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Abstract: A parallel implementation of the conventionally used NDDO (MNDO, AM1, PM3,
CLUSTER-Z1) and modified NDDO-WF (CLUSTER-Z2) techniques for semiempirical quantum-
chemical calculations of large molecular systems in the sp- and spd -basis, respectively, is described.
The atom-pair distribution of data over processors forms the basis of the parallelization. The techno-
logical aspects of designing scalable parallel calculations on supercomputers (by using ScaLAPACK
and MPI libraries) are discussed. The scaling of individual algorithms and entire package was carried
out for model systems with 894, 1920, and 2014 atomic orbitals. The package speedup provided
by different multi-processor systems involving a cluster of the Intel PIII processors, Alpha-21264-
processor-built machine MBC-1000M, and CRAY-T3E, is analyzed. The effect of computer charac-
teristics on the package performance is discussed.

Keywords: quantum chemistry, NANOPACK parallel codes, semiempirical NDDO and NDDO-WF
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1. Introduction
Modern quantum chemistry (QC) offers a wide range of tools and techniques

that suit the needs of calculations of large nano-sized systems. The most promising
seem to be the semiempirical (SE) techniques [1, 2], among which those based
on the NDDO (neglect of diatomic differential overlap) approximation [2], namely,
MNDO and its modifications [3–6], AM1 [7] and PM3 [8], are of the largest interest
due to a close similarity with ab initio ones relating to reliability and accuracy of
results. These techniques and appropriate programs are being used in widespread
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one-processor program packages MOPAC [9], AMPAC [10], and CLUSTER-Z1 [11]
for QC calculations of many-atomic systems in the sp-basis. On going to the spd -basis,
the above techniques were modified within the NDDO-WP [12, 13] and MNDO/d [14]
approximations that led to the foundation of program packages CLUSTER-Z2 [15]
and MNDO94 [16], respectively.

Meeting requirements on speeding up calculations, we have performed the
transformation of two above sequential codes CLUSTER-Z1 and CLUSTER-Z2 into
parallel ones. The sequential algorithms of the codes, similarly to other QC programs,
represent a structure with a massive parallelism [17] that makes them promising for
large system calculations. However, QC calculations of such systems face two main
problems: (1) operation with and storage of big arrays of data, and (2) performance of
a large bulk of calculations. The former concerns mainly accessible computer memory
while the latter governs calculation speed.

Any parallelization scheme implies the performance distribution over processor
arrays. As for the data, two operation schemes can be implemented related to
either replication or distribution of the data following a particular algorithm. Data
replication scheme implies that each processor has its own copy of all data required
for calculations. The size (number of atoms, NAT , and, consequently, the number
of atomic orbitals, AOs, NORBS ) of the run problem is restricted by the RAM
accessible at one processor. RAM of 256MB limits the data to NORBS = 2200 that
approximately corresponds to NAT about 400–500 in the sp-basis and about 300–
400 in the spd -one. NORBS of 4000–10000 will require from 2Gb to 16Gb and
more memory. The parallel implementation of the CLUSTER-Z1 and CLUSTER-
Z2 codes, based on the replication scheme, was done in the MP-AM1 [18] and MP-
ZAVA [19] codes, respectively. As occurred, the approach offers a relatively labor-
saving realization of parallel program, since only computationally intensive parts of
the sequential code had to be reworked. Successful applications of the codes to the
calculations of n∗Si60 oligomers with n ranging from 2 to 8 [20] and of complexes
of carboxylic acids with nano-sized titania substrates [21] have well exhibited a
qualitatively new stage of calculations. Restrictions put by processor RAM can be
avoided by the data distribution scheme. In this case, the data are partitioned over
processors to provide the performance on each processor with minimum data exchange
with other processors. This way, if well implemented, leads to programs that can be
effectively run on distributed memory supercomputers that constitute the majority
of the modern supercomputing systems. A choice of an appropriate algorithm of the
data distribution is a key point of the approach. In general, this problem concerns
graph-mapping and belongs to NP-complete problems. NANOPACK parallel codes,
described in the current paper, present a parallel implementation of both CLUSTER-
Z1 and CLUSTER-Z2 sequential codes, referred to hereinafter as NDDO and NDDO-
WF modes of the package, respectively, basing on a scheme of atom-pair distribution
of data.

