a metric in the space of pro-
cesses V̄T .

Let C∗(d0, f̄) stand for constants for which the function H attains an infimum
for given d0 and f̄ . Then, a satisfactory approximation should have the property that
C∗ exhibits a weak dependence on d0 and f̄ . This is connected with assumed functions
πT , πfT and form of SDS which reflect correctness of averaged modelling. Finally,
we have to choose a constant C̄ from the set of C∗ by an averaging method. Then,

C̄ =Av{C∗ : C∗(d0, f̄),d0 ∈M̄, f̄ ∈ F̄)}, (3)

where Av stands for an averaging operation and M̄ is space of all admissible
values of d. Obtained constants C̄ determine a dimensionally reduced dynamical
system RDS=SDS(C̄). All methods applied in the procedure of approximation and
identification of constants are denoted by app.

Summarizing, the dimensional reduction procedure DR= {πT ,πfT ,SDS,app}
consists of four elements. Application of DR into EDS leads to obtaining the reduced
dynamical system.

2.2. Skeletal dynamical system
In order to postulate a form of the skeletal dynamical system we have to

introduce a set of assumptions which enable to transfer fundamental physical laws
into the reduced level.
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Let MΠ = {{ϕh}}, h ∈ IP stand for space of solutions of the elementary
dynamical system (1) with distinguished groups of variables ϕh related to hth

subsystem and IP = {1, . . . ,P} is a set of all indexes which number subsystems. We
introduce the following set of assumptions:

1. There exists a function m̄h(ϕh) = {mh1, . . . ,mhβh} which assigns a set of masses
for hth subsystem. The total mass of this subsystem is then mh =

∑
imhi. We

have also that
∑
hβh =N , where N is the total number of masses in the whole

system. The function m̃ :MΠ→RP with property m̃({ϕh}) = {mh} determines
distribution of masses in subsystems and m :MΠ → R, m({ϕh}) =

∑
mh

determines the total mass related to dynamical system given by Equation (1).
2. There exists a function Ẽ :MΠ → RP , Ẽ({ϕh}) = {Eh} which determines

distribution of energy assigned to subsystems and E :MΠ → R, E({ϕh}) =∑
hEh determines the total energy related to dynamical system given by

Equation (1).
3. There exists a family of mappings Jij :MΠ→R, i,j ∈ IP , Jij({ϕh}) = Jij called

flux of mass from jth subsystem to ith subsystem and Jij +Jji = 0, Jii = 0.
4. There exists a family of mappings Wij :MΠ→R, i,j ∈ IP , Wij({ϕh}) =Wij

called flux of energy from jth subsystem to ith subsystem and Wij +Wji = 0,
Wii = 0.

5. A source of mass is determined by a function c :MΠ→ RP , c({ϕh}) = {ci}.
ci =πi◦c({ϕh}) can be considered for each subsystem of the whole system and
stands for a source of mass in the ith subsystem.

6. A source of energy is determined by a function R :MΠ→RP , R({ϕh}) = {Ri}.
Ri = πi ◦R({ϕh}) can be considered for each subsystem of the whole system
and stands for a source of energy in the ith subsystem.

Taking into account these assumptions we are able to express a general form
of balance of mass equation for an arbitrary group of subsystems defined by set of
indexes IG⊂ IP :

∑

i∈IG
(ṁi−ci+

∑

j∈IO
Jij) = 0, Jij = J̄ij , j ∈ IO, (4)

where IO = IP − IG. The terms Jij describe interchange of mass with an external
system indexed by elements of IO. As a result the first equation in (4) is not entirely
determined. Therefore the second equation in (4) is additionally postulated, where
J̄ij describes an assumed form of efflux of mass.

The balance of energy equation has a similar structure to the balance of mass
equation and is given by:

∑

i∈IG
(Ėi−Ri+

∑

j∈IO
Wij) = 0, Wij = W̄ij , j ∈ IO, (5)

where W̄ij is an assumed form of efflux of energy. Let us note that Ei and Wij depend,
in general, on the state of the whole system in accordance with assumptions 2 and 4.

