
TASK QUARTERLY 6 No 3 (2002), 509–521

EVOLUTIONARY ALGORITHM

FOR LEARNING BAYESIAN STRUCTURES

FROM DATA

MAREK KOZŁOWSKI1 AND SŁAWOMIR T. WIERZCHOŃ2,3

1Faculty of Mathematics and Information Sciences,

Warsaw University of Technology,

Plac Politechniki 1, 00-661 Warsaw, Poland

kozlowsm@mini.pw.edu.pl

2Institute of Computer Science, Polish Academy of Sciences,

Ordona 21, 01-267 Warsaw, Poland

stw@ipipan.waw.pl

3Department of Computer Science, Technical University of Bialystok,

Wiejska 45a, 15-333 Bialystok, Poland

(Received 27 April 2002)

Abstract: In this paper we report an evolutionary approach to learning Bayesian networks from
data. We explain reasons, which advocate such a non-deterministic approach. We analyze weaknesses
of previous works and come to conclusion that we should operate in the search space native for the
problem i.e. in the space of directed acyclic graphs instead of standard space of binary strings. This
requires adaptation of evolutionary methodology into very specific needs. We propose quite new
data representation and implementation of generalized genetic operators and then we present an
efficient algorithm capable of learning complex networks without additional assumptions. We discuss
results obtained with this algorithm. The approach presented in this paper can be extended with the
possibility to absorb some suggestions from experts or obtained by means of data preprocessing.

Keywords: Bayesian networks, structure learning, evolutionary algorithm, discrete optimization

1. Introduction

As stated by Jordan in [1]: Graphical models are a marriage between probability
theory and graph theory. They provide a natural tool for dealing with two problems that

occur throughout applied mathematics and engineering – uncertainty and complexity

– and in particular they are playing an increasingly important role in the design and

analysis of machine learning algorithms. Fundamental to the idea of a graphical model

is the notion of modularity – a complex system is built by combining simpler parts.

Probability theory provides the glue whereby the parts are combined, ensuring that the

system as a whole is consistent and providing ways to interface models to data. The

graph theoretic side of graphical models provides both an intuitively appealing interface

q0306n4i/509 10X2003 BOP s.c., http://www.bop.com.pl

510 M. Kozłowski and S. T. Wierzchoń

by which humans can model high-interacting sets of variables, as well as data structure

that lends itself naturally to the design of efficient general purpose algorithms.
Generally graphical models are graphs in which nodes represent random vari-

ables and the arcs specify the (in-)dependence assumptions that must hold between
the random variables. Particularly, the lack of arcs represents conditional independ-
ence assumptions. Graphical models divide into Markov Random Fields, or undirected
graphical models (consult e.g. [2] for details) and Bayesian Networks (BN in short) or
directed graphical models (consult e.g. [3]). While undirected models are popular with
the physics and computer vision communities, the directed models are more popular
with the artificial intelligence and statistics communities.

Formally speaking a BN is a triple (X,E,{Pi}i=1,...,n) where G = (X,E) is
a directed acyclic graph (DAG for brevity) spanned over the set of n nodes, and Pi,
i=1, .. .,n, stands for a conditional probability table over the set xi∪πi of variables (πi
is the set of parents of ith node in the graph G). In other words Pi is the conditional
probability P (xi|πi); if a node has no parents, i.e. πi =� then Pi is the marginal
probability P (xi). The joint probability distribution, or jpd, over the set of variables
X = {x1,. .. ,xn} can be concisely represented as the product of Pi tables:

P (x1, .. .,xn)=
n
∏

i=1

P (xi|πi). (1)

We say that the jpd factorizes according to the above equation.
BNs are attractive for at least two reasons. A directed arc from xi to xj has

a causal interpretation “xi causes xj” or “xj is an effect of xi”. Hence the set πi is often
interpreted as the set of immediate causes of xi. Thus, although the formal definition
of a BN is based on conditional independence – expressed by the Equation (1) –
in practice a BN is typically constructed using notions of cause and effect. Such
information can be used as a guide to construct the graph structure. In addition,
directed models can encode deterministic relationships, and are easier to learn (i.e. fit
to data).

The triple (X,E,{Pi}i=1,...,n), or in fact the tuple (G,{Pi}i=1,...,n) expresses
the dichotomy between qualitative information – represented by the DAG G – and
quantitative information represented by the set of parameters Pi, i = 1, .. .,n. The
latter, much simpler, task can be solved by using standard estimation techniques
(consult e.g. [4] for details). The first task, of acquiring graphical structure, is the
subject of this paper. Equivalently, this task relies upon identification of the set of
immediate causes for each variable. Knowing such sets we construct a BN for a given
set of variables by drawing arcs from cause variables to their immediate effects. In
almost all cases, doing so results in a BN whose conditional independence implications
are accurate. In the sequel we will assume that a problem domain is just the set of
variables X = {x1, .. . ,xn} and each xi is a discrete random variable (for BNs with
continuous variables see [5]).

The paper is organized as follows. In Section 2 we shortly summarize previous
research on learning Bayesian networks. A “standard” genetic approach to the
problem and some of its disadvantages are presented in Section 3. To improve these
disadvantages a new evolutionary methodology is proposed in Section 4. In Section 5

q0306n4i/510 10X2003 BOP s.c., http://www.bop.com.pl

Evolutionary Algorithm for Learning Bayesian Structures from Data 511

we present and discuss the results obtained with our algorithm. Finally, in Section 6,
we summarize the paper, propose some of the possible further extensions of the
proposed approach and define open problems for further research.