2. Theoretical background
The inner architecture of the sequential CLUSTER-Z1 and CLUSTER-Z2 codes

is oriented on the solution of a QC problem for a polyatomic (and many-electron)
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system in the form of a molecule or model cluster. In terms of the widely adopted
Born-Oppenheimer approximation, Hamiltonian of the considered molecular system is
commonly subdivided into two parts. Accordingly, the Schrodinger equation solution
for the electronic subsystem is sought in the LCAO MO approximation. Further
using of the Hartree-Fock procedure transforms a system of operator equations to
the Hartree-Fock SCF matrix equation in the Roothaan approximation [1, 2]:

F(C)C = SCE. (1)

The Fock matrix (F) elements are expressed in terms of the electron density matrix
P (restricted Hartree-Fock closed-shell case1):

Pij = 2
occ∑

k

CikCjk, (2)

where summation is performed over all occupied molecular orbitals, and have the
form [2]:

Fij =Hij+
NO∑

k,l=1

Pkl[<ij|kl >−
1
2
<ik|jl >]. (3)

Here Hij is a matrix element of the one-electron core Hamiltonian and < ij|kl >
present two-electron integrals

<ij|kl >=
∫ ∫

χi(r1−RA)χj(r1−RB)
1
r12

χk(r2−RC)χl(r2−RD)dV1dV2, (4)

that constitute the most serious problem of the computational process [22]. The
NDDO approximation neglects three- and four-center integrals on the basis of the zero
differential overlap of atomic orbitals. Therefore, only one-center<AA|AA> and two-
center <AA|BB > integrals have to be calculated to obtain the Fock matrix. Using
Slater functions with real spherical harmonics, the above expression is transformed
into the form [23]:

CABCoul =
l1+l2∑

l=|l1−l2|

l3+l4∑

l′=|l3−l4|
Ill′(l1,l2,l3,l4), (5)

where

Ill′ =
∑

m(m1,m2)

∑

m′(m3,m4)

δmm′

∫ ∫
ρlm(1)

1
r12

ρl′m′(2)dV1dV2. (6)

However, the above scheme was found to yield overestimated values of one-
and two-center integrals, which results in a poor fitting with experimental data.
This drawback can be released in two ways. In terms of the commonly used NDDO
approximation implemented in MNDO [3], AM1 [7], PM3 [8], and MNDO/d [14]
techniques, the continuous charge distribution ρlm is replaced by a set of 2l point
charges of ±1/2la.u. each (zero total), on retention of the ρlm symmetry [3]. It should
be noted as well that one-center integrals are not calculated therewith but are the
method parameters. Linear dimensions of the point charge system depend on the
quantum numbers n, l and Slater exponent ε. However, for small ε, atomic orbitals
become smeared out, so that the linear dimensions of the system of point charges may

1. What follows is totally coherent with unrestricted Hartree-Fock open-shell case [1, 2] as well.
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be compared with interatomic distances. In particular, this circumstance makes the
parametrization of alkali metal atoms difficult within the framework of the MNDO
and AM1/PM3 techniques. Similar difficulties are encountered in the case of elements
with valence d -electrons: in the spd -basis, there always exist vacant atomic orbitals
either of the p-type (transition metals) or d -type (metametals) with small ε.

Another weighting factor technique for modifying CABCoul within the weighting-
factors NDDO approximation (NDDO-WF) was suggested in [12] and is realized in
the CLUSTER-Z2 software [15]. In this case, expression (5) takes on the modified
form:

C̃ABCoul =
l1+l2∑

l=|l1−l2|

l3+l4∑

l′=|l3−l4|
Fll′(l1,l2,l3,l4)∗Ill′(l1,l2,l3,l4), (7)

where Ill′ , as before, are given by (6), while the weighting factors Fll′ which reduce
the values of integrals assessed from (4) are defined as follows [12]:

Fll′(l1,l2,l3,l4,) =
[Cl(l1,l2)∗Cl′(l3,l4)]2 +A

Cl(l1,l2)∗Cl′(l3,l4)+A
. (8)

Here Cl are atomic parameters (4 and 10 in the sp- and spd -basis, respectively).
In terms of the NDDO-WF approximation, expression (8) is used to determine

both two-center C̃ABCoul and one-center C̃AACoul integrals. In the former case, the Ill′

values are calculated on the Slater basis by using a recurrence procedure suggested
in [24]. A detailed description of the method is given elsewhere [19].

3. Schematic architecture of sequential codes
The main characteristics of the CLUSTER-Z1 and CLUSTER-Z2 codes are

given in Table 1. The scheme of the CLUSTER-Z1 and CLUSTER-Z2 modules is

Figure 1. Scheme of the CLUSTER-Z1 and CLUSTER-Z2 sequential codes
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presented in Figure 1. The modules functionality is described in details in [19]. Those
inside a dashed line ensure ‘one point’ calculations for some fixed spatial structure of a
molecule. A solid line embraces the modules that ensure the optimization of molecular
geometry during a search for a minimum of the total energy. As known, SE calculations
are performed through cyclization over pairs of indices i and j that enumerate either
atoms or atomic orbitals. Thus calculated functions f(i,j) are such that f(i1,j1) and
f(i2,j2) are independent. This circumstance defines a general concept of QC program
parallelization: arrays of computations (cycles) over index pairs are divided
into either continuous or cyclic blocks in accordance with the number of
processors.