Equations (4) and (5) are the starting point for postulating the form of the
skeletal dynamical system. This is realized by option of representations of quantities
which appear in Equations (4) and (5). They are parameterized by a set of constants
which should next be identified.
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Particular representations of quantities in Equations (4) and (5) have to take
into account interactions between subsystems. These interactions are modelled by
means of functions of kinematical dependence. Let Hdh = {{dj : j ∈ Iah}} be a set
of values of variables dj determined on a set of subsystems indexed by elements of
Iah . Iah represents all subsystems which interact with the hth one. Let us introduce
a function ah : Hdh → Vah, where Vah is a linear space. Accordingly, the function
ah assigns an element of the linear space connected with hth subsystem to a set of
values of variables dj related to interacting subsystems. The function ah is called the
function of kinematical dependence between subsystems. The form of this dependence
is embodied in the structure of elements which belong to Vah.

We also introduce an additional concept of taking into account interactions
between subsystems. Let us consider a set of variables {dh}. In order to describe
interactions between different subsystems, a value of dh type in a given point of space
X can be useful. Let us note that our variables are not, in general, connected with any
geometrical point. We assume, however, that it is possible to introduce a transmission
function Tx({dh}) = dx which assigns dx in the point X to the set of values {dh}.
Then, interactions can be considered in the chosen point of space. Let us note that
such a function does not produce any additional degrees of freedom.

2.3. Continuum skeletal dynamical system
We discuss here continuum mechanics as a theory obtained by means of a

dimensional reduction procedure from an elementary dynamical system. EDS is
usually assumed to be finite-dimensional (molecular dynamics dynamical system
for instance). Then, the dimensional reduction leads to a continuum with finite-
dimensional fields. Therefore, we have to adapt formulation of continuum mechanics
for consistency with this procedure.

In order to define fundamental notions of continuum mechanics we assume
that geometrical objects of various dimensions can be assigned to each subsystem
by means of mappings Gx :MΠ → EPe , GL :MΠ → (2Ee)P , GS :MΠ → (2Ee)P ,
GV :MΠ→ (2Ee)P , where Ee is the Euclidean space, EPe stands for Cartesian product
of the space Ee taken P times, 2Ee stands for family of all subsets of Ee and (2Ee)P

is corresponding Cartesian product.
Consequently, the map Gx assigns some distinguished points to subsystems, GL

introduces one-dimensional, GS two-dimensional, GV three-dimensional geometrical
objects considered as subsets of Ee and accompanied by distinguished subsystems.

Let us consider the mapping GV ({ϕh}) = {Kh}, where Kh is a three-
dimensional subset of Ee. Let K= {Kh,h∈ IP } and MK = {K} stand for all families
of Kh obtained by means of GV . Then, GV :MΠ→MK . We assume also that internal
parts of Kh are disconnected for different h.

Definition 1: The body associated with the elementary dynamical system
ϕ̇=L(ϕ,f) is defined with the help of mapping GV as Bϕ =

⋃
h∈IP Kh.

We introduce the function Gx :MΠ→ {{χh}} which assigns a distinguished
point χh to each subsystem. LetHχh = {χm,m∈ Iah} and Vah be a linear space. The set
Iah represents indexes of subsystems Km which interact with Kh. Then, we introduce
the function ah : {Hχh}→ Vah and a : {{Hχh},h ∈ IP }→ {{ah({χm})},h ∈ IP } as a
function of kinematical dependence between subsystems.
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Let V̄D = {{χh,ah}, h∈ IP }. Let us define the space Vκ of deformation functions
χκ of the body B with respect to a given configuration κ as Vκ = {χκ : χκ = λ◦κ−1,
λ,κ ∈ C} as this is done in classical formulation of continuum mechanics [14]. Let
furthermore, αχ : V̄D→Vκ be a function and χKκ =αχ({χh,ah}), χKκ (Xh) =χh, where
Xh is the value of χh in a reference configuration.

Definition 2: The deformation function associated with the distinguished
family of subbodies K is a function χKκ which has the form χKκ =αχ({χh,ah}).

Definition 3: The motion of the body B associated with the family of sets K is
a continuous map χt : [0,T ]→{χKκ }.

Thus, we have defined the body, deformation function, and motion of the
body by using the elementary dynamical system. The mappings GV , Gx determine
connections between EDS and continuum description.

Let us consider a function T̄ on MK , which represents temperature, as T̄ :
{K}→RP , T̄ ({Kh}) = {Th}. Let Ibh⊂ IP and HTh = {Tn,n∈ Ibh}. Then, we introduce
function bh by analogy to ah as bh : {HTh}→Vbh and b : {{HTh}}→{{bh(Tn)}}.