2. Learning Bayesian networks

A naive approach to identify the graphical structureG is simply to ask a domain
expert. When the number of nodes, n, increases, this task becomes more and more
unreliable. The cardinality of the space of all possible structures (search space) is
given by the formula (consult [6]):

f(n)=
n
∑

i=1

(−1)i+1
(

n

i

)

2i(n−i)f(n− i), f(0)= 1, f(1)= 1.

For instance f(3) = 25 and f(5) = 29280. This number can be dramatically reduced
if an ordering among the nodes is assumed. In this case the cardinality of the search
space reduces to 2n(n−1)/2. However, identification of such an ordering is not a trivial
task. Thus, in general leaning BN from the data sets is an NP-complete problem
(consult e.g. [7]).

Most of the literature on acquiring BNs structures from data is concerned with
what statisticians call model selection. This approach relies upon selecting a “good”
model from among all possible models, and use it as if it were the correct model.
Of course, to be able to select such a model we need a scoring criterion. Now, prior
knowledge, a database and a set of graph structures are taken and the degree to which
a graphical structure fits the prior knowledge and data is computed according to the
assumed criterion.

A natural scoring criterion for a graphical structure seems to be the (relative)
posterior probability of that structure given the database – consult Heckerman’s
tutorial [4] for details. A successful illustration of such an approach is the CH metrics
introduced in [8]:

CH(struct)=− logP (data|struct)=
n
∑

i=1

qi
∑

j=1

ri
∑

k=1

log(Nijk)−
Nij+ri−1
∑

k=ri

log(k)

, (2)

where n – number of variables, qi – number of unique instances (values) of the parents
πi of ith variable, ri – number of possible values of ith variable, Nijk – number of cased
in which the variable i takes kth value and πj takes its jth value, Nij =

∑

kNijk.
A nice feature of this criterion is its separability, i.e. it can be written as

CH(struct)=
∑

i=1,...,ns(xi|πi) where s(xi|πi) is only a function of xi and its parents.
This means that CH(struct) can be computed locally (e.g. in parallel).

Unfortunately, because of large cardinality of the search space, this criterion
cannot be applied immediately. To simplify the problem, the authors proposed
a greedy search algorithm, called K2, that uses “cognitive ordering” over the set
of variables.

A review of other approaches to learning BNs can be found in [9, 4]. Intriguingly,
the problem of network identification can be treated also as a discrete optimization
problem. Thus, given a scoring criterion, we will try to adapt non-deterministic

q0306n4i/511 10X2003 BOP s.c., http://www.bop.com.pl

512 M. Kozłowski and S. T. Wierzchoń

evolutionary techniques (derivative of the genetics algorithms) to solve the problem.
We have decided to choose such an approach for the following reasons:

• evolutionary techniques proved to be very efficient in solving many NP-hard
discrete optimization problems,
• deterministic methods for NP-hard problems can suffer for local optima,
• using evolutionary techniques we can avoid specific additional assumptions that
are required for many other approaches,
• we think of adaptation of the experts’ knowledge if any is given,
• non-deterministic algorithm can generate acceptable but different structures
during successive runs; we can choose the best one or think of some kind of
“averaging” over them.

In our study it is supposed that a number of “standard” assumptions (cf. [4]
or [10]) holds:

(a1) the database D is a multinomial sample from some network structure S with
the set of parameters {Pi},

(a2) for each network, the parameters associated with one node are independent of
the parameters associated with other nodes (global independence), and the
parameters associated within a node given one instance of its parents are
independent of the parameters of that node given other instances of its parent
nodes,

(a3) if a node has the same parents in two distinct networks then the distribution
of the parameters associated with this node is identical in both networks
(parameters modularity),

(a4) each case is complete,
(a5) the distribution of the parameters associated with each node is Dirichlet.

For the future reference let us introduce a technical assumption:

(a6) the cardinality of parents sets πi, i=1, . .. ,n does not exceed a fixed number m.

3. Genetic algorithms applied for learning BBNs

Our research has been inspired by the study of Larrañaga and his co-workers [11]
in which the authors use standard genetic algorithm (GA) for learning BNs with
additional assumption that m=4.

Since standard GA operates on binary strings (consult [12] for details), a BN
consisting of n nodes is represented as a string of length n2 resulting from the
concatenation of the rows of the incidence matrix. The (i,j) entry of such a matrix
equals 1 if j is a parent of i and zero otherwise. Thus a BN from Figure 1 is represented
by the string 000100110.

As a scoring metric the authors applied CH criterion (2).
The algorithm proposed in [11] uses simple ranking selection, standard mutation

(alternation of the bits of an individual with probability pM) and a standard, single-
point crossover with probability pC .

Unfortunately an offspring may not satisfy the assumption (a6) or may not
be a DAG. So a reduction operator choosing the best m nodes from the parent set
of every variable and a repair operator converting illegal structures into DAGs by

q0306n4i/512 10X2003 BOP s.c., http://www.bop.com.pl

Evolutionary Algorithm for Learning Bayesian Structures from Data 513

Figure 1. Sample Bayesian network structure

dropping random edges must be used afterwards