Table 1. Characteristics of the CLUSTER-Z1 and -Z2 packages

values
magnitude

CLUSTER-Z1 (NDDO mode) CLUSTER-Z2 (NDDO-WF mode)

number of atoms 9601 8951

total number of orbitals 38401 38021

number of occupied orbitals 19001 19001

parametrized atoms MNDO and MNDO/H2: H,
He3, Li, Be, B, C, N, O, F, Al,
Si, P, S, Cl, Zn, Ge, Br, Sn, J,
Hg, Pb;

H, C, N, O, F, Cl, Br, I, P, S,
Li, Na, K, Rb, Cs, Ag, Ti, Al,
Ga, As, Sb, W, Fe, Si

AM12: H, He4, C, N, O, F, Al,
Si, P, S, Cl, Se, Br, Sb**, Te,
Hg, Ga, Ge, As, Se;
PM32: H, He4, C, N, O, F, Al,
Si, P, S, Cl*, Zn, Ga*, Ge,
As*, Se, Br, Cd*, In, Sn, Sb*,
Te*, J, Pb*, Bi, Be**, Mg**,
Hg**, Tl**

atoms under parametrization Si, In, Ge, Cd, Sn, Te, Pb, Ni,
Co, Bi, Zn, Hg, Tl

1 There is no limit for these values; the indicated ones are optimal for use in PC Intel PIII with
RAM 256MB.
2 List of parameters repeats that of MOPAC. However, a thorough analysis shows that species
marked by stars should be refrained by using both MOPAC and CLUSTER-Z1 until new parameters
are obtained. One star marks atomic species for which an inequality 0<HPP < 0.1 takes place while
parameters HPP are set equal to 0.1 in some places of the MOPAC calculation scheme. For atoms
marked by two stars parameters HPP are meaninglessly negative.
3 Parameters are added from [25].
4 Parameters are included by V. A. Zayets in accordance with [25].

4. Parallel code implementation
4.1. Atom-pair distribution of data

When implementing, the data distribution algorithm was subordinated to
meeting the following requirements:

• to guarantee a minimal amount of data to be replicated while a preferable
amount of the data should grow linearly when NORBS increases;
• to minimize data exchange between different processors;
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• to provide labor-saving adaptation of all used algorithms to distributed struc-
ture of data.

Data arrays in sequential codes involve

• arrays for storing two-center integrals <AA|BB> and

• triangular matrixes for storing:

• Fock matrix F;

• core Hamiltonian Hcore;

• density matrix P.

Array of integrals. Data cover sets of two-center integrals and each set is
determined independently from others. Let AOs of atom A be numbered from i1
to i2 and those of atom B from j1 to j2. Then the integral set with index AB will be
denoted as

ZAB = {<AA|BB> |i1<A<i2,j1<B<j2} . (10)

If the number of AOs is NA and NB for atom A and B, respectively, the total
number of integrals belonging to ZAB set, INTAB , is INTAB = NA(NA + 1)/2×
NB(NB + 1)/2. The total number of two-center integrals is INT =

NPAIRS∑
AB

INTAB

where NPAIRS = NAT ∗ (NAT − 1)/2 determines the total number of atom pairs.
Hereinafter all numbers related to the ith processor will be denoted by a superscript i.
Thus, the number of atom pairs belonging to the ith process will be NPAIRS i and

NPAIRS =
NPROC∑
i=1

NPAIRS i, where NPROC determines the number of processors.

Correspondingly, INT =
NPROC∑
i=1

NPAIRSi∑
{AB}i=1

INT i
AB . That allows to describe a union of

integral sets which joins those distributed over both atom pairs and processors, as
follows

Z =
⋃

i

⋃

{AB}i
ZAB . (11)

Equation (11) presents the atom-pair distribution of integrals over processors.