Assignation of the value Th to the point χh in χ(Kh) is not so simple as defining
χh. The latter quantity has a direct geometrical interpretation. This is not the case
for Th. The discussed problem is connected with precise definition of the mapping πT .

Let V̄TM = {{Th,bh}, h ∈ IP }, VTM = {T (x) : x ∈ χ(B)}. Let us consider a
function αT : V̄TM→VTM and TK=αT ({Th,bh}).

Definition 4: The temperature field TK associated with the distinguished
family of subbodies K is the field obtained with the help of the function αT as
TK=αT ({Th,bh}).

Thus, we have obtained finite-dimensional spaces αχ(V̄D) and αT (V̄TM ). There-
fore, finite-dimensional fields are considered on continuum only.

First stage of the formulation of the skeletal dynamical system is based on
using balance of mass and energy equations for collection of dynamical systems. This
is realizable owing to the set of assumptions introduced. They admit the existence of
functions m̃, Jϕij , cϕ, Eϕ, Wϕij , Rϕ which introduce masses, efflux of mass between
subsystems, source of mass, energy, efflux of energy and source of energy related to
subsystems respectively. The index ϕ is introduced in order to accentuate connections
with the EDS. We define similar functions in terms of continuum.

Let us consider the mapping m̃ : MΠ → {{mh}} which determines a set
of masses related to a collection of dynamical systems. Let MM = {{Mh}} and
M :MK→MM be a mapping which assigns masses to each Kh. Masses Mh related
to continuum model are defined by means of the relation M ◦GV = i◦m̃, where i is
identity mapping. Let B=

⋃
hKh,h ∈ IB , where IB ⊂ IP is a set of indexes defining

an arbitrary subbody B of the body also denoted by B. Then, M(B) =
∑
h∈IBMh.

The function E :MK→{{Eh}} determines distribution of energy on the family
{Kh} and is defined by means of the relation E ◦GV = i ◦Eϕ. Source of mass
cϕ :MΠ→RP and source of energy Rϕ :MΠ→RP are defined now as C :MK→RP ,
R :MK → RP by means of relations C ◦GV = i ◦ cϕ and R ◦GV = i ◦Rϕ. These
quantities can be defined for subbodies with the help of formulas E(B) =

∑
hEh,

C(B) =
∑
hCh, R(B) =

∑
hRh. We assume furthermore that E =E+T is considered

as a sum of internal energy and kinetic energy for continuum.
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Efflux of mass Jϕij :MΠ→R and efflux of energy Wϕij :MΠ→R are defined
as Jij :Ki×Kj→R, where Jij is determined by means of Jij ◦(GV i×GV j) = i◦Jϕij
and Wij :Ki×Kj→R, where we obtain Wij from Wij ◦(GV i×GV j) = i◦Wϕij .

Let ∂B = ∂
⋃
hKh. We define J(∂B) =

∑
i∈IB ,m∈IP−IB Jim and W (∂B) =∑

i∈IB ,m∈IP−IBWim as quantities referred to boundary of the body. We consider
also ∂Bs ⊂ ∂B which is defined as ∂Bs =

⋃
h∈Is(∂Kh∩∂B), Is ⊂ IB . We assume that

pair of indexes {i,m} is associated with ∂Bs if ∂Bs is a border between subsystems i
and m. Then, J(∂Bs) =

∑
i,mJim.

The functions introduced above enable reformulating the balance of mass
equation (4). Now this equation interpreted in terms of continuum is expressed as

Ṁ(B)+J(∂B)−C(B) = 0, J(∂Bs) = J̄(∂Bs), (6)

where J̄(∂Bs) is determined for all ∂Bs⊂ ∂B.
The balance of energy equation (5) expressed in terms of continuum is assumed

in the following form:

Ė(B)+ Ṫ (B)+W (∂B)−R(B) = 0, W (∂Bs) = W̄ (∂Bs), (7)

where W̄ (∂Bs) is determined for all ∂Bs⊂ ∂B.
Determination of balance of mass and energy equation is a preliminary stage

of defining the skeletal dynamical system. The next step consists in postulating
representations of quantities introduced in Equations (6), (7). They are dependent
on constants. Then, identification of the constants with the help of EDS enables
obtaining a continuum model represented by RDS and associated with the elementary
dynamical system.