Matrix arrays. According to Equation (3), all elements of the triangular
matrixes depend on a pair of indices (i,j), when both are changed from 1 to
NORBS with the total number of pairs NPAIRS = NORBS ∗(NORBS +1)/2. Within
the NDDO and NDDO-WF approximations matrix elements could be calculated
independently. Therefore the distribution of the matrix arrays over processors could
follow that of NPAIRS . However, the matrixes, involved in a calculation cycle, are not
only interrelated but are dependent on two-center integrals as well. This dependence
provokes looking for a common concept of the data distribution applied to both
integrals and matrixes. Let us denote a box of one of the above-mentioned matrixes
which contains elements M[i1 : i2,j1 : j2] as submatrix MAB and a triangular part with
elements M[i1 : i2,i1 : i2], i1<i2 as submatrix MA (see Figure 2). Here i1 : i2 and j1 : j2
numerate AOs belonging to atom A and B, respectively. Array of submatrixes MA for
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all A can be denoted as MD, so that MD =
⋃
A

MA. With this notation any triangular

matrix can be divided into parts corresponding to atom pairs (A,B) in a manner

M = (
⋃

A

MA)
⋃

(
⋃

AB

MAB) (12)

that expresses the atom-pair distribution of matrixes similarly to Equation (11).
When distributing, it is convenient to replicate the part of matrix lying near diagonal
MD =

⋃
A

MA, that is of the O(N) order, over all processors. Non-diagonal submatrix

MAB will be attributed therewith to a processor to which the relevant atom pair
(A,B) belongs.

Figure 2. Scheme of a matrix division

The effectiveness of the above distribution with respect to matrixes F, Hcore,
and P depends on how much localized are the matrix calculations at a given processor.
In the case of two latter matrixes, a positive answer is rather obvious. As for the
Fock matrix, it is so closely interrelated with matrixes Hcore, and P as well as
with two-center integrals that additional arguments are needed. Let us consider an
element Fij ∈FAB . As seen from Equation (3) and Figure 2, AOs i and j belong to
different atoms A and B, and AOs k and l must belong to the same atoms, since
the NDDO approximation neglects three- and four-center integrals. Therefore, only
PAB(k ∈A,l∈B⇒Pkl ∈PAB), PA(k,l∈A⇒Pkl ∈PA), PB(k,l∈B⇒Pkl⇒PB) and
the corresponding one- and two-center integrals are involved when calculating FAB
providing a full localization of the calculations at one processor.

Another problem concerns FD due to its replication over all processors.
However, it is easy to show that the calculation of partial sums for FD that involves
HAB , PAB , and INTAB located at this processor and the summation of these partial
sums by using MPI [26] reducing operation MPI REDUCE with operand MPI SUM
results in obtaining full FD at the 0th processor. Further application of MPI BCAST
copies the full FD to other processors.

4.2. Atom-pairs distribution of integrals
When implementing the distribution practically, the main goal was to balance

computational and memory load over processors. This can be achieved by equalization
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of the number of two-center integrals of similar kind at each processor. To meet the
requirement, let us divide atom pairs into groups specified by types of atoms. Thus, in
the sp-basis there are three groups of pairs, namely, AsBs, AsBp (ApBs), and ApBp.
Respectively, the set of numbers of AOs per each atom is the following:

• NA =NB = 1 for AsBs pair;
• NA = 1 and NB = 4 for AsBp pair as well as NA = 4 and NB = 1 for ApBs pair;
• NA =NB = 4 for ApBp pair.

Three other groups are added in the spd -basis, namely, AsBd (AdBs), ApBd
(AdBp), and AdBd so that the set of the AOs numbers is enlarged by adding

• NA = 1 and NB = 9 for AsBd pair as well as NA = 9 and NB = 1 for AdBs pair;
• NA = 4 and NB = 9 for ApBd pair as well as NA = 9 and NB = 4 for AdBp pair;
• NA =NB = 9 for AdBd pair.

By cyclic distribution of atom pairs of each group over processors one can ensure
close to equal amount of pairs of the same kind at each processor that will require
practically the same amount of memory and CPU time for data processing. Let L be
the number of the relevant atom pairs (A,B) within a group. The corresponding pair
set at the ith processor will be determined as:

{AB}i = {(A,B)|LmodNPROC = i}. (13)

Suppose a system under study has NAT = 5 atoms, therewith N1 =N3 = 1; N2 = 4,
N4 = N5 = 9. The atom pair distribution over 4 processes, obtained according
algorithm (13), is shown in Table 2. The material presented in the table shows more the
philosophy of distribution rather than a valuable result. Evidently, the technique will
result in practically uniform distribution of atom pairs at large NPAIRS . Following
the distribution of atom pairs, two-center integrals are distributed over processors in
accordance with the algorithm described by Equation (11).