Discrete fields on continuum enable to introduce continuous fields on the body
by a set of mappings. We have already discussed αχ and αT ones. All remaining
discrete fields which appear on the continuum are transformed into continuous ones
by means of similar mappings. They should fulfill the well known integral relations
between densities and discrete values of quantities on each subbody.

The continuum mechanics discussed here is characterized by finite-dimensional
spaces of fields on continuum. In classical case such spaces are infinite-dimensional.
This difference is important. In our approach equations are directly finite-dimensional
and no discretization method is applied. Furthermore, formulation of a continuum
model with finite-dimensional fields is inherently connected with determination of
degree of averaging. This is expressed by option of sets Kh and the skeletal dynamical
system.

The range of validity of continuum description depends on the ability of selec-
tion of similar kind of subsystems and the same type of variables on each subsystem.
In such a case fields can be determined only. This means also that transmission func-
tions exist for each point of the body and for each kind of variables. Furthermore,
then there has to exist a mapping GV which introduces three-dimensional sets which
can be interpreted as subbodies.

Summarizing, the method of integration of molecular dynamics and continuum
mechanics consists in using a dynamical system defined by equations of molecular
dynamics as an elementary dynamical system and next introducing a continuum
skeletal dynamical system into the dimensional reduction procedure.
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3. An example of the dimensional reduction procedure

We discuss here an example which illustrates realization of a dimensional
reduction procedure. In order to do this we should determine an elementary dynamical
system, a skeletal dynamical system and connections between them represented by
mappings πT , πfT . Furthermore, we should decide what kind of approximation and
identification procedures should be applied in order to obtain the final form of the
dimensionally reduced dynamical system. We will follow here in accordance with the
general outline of this procedure which is shown in Figure 1.

Figure 1. General outline of the dimensional reduction procedure

We discuss first an elementary dynamical system. Let us consider a chain of
N particles {Pi,i ∈ IN}, IN = {1, . . . ,N}, with the same mass and distance between
them. The particles are distributed along the axis X and have positions Xi, i∈ IN in
a reference configuration. Evolution of particles is described by displacement vectors
ui = xi−Xi, where xi is the current position of ith particle on the axis X. Distance
between particles is described by ri = xi+1 − xi = ui+1 − ui + ∆ = zi + ∆, where
∆ =Xi+1−Xi.

The potential energy is given by the expression VP =
∑
iΦi
(
ri(zi)

)
. We have

applied here the Lennard-Jones potential [15]:

Φi = ε

((
σ

ri

)12

− 2
(
σ

ri

)6
)
. (8)
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Let fi be a force acting on ith particle. Then, equations describing evolution of our
system of particles are given by:

u̇i = vi, (9)

miv̇i =
∂Φi
∂zi
− ∂Φi−1

∂zi−1
+fi. (10)

We consider the Equations (9), (10) as equations of the elementary dynamical system.

We use notations ϕ= {u,v}, u = {ui},v = {vi} and space of processes ϕ(t) be
denoted by VT in what follows.

In order to realize the dimensional reduction procedure we have to postulate the
skeletal dynamical system in accordance with the scheme shown in Figure 1. Then,
we have to determine variables of SDS as well as its form parameterized by some
constants C. Let us discuss first the problem of variables related to the dimensionally
reduced level of description.

Determination of new variables is associated with determination of the mapping
πT in general. Postulating particular forms of such a mapping has to be motivated by
additional assumptions which are connected with physical properties of the system.
In the case considered here we assume that evolution of particles determined by
the elementary dynamical system Equations (9), (10) can be decomposed into both
quickly and slowly varying processes.

The starting point for determination above discussed mappings is the division of
EDS into subsystems. Consequently, the set of N particles is divided into subsystems
which consist of Nh =N/NP particles, where NP is number of subsystems. Thereby,
we identify our subsystems with sets of particles Sh = {Pi : i∈ Ih}}, IN =

⋃
Ih, Ih is

a set of indexes corresponding hth to subsystem.

We assign geometrical objects to each subsystem by means of mappings GL and
Gx. Consequently, the interval Kh = [Xh1,Xh2] is assigned to Sh by the mapping GL.
We have then Xi ∈Kh, i∈ Ih in reference configuration. Furthermore, a distinguished
point Xh is assigned to Sh by means of Gx. This point is a center of Kh.

By means of Kh we define one dimensional body B=
⋃
hKh. We introduce also

notations DX =B and ∆Xh =Kh in the reference configuration.

Additionally, we determine a domain for time as DT =
⋃
q∆Tq, where ∆Tq are

time intervals on which a time averaging is realized.

Solving Equations (9), (10) of the elementary dynamical system we obtain
solutions ui(t),t ∈ DT ,i ∈ IN . We would like to describe evolution of {ui(t)} in a
simplified way. We have assumed that such a process can be decomposed into slowly
and quickly varying parts. In order to realize such a decomposition we introduce
a set of values ūh(tq) corresponding to processes u(t). They represent averaged
displacements of the hth subsystem with respect to the reference configuration defined
by {Xh}, for chosen time instants tq ∈∆Tq.

Let u(X,t) be a function defined on DX×DT with properties u(Xi,t) = ui(t).
Values u(X,t) for X 6=Xi are determined by means of broken lines which join the
values determined previously. Considering such a function is a technical step for
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realization integration in what follows. We introduce ūh(tq) with the aid of the
formula:

ūh(tq) =
1

|∆Xh| |∆Tq|

∫

∆Xh

∫

∆Tq
u(X,t)dXdt, (11)

where |∆Xh| and |∆Tq| stand for lengths of corresponding intervals. Transformation
which realizes (11) is denoted by ATX({ui(t)}) = {ūh(tq)}.

In the next step we introduce mappings IuT and IuX which assign continuous
fields ū(X,t) determined on the domain DX×DT to the set {ūh(tq)}. This is realized
in two stages by:

IuT ({ūh(tq),h= const}) = ūh(t), t∈DT (12)

and

IuX({ūh(t),t= const}) = ū(X,t), X ∈DX . (13)

Thereby, the mapping IuT introduces continuous fields on the domain DT and IuX
does the same for each t∈DT on the domain DX .

In the discussed here example IuT and IuX are determined by application of
one-dimensional finite element representation of order two with division into finite
elements given by points tq for IuT and Xh for IuX . Illustration of results of acting
IuX is shown in Figure 2.

Figure 2. Averaged displacements obtained by means of the mapping IuX

Summarizing, we have realized a procedure which leads from solutions of EDS
by averaged set of discrete values to a continuum field defined on the body.

tq0206d5/263 27III2002 BOP s.c., http://www.bop.com.pl



264 J. Kaczmarek

The field ū(X,t) enables realization of decomposition of the displacements
related to the elementary dynamical system by means of the formula:

ui(t) = ūi(t)+δui(t), ūi(t) = ū(Xi,t). (14)

Then, we call the process ūi(t) as slowly varying and δui(t) as quickly varying one
that defines SQ-decomposition.

Let D(ū(X,t)) = {ūi,δui, ˙̄ui,δu̇i}= uSQ assign components of SQ-decomposi-
tion to our averaged continuous configuration. Let πuvθ = {πu,πv,πθ}, πu(uSQ(t)) =
{ū(Xh,t)}= {ūh(t)}, πv(uSQ(t)) = { ˙̄u(Xh,t)}= {v̄h(t)} and πθ(uSQ) = θ= {θh(t)} for
each t.

The first two mappings are defined by means of previously introduced field
ū(X,t). The mapping πθ is aimed at determining averaged effects related to evolution
of quickly varying part δui(t) of EDS solution. In order to obtain a possibly simple
description we postulate the variable as proportional to energy associated with the
quickly varying process. Consequently, we define θh = 1

Cθ
EQh, where EQh is energy

associated with quickly varying processes assigned to hth subsystem. Then, 1
Cθ

stands
for constant of proportionality. The method of determination of EQh will be discussed
in what follows.

Finally, we have obtained new variables d = {ūh, v̄h,θh} of the dimensionally
reduced dynamical system. Space of processes d(t),t ∈ T is denoted by V̄T in the
sequel.

Using the above introduced mappings we define πT :VT → V̄T as:

πT =πuvθ ◦D◦IuX ◦IuT ◦ATX . (15)

Summarizing, we have defined the mapping πT which introduces new variables on the
dimensionally reduced level of description.