Table 2. Distribution of atom pairs over processors

groups {AB}0 {AB}1 {AB}2 {AB}3

1×1 (3,1)

1×4 (2,1) (3,2)

1×9 (4,1) (4,3) (5,1) (5,3)

4×9 (4,2) (5,2)

9×9 (5,4)

4.3. Atom-pair distribution of matrixes
The implementation of the atom-pair distribution of matrixes has been subor-

dinated to that one of NPAIRS , described in the previous Section. Figure 3 shows the
Fock matrix decomposition for the above model system in accordance with the pair
distribution given in Table 2. The matrix of the 24th order (NORBS = 24) is divided
into 10 blocks of non-diagonal elements (NPAIRS = 10) of different size due to differ-
ent numbers of AOs of the atoms. The blocks are distributed over processors similarly
to two-center integrals according to the scheme of Table 2. Additionally, the matrix
at each processor contains replicated array FD. Matrixes Hcore and P are treated
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Figure 3. Atom-pair distributed matrix for a model system of 5 atoms. MYID indexes processors

analogously. Similarly to integral distribution, matrix elements are distributed over
processors at large NORBS quite uniformly.

4.4. Adaptation of the main algorithms to the atom-pair data
distribution
In the sequential codes, two-center integrals are calculated using cycle over

atom pairs:

• for all i∈ 2,NAT (A is the ith atom),
• for all j ∈ 1,i−1 (B is the jth atom).

When going to parallel codes, this algorithm continues to work, however, with
not all pairs but with that part of them which is located at the processor under
consideration.

As for matrixes, the algorithms cover cycles over atomic orbitals:

• for all i∈NORBS ,
• for all j ∈ 1,i.

To adapt the algorithms to the atom-pair distribution, the above cycles are
substituted by nested ones, when the upper cycles cover atom pairs while the inner
ones operate over atomic orbitals belonging to these pairs:
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• for all j ∈ 1,NPAIRS i ((A,B is the jth atom pair on the ith processor)
• for all k∈ 1,NA
• for all l∈ 1,NB .

When adapting to parallel codes, the sequential ones must be rewritten one by
one that, among others, provides a perfect ground for debugging. Finally, when all
data are partitioned over processors practically uniformly, the computational load is
automatically parallelized and balanced.

4.5. Conversion of atom-pair distributed matrixes to
two-dimensional block-cyclic ones
The eigenproblem solution (diagonalization step) and the performance of matrix

multiplication (calculation of density matrix) in parallel code were performed using
ScaLAPACK library [27]. As known, the ScaLAPACK package requires matrixes
which are block-cyclically distributed in the following way. Suppose, we have a set
of objects with a global index ig. One-dimensional block-cyclic distribution defines
mapping elements from this set to a processor array ig 7→< p,b,il >, where p and
b numerate processors and blocks at the processors, respectively, while il is a local
index inside block b. If P numerates processors and m denotes the size of blocks, one
dimensional block-cyclic data distribution can be given as follows:

ig 7→<s mod P,
⌊ s
P

⌋
,ig mod m>, (14)

where s=
⌊
ig
m

⌋
is a quotient from integer division. Let a set of processors be viewed

as logical two-dimensional grid forming P ×Q matrix, with m×n blocks deposited
on processors. Then two-dimensional block-cyclic distribution can be presented as a
result of a combination of two one-dimensional block-cyclic distributions by rows and
by columns. In this case the distribution of matrix element with global indexes (ig,jg)
will be defined as:

(ig,jg) 7→< (p,q),(bp,bq),(il,jl)> . (15)

Finally, the matrix is divided into generalized blocks of (m ·P )×(n ·Q) in size, which,
in their turn, are divided into (P ·Q) the same blocks, each lying on one processor
from the processor grid. Figure 4 shows the result of block-cyclic distribution of the
Fock matrix of a model system with 5 atoms described in the preceding Sections.
The 24×24 matrix is block-cyclically distributed using 2×2 processor grid (P = 2,
Q= 2, NPROC = 4) with 4×4 blocks (m= 4, n= 4) at each processor from the grid.
The colored parts of matrixes in Figure 4 represent elements of F received by a given
processor. The empty rows and columns are not stored in the local processor memory
but the remaining triangular matrix F is filled up to squared by empty elements.
The correspondence between matrix elements distributed over different processors
by using either atom-pair or block-cycling modes is well seen when comparing the
pictures shown in Figures 3 and 4. In Figure 4, the 1×1 blocks are marked by figures
which correspond to MYID in Figure 3. Elements related to the FD array are shown
by dotted fields.

When converting the atom-distributed matrixes into block-cycling ones, the
former are cyclically pumped over processors to avoid collecting the whole matrix at
one processing node. The data exchange steps are performed in the following way: the
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Figure 4. Conversion of an atom-distributed matrix into a block-cycling one

first run is carried out over all matrix elements which are presented at every processor
initially, and the elements needed for block-cyclic distribution on this processor
are copied, then processor K transmits its data to processor K+ 1 until the last
processor transmits them to the 0th one. Checking and copying the relevant elements
is performed at each transmission step. The block-cyclically distributed matrix, which
can be used when calling ScaLAPACK procedures, is obtained after repeating this
procedure NPROC−1 times. To avoid deadlocking, every transmission step is divided
into two substeps: firstly, even processors send data and odd ones receive them,
then odd processors send and even receive. When implementing, blocking MPI calls
(MPI SEND, MPI RECIEVE) are used. Reverse conversion which accumulates the
calculated results in the atom-pair distribution form, is performed by using similar
algorithm.

4.6. Parallel implementation of the main sequential algorithms

Practical implementation of computational codes parallelization depends on
inner architecture of the relevant sequential program. Supplementing a general
scheme of the codes in Figure 1, Table 3 show results of time profiling of the
main algorithms of the CLUSTER-Z1 and CLUSTER-Z2 packages. The difference in
the percentage distribution reflects the difference in mathematical algorithms of the
NDDO and NDDO-WF approximations. Irrespective to the latter, the diagonalization
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of the Fock matrix is the most time-costly for both codes. Then follows the density
matrix calculation which is supplemented by the core Hamiltonian and the total
energy derivatives calculations in the CLUSTER-Z2 code. The diagonalization and
density matrix calculation algorithms are of the O(N 3) order of complexity, where
N ≡ NORBS . The remaining parts of the programs are of the O(N 2) complexity
order.

Table 3. Time profiling of the CLUSTER-Z1 and CLUSTER-Z2 main algorithms: C300 molecule
(MBC-1000M1)

%%
algorithms

CLUSTER-Z1 CLUSTER-Z2

diagonalization 69.89 45.87
density matrix 22.08 18.15
core Hamiltonian2 1.29 13.71
Fock matrix 3.81 2.71
derivatives 2.93 19.56
total time 100.00 100.00

1 Description of the test molecule and supercomputer see in Section 5.
2 Calculations of two-centre integrals are included.

Diagonalization and calculation of the density matrix. Application of the
PDSYEVX procedure from the ScaLAPACK library provides the solution of the ei-
genproblem FC = EC and finding the eigenvalues E and eigenvectors C. Staying
within the block-cyclically distribution mode, the density matrix Pn =CCT is calcu-
lated by using the eigenvector matrix and calling ScaLAPACK PDSYRK procedure.
Thus obtained matrix Pn is converted into the atom-pair distributed and Pn+1 matrix
of the next step of SCF calculations is determined either by extrapolation or (at poor
convergence) by using the level-shift technique [28, 29] to proceed SCF calculations.

The efficiency of the PDSYEVX procedure is of a key importance. Table 4
shows the procedure productivity for matrixes of different size at a supercomputer
with distributed memory. A comparison of the data with those obtained for a
supercomputer with shared memory [19] shows that in both cases the procedure is
good enough for matrixes of the 2000th order and more. However, even in this case the
speedup is sublinear. It is important to note that speedup for the same order matrixes
is noticeably different when the procedure is performed on different computers.

Calculation of derivatives. Calculations of the total energy derivatives is a
rather time-costly procedure of the sequential codes, particularly, of CLUSTER-
Z2. The calculations are performed in the Cartesian coordinates that provide using
analytical expressions which transform derivatives of energy to those of more simple
constructions, such as ∂

∂x 〈AA|BB〉, ∂
∂x 〈A|B〉, ∂

∂x 〈A| 1
RB
|A〉, and ∂

∂x 〈B| 1
RA
|B〉 [19]. The

algorithm used when calculating diagonal part FD of the Fock matrix (see Section
4.2), occurred to be applicable to the case as well. Consequently, partial sums are
calculated on each processor, and after that the obtained data are summed up by using
MPI REDUCE procedure and are broadcasted to all processors. All other quantities
depending on distributed data, the core Hamiltonian among them, are calculated in
the same manner. Final data before outputting are collected on the 0th processor.
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Table 4. Execution time of the PDSYEVX diagonalization (MBC-1000M)

NPROC
size of matrix

1 2 4 8

2600 126.8 95.2 48.8 31
2400 100.9 73.6 38.7 25.3
2200 79.3 58.8 31.1 21.0
2000 60.9 44.8 24.2 16.5
1800 45.9 34.1 18.5 13.1
1600 33.0 24.9 13.6 10.2
1400 23.2 18 10.1 7.6
1200 15.3 12 6.8 5.5
1000 9.4 7.7 4.5 3.8
800 5.3 4.7 2.8 2.5
600 2.5 2.4 1.5 1.5
400 1 1 0.6 0.7
200 0.3 0.3 0.3 0.5