The second problem is connected with postulating the form of the skeletal
dynamical system having at our disposal new variables. The starting point for doing
this is a balance of energy equation. Consequently, we should discuss a general form
of such an equation in relation to SQ-decomposition. To this end let us carry out
some general considerations.

Let us consider evolution of a system of material points described by an
elementary dynamical system with variables ϕ= {q,v}, where q = {qG,qC}∈VTG×
VTC . Variables qG = {qg} represent a subsystem, called further G, which interacts
with another minimal subsystem represented by qC = {qc} and called further C, in
such a way that the potential energy V (qG,qC) is entirely determined. In other words,
the set of variables {qc} is minimal for determination of the potential energy for the
subsystem G. We introduce also forces fG = {fg}.

Let us consider the balance of energy related to the elementary dynamical
system:

∑

g

[
mg

d2qg
dt2

q̇g+
∂V

∂qg
(qG,qC)q̇g

]
+
∑

c

∂V

∂qc
q̇c =

∑

g

fgq̇g. (16)
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Assuming that we have variables decomposed into the form qg = q̄g+δqg and
qc = q̄c+ δqc in accordance with SQ-decomposition and similar decomposition for
forces we rewrite the Equation (16) into the new form:

∑

h

[∑

g∈Ih

{
mg

d2(q̄g+δqg)
dt2

˙̄qg+
∂V

∂q̄g
(qG,qC) ˙̄qg+

+mg
d2(q̄g+δqg)

dt2
δq̇g+

∂V

∂δqg
(qG,qC) ˙δqg

}]
+
∑

m

∑

c∈Im

{
∂V

∂q̄c
˙̄qc+

∂V

∂δqc
δq̇c

}
−

−
∑

h

∑

g∈Ih
(f̄g+δfg) ˙̄qg−

∑

h

∑

g∈Ih
(f̄g+δfg)δq̇g = 0,

(17)

where summation using h and m is interpreted as summation in relation to averaged
description.

We are aimed to obtain some premises for discussion of a general form of
the balance of energy equation for SQ decomposition. To do so let us distinguish
some parts of the Equation (17) in order to separate segments corresponding to
SQ-decomposition. Terms related to external interactions suggest distinguishing the
following parts:

∑

h

∑

g∈Ih
(f̄g+δfg) ˙̄qg+

∑

h

∑

g∈Ih
(f̄g+δfg) ˙δqg ≡RS+RQ. (18)

The component RS is equal to the first term on the left side of Equation (18) and RQ
is equal to the second term on the left side of this equation.

The terms dependent on q̇c can be expressed as:

∑

m

∑

c∈Im

{
∂V

∂q̄c
˙̄qc+

∂V

∂δqc
δq̇c

}
=WSGC +WQGC =WGC . (19)

Then, WGC represents interactions between G and C subsystems. WSGC and WQGC

are related to slowly and quickly varying processes, respectively.
Summing up this discussion we notice that the first four terms in the Equa-

tion (17) can be interpreted as time derivative of energy Ė = ĖS + ĖQ and could
also be decomposed into S and Q parts. Furthermore, we have R = RS +RQ and
WGC =WSGC +WQGC .

The above considerations allow to modify the general form of balance of energy
equation (5) for group of subsystems IG⊂ IP discussed in Subsection 2.2, to the case
related to the SQ-decomposition in the following way:

∑

h∈IG
(Ėh−RSh−RQh+

∑

m∈IO
(WShm+WQhm)) = 0 , (20)

having also premises for postulating Ėh from Eqution (17). In particular we can take
into account the decomposition Ėh = ĖSh+ ĖQh in the first approximation and next
postulate conjugations between these terms by plotting introduced constants with the
whole set of variables considered for SDS.
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Let us return to our example. Now we have at our disposal a general form of
balance of energy equation (20). In order to define the skeletal dynamical system we
postulate the form of quantities which appear in this equation as follows:

Eh =Mheh+Th, (21)

where Mh is the total mass assigned to hth subsystem. We assume furthermore that
the balance of mass equation takes the form Ṁh = 0. This leads to simplification
in calculation of time derivative of energy. We have then Ėh = Ṁheh+Mhėh+ Ṫh =
Mhėh+ Ṫh = ĖMh+ Ṫh.