5. Speedup and efficiency of NANOPACK
NANOPACK codes testing has been performed for a few model systems

(see Figure 5) on a set of multi-processor computers. The main characteristics of
computers are listed in Table 5. We will start with a carbon-graphite strip C300
with NORBS = 894 treated in the sp-basis. Table 6 shows time profiling of the
NANOPACK main algorithms at one-processor performing mode. Comparing the
data with those listed in Table 3, one can see the effect of the atom-pair distribution
of data on percentage distribution over algorithms. As previously, diagonalization
remains the most time-costly procedure, whereas the contribution of the density
matrix calculations is remarkably lowered. The fact is explained by the substitution
of nested cycles in the sequential codes by ScaLAPACK function call in parallel ones.
A row related to matrix conversion is added additionally to Table 3. It lists time
expenses required for direct and reverse conversion which connects atom-pair and
block-cyclically distributed matrixes (see Section 4.4). The expenses slowly increase
when NPROC grows.

Figure 6 presents a comparative study of the speedup of both the main
algorithms of NANOPACK and the package as a whole. A 5-SCF iteration testing has
been performed for the 8∗Si60 oligomer in the NDDO mode while 28 SCF iterations
have been calculated for the ‘TiO2 +water’ model system in the NDDO-WF mode
of the package. A detailed analysis allows to highlight a similarity and difference
between the two modes. The fact that the diagonalization parallel implementation is
a limiting factor in both cases is well obvious. However, while for the NDDO mode
it dominates absolutely, so that the speedup of the package as a whole (Sp = 3.02)
attained for 8 processors is even less than that of the diagonalization (Sp = 3.42), for
the NDDO-WF the total speedup (Sp = 4.91) prevails over diagonalization (Sp = 4.34).
To better disclose the reasons of the observed behavior, Figure 7 shows the time
profiling for both modes of the NANOPACK package when NPROC increases from
one to eight. The figure clearly exhibits that the diagonalization procedure dominates
in both cases. However, a significant growth of the matrix conversion contribution
depresses the total speedup of the NDDO mode below that of diagonalization when
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Figure 5. Testing molecular systems

Table 5. Supercomputer characteristics

RM-6001 Cluster PIII Intel2 MBC-1000M3 Cray-T3E

CPU type MIPS R10000 PIII Alpha 21264 Alpha 21164
CPU frequency, MHz 200 667 667 300
number of CPUs 16 16 128 128
point-to-point link
and width, Mbit/s

3200 100 1280 4000

total memory, Gb 4 4 64 16
memory per CPU, MB 256 256 512 128
memory access time, ns 100 8 10 10
architecture SMP MPP, switched MPP, switched MPP, 3-D torus

media media

1 Siemens Nixdorf RM-600 E20/E60. http://www.citforum.ru/hardware/articles/rm600e00.shtml.
2 Domestic manufacture of the Institute of Problems of Chemical Physics, RAS (Chernogolovka,
Russia), 2000.
3 Domestic manufacture of the Joint SuperComputer Center (Moscow, Russia), 1999.
http://www.jscc.ru/cgi-bin/show.cgi?/about.html%203#hardres.

NPROC increases. In the case of the NDDO-WF mode, the effect of the conversion
contribution is compensated by rather high speedup of the core Hamiltonian and
derivatives algorithms, which provides the prevailing of the total speedup over that
of diagonalization.

Table 7 lists total time of testing calculations performed on different computers.
The data form a good basis for a comparative study of the computer configurations
on the efficiency of parallel computations. Analyzing the data presented, the following
conclusions can be made.

1. MBC-1000M machine is about twice more effective for the calculations than
Cluster PIII Intel with processors of the same tact frequency, and the difference
increases when the number of processors involved grows.
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Figure 6. Speedup of the NANOPACK main algorithms

Table 6. Time profiling of the NANOPACK main algorithms for one-processor operation: C300
molecule (MBC-1000M)

%%
algorithms

NDDO mode NDDO-WF mode

diagonalization 76.22 46.54
density matrix 5.84 3.83
core Hamiltonian 0.97 13.75
Fock matrix 5.74 9.04
derivatives 3.25 20.54
conversion 3.66 1.43
others 4.32 4.87
total time (entire package) 100.00 100.00
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Figure 7. Time profiling of the NANOPACK main algorithms
on processors array of different NPROC

Table 7. Calculation total time in s

NPROC
computer

1 2 4 8

NDDO mode, 8∗Si60, NORBS=1920, 5 SCF iterations

Cluster PIII Intel 6270 4559 4559 3982
MBC-1000M 3649 2528 1710 1209
Cray-T3E 3733 2356

NDDO-WF mode, ‘TiO2 +water’, NORBS=2014, 28 SCF iterations

Cluster PIII Intel 125069 68712 52772 40105
MBC-1000M 51763 34654 18153 10532
Cray-T3E 34495