Variables of our dimensionally reduced dynamical system take the form d =
{{ūh, v̄h,θh} : h ∈ IG}. We also define ah = ūh+1− ūh, bh = θh+1− θh and θAh =
1
2 (θh+θh+1).

We postulate further that

EMh =C1(θAh)a2
h+C2θAhah+C3(θAh)θh, (22)

Th =
1
2
Mhu̇

2
h. (23)

With the aid of Equations (22) and (23) the balance of energy equation (20) can be
expressed by:

∑

h

(
∂C1

∂θAh
a2
hθ̇Ah+2C1ah

∂ah
∂ūp

˙̄up+C2ahθ̇Ah+C2θAh
∂ah
∂ūp

˙̄up+
∂C3

∂θAh
θhθ̇Ah+

+C3θ̇h+
∑

h

(Mh ¨̄uh− f̄h) ˙̄uh)+
∑

h

(∑

m

WQhm−RQh
)

+
∑

h,m

WShm = 0,
(24)

where RSh = f̄h ˙̄uh is additionally postulated and the summation convention is applied
for the index p.

The Equation (24) can be transformed into the next, more convenient form:
∑

h∈IG

(
∂C1

∂θAh
a2
h+C2ah+

∂C3

∂θAh
θh

)
θ̇Ah+

+
∑

h∈IG

[∑

l∈IG

(
2C1al

∂al
∂ūh

+C2θAl
∂al
∂ūh

)
− f̄h+Mh ¨̄uh

]
˙̄uh+

+
∑

h∈IG

[
C3θ̇h+

∑

m

(WQhm)−RQh
]

+
∑

l∈IG

∑

m∈IO
(Hlm− f̄Slm) ˙̄um = 0,

(25)

where WSlm =−f̄Slm ˙̄um is postulated and Hlm = 2C1al
∂al
∂ūm

+C2θAl
∂al
∂ūm

.

We assume that processes ˙̄uh and θ̇Ah are independent. Then, from Equa-
tion (25) we obtain

∂C1

∂θAh
a2
h+C2ah+

∂C3

∂θAh
θh = 0. (26)

Taking into account that ∂al
∂ūh

=−1 for l= h and ∂al
∂ūh

= 1 for l= h−1 we obtain also
the equations:

˙̄uh = v̄h, (27)

Mh ˙̄vh =CS(ah−ah−1)+
β

2
(bh+bh−1)+ f̄h, (28)

where CS = 2C1 and β=C2.
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We postulate furthermore the constitutive equation WQhm = −Cθbh−1 for
m= h−1 and WQhm =Cθbh for m= h+1. Then, assuming that the Equations (26)
and (28) are satisfied and IG = {h} contains one element only, we obtain from
Equation (25) additionally that

C3θ̇h =−Cθ(bh−bh−1)+RQh. (29)

Equations (27)–(29) are postulated equations of the skeletal dynamical system in our
example. We assume that C3 = 1 and RQh = 0 in the sequel.

Having the skeletal dynamical system we tend towards obtaining the reduced
dynamical system in accordance with scheme presented in Figure 1. Constants CS ,
β and Cθ which appear in Equations (27)–(29) are determined by comparison of
solutions of the elementary dynamical system with those obtained by means of SDS
for some given constants. Then, option of the best constants is accomplished with the
help of a functional which is a measure of a distance between discussed solutions in
the space V̄T .

In order to compare such solutions we have first to transform processes of EDS
into V̄T by means of πT = {πTu,πTv,πTθ}. This decomposition is defined by means of
mappings πu, πv, πθ which appear in definition of πT given by (15).

The mapping πTu is realized in the way described by expressions (11)–(13).
The same procedure is applied for πTv. Thereby, we have independently realized
averaging for v̄h and for ūh. The mapping πTθ is based on previously introduced
SQ-decomposition. Then we are able to calculate total energy ETh related to each
subsystem and using slowly varying parts of u and v we can calculate corresponding
energy ESh assigned to each subsystem. Then, θh =EQh/Cθ, where EQh =ETh−ESh
and Cθ = 1 for simplicity.