Table 8. Calculation scalability of NANOPACK (Cray T3E), time in s

NPROC
algorithms

4 8 16 32 64

NDDO mode, 8∗Si60, NORBS=1920, 5 SCF iterations

diagonalization 2826 1699 983 705 576
core Hamiltonian 15 7 3 2 1
Fock matrix 91 45 24 11 6
derivatives 76 38 19 9 5
conversion 257 236 246 237 239
total time (entire package) 3733 2356 1536 1198 1043

NDDO-WF mode, ‘TiO2 +water’ system, NORBS=2014, 28 SCF iterations

diagonalization 15121 8915 6235 4969
core Hamiltonian 1378 694 355 190
Fock matrix 8845 4423 2215 1112
derivatives 5409 2705 1355 680
conversion 2197 2231 2168 2237
total time (entire package) 34495 19839 12852 9557
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2. When comparing MBC-1000M and CRAY-T3E, more than two times lowering
of productivity of the latter due to two-times difference in the tact frequency
takes place. The difference becomes bigger when the number of processors
increases.

3. CPU RAM of 256MB provides the performance of both testing problems with
NORBS ∼ 2000 in a one-processor mode that always operates with a total
bulk of data. However, CPU RAM of 128MB was not enough for the task and
4-processor mode was needed to run the problem of the 8∗Si60 molecule in
the sp-basis at CRAY-T3E, while already 8-CPU mode of the computer was
required to perform calculations for the ‘TiO2 +water’ system under condition
of over-processor-distributed data.

The last test on the scalability of both NANOPACK package as a whole and
its algorithms has been performed in the same comparative manner as above, but
on one computer. Table 8 lists the data of calculations for both package modes.
As seen from the table, speedup is close to saturation when NPROC exceeds 16.
Non-systematic testing on the MBC-1000M machine proves this tendency as well.
Therefore, a processor arrangement in a (8-16)-CPU set seems to be optimal for
massive parallel computations.

6. Concluding remarks
Appearance of powerful and inexpensive parallel computers with massive

parallelism opens up access to highly productive calculations for a wide range of
users. Meeting the request on QC software which can provide the computational
consideration of nano-sized many-atomic systems, a practically useful NANOPACK
package based on semiempirical NDDO and modified NDDO-WF approximations has
been suggested. Detailed testing of the tool has highlighted the package’s strong and
weak sides. As for obvious merits of the tool, large size of the systems considered
opens the list. Alongside with a large set of parametrized chemical species, this
provides an extended field of possible applications. A possible choice between sp-QC
algorithms of the conventional NDDO approximation (mode) and spd -QC algorithms
involved in the NDDO-WF mode further enlarges the package facilities. The described
package implements calculations on the basis of the atom-pair distribution scheme
to use supercomputers with distributed memory. A rather small cluster of efficient
CPUs, equipped with NANOPACK and similar packages, can provide a large front
for practical application of computational chemistry.

Sublinear scaling of the calculation and, as a consequence, moderate and even
low speedup should be attributed to weak points. The fact is not characteristic to
the NANOPACK package itself but should be addressed to all QC programs where
algorithms of the eigenproblem solution either dominate or are rather valuable. The
problem is more mathematical than conceptual. The only available ScaLAPACK
library offering the corresponding tool for the parallelization implementation of
the problem greatly restricts the procedure. New approaches to be elaborated will
undoubtedly speed the calculations.

Characterizing the efficiency of the package by and large, a brief report on its
applications should be added. For less than half a year of the package in operation,
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three bulks of computational chemistry applications have been performed at the MBC-
1000M machine:

• a full cycle of sp-QC calculations in the NDDO mode of a set of 13 systems
related to silicon fullerene Si60 and its oligomers (up to 8∗Si60) with NORBS
from 720 to 1920; for 7 oligomers in both singlet and triplet spin states [20];
• a full cycle of spd -QC calculations in the NDDO-WF mode of 24 systems

related to the adsorption of water and carboxylic acids on the rutile and anatase
nanoparticles with NORBS of 2000–2200 [21];
• a full cycle of spd -QC calculations in the NDDO-WF mode of 38 systems related

to Ag+-dipyridil complex oligomers with NORBS from 200 to 2200 [30].

The package behaves steadily and is quite easy to operate.
Another NANOVIBR version has been elaborated by the authors that is based

on the replication data scheme [31]. The tool is well efficient with not too large systems
(NAT ≤ 200) but a big bulk of calculations (say, harmonic vibrational problems
with NMODES ≤ 600) has to be solved. Data replication, in this case, promotes the
facilitation of both IR and Raman spectra intensities calculations to a great extent.
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