We define the following functional:

H =
∑

h

∑

q

[(ūh(tq)−πh ◦πTu({u,v})(tq))2+

+(v̄h(tq)−πh ◦πTv({u,v})(tq))2 +(θh(tq)−πh ◦πTθ({u,v})(tq))2],
(30)

where πh is projection into hth subsystem.
Solutions of the elementary dynamical system are obtained for larger system

of material points than that corresponding to SDS. A number of subsystems has
been applied for realization of SQ-decomposition for calculation of second order
derivatives in order to use finite element basis of second order. Some subsystems are
also lost during calculation ūh(tq) in accordance with (11). Consequently, the range of
summation in (30) is smaller than the total number of subsystems. Evolution of SDS
has been calculated with initial conditions defined by the mapping πT and solutions of
EDS using a number of neighbouring subsystems. Boundary conditions for solution
of SDS have been maintained in accordance with solutions of EDS also with the
help of some external subsystems.

The number of masses for the elementary dynamical system in our example is
N = 800. The number of subsystems NP = 20. Furthermore, we have considered the
number of time steps NT = 380 for solution of EDS and the number of time intervals
for averaging with respect to time, NTP = 19.
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The minimum of the functional (30) has been obtained for CS = 0.034, β =
−1.285 and Cθ = −2.88. Solutions of the elementary dynamical system and the
reduced dynamical system are shown in Figure 3 for displacements and in Figure 4
for velocities at a time instant. Similar solutions are shown for another time instant in
Figures 5 and 6. In these figures we can observe parallel evolution of the elementary
dynamical system and the reduced dynamical system. Thereby, we can estimate how
a reduced dynamical system represents averaged properties of EDS.

Let us notice that we have not introduced continuous fields on discussed
continuum in fact. The skeletal dynamical system is considered rather as a discrete
system. We are able to introduce continuous fields in a similar way as for SQ

decomposition using finite element representations for instance. However, this is
not necessary since we do not need such fields at this moment. This induces a
discussion whether such continuous fields are necessary at all. Continuous fields can
be useful in case of modelling interactions between subsystems when values of fields
should be determined in points of interactions changing with time. Furthermore,
distribution of fields by their densities can improve precision of calculations. By means
of mass density we can model more precisely inertia effects for instance. Summarizing,
continuous fields can be applied if we choose the way of improving precision of
modelling by using such fields or when we must have at our disposal values of fields
at intermediate distinguished points different than those initially introduced.

4. Final remarks
Various aspects of continuum mechanics and molecular dynamics are considered

in literature. Let us mention calculation of thermodynamic quantities using statistical
mechanics supported by molecular dynamics [2]. More direct application of molecular
dynamics for creation of continuous fields is accomplished in smooth particle applied
mechanics [6–8].

The method of cooperation of molecular dynamics and continuum mechan-
ics presented in this paper is based on the dimensional reduction procedure. Con-
sequently, we suggest multiscale modelling for integration of both methods.

The dimensional reduction procedure discussed here is at an initial stage of
development. Various problems related to realization of such a procedure should
be discussed for the future. Let us mention for instance methods of division of
the elementary dynamical system into subsystems, premises for postulating the
skeletal dynamical system, connections between dimensionally reduced variables and
corresponding forces. The range of validity of applied dimensional reduction procedure
seems to be the most important problem.

Complexity of processes in materials necessitates perhaps using various dimen-
sional reduction procedures in a sequence, in order to describe their evolution. In-
deed, complicated evolution can necessitate changes of models in order to obtain a
satisfactory approximation. Therefore, methods of changing of dimensional reduction
procedures during calculations have to be elaborated. To obtain this we just need a
range of validity for such a procedure.

A possible solution of the problems mentioned above relies perhaps on intro-
ducing nanoscale continuum models as designed to direct cooperation with molecular
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Figure 3. Comparison of solutions of EDS and SDS for displacemnts at an initial instant

Figure 4. Comparison of solutions of EDS and SDS for velocities at an initial instant
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Figure 5. Comparison of solutions of EDS and SDS for displacemnts at a final instant

Figure 6. Comparison of solutions of EDS and SDS for velocities at a final instant
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dynamics. Then, small representative volume for such models, as well as possibility of
description of processes in small scale, could make the dimensional reduction proced-
ure more simple and clear for interpretation. In the next stage, the nanoscale models
considered as EDS could be averaged towards obtaining more simple continuum de-
scriptions. Such a discussion suggests that integration of continuum mechanics and
molecular dynamics needs development of continuum models related to scale close to
the atomic one in order to make the transition between scales more gradual.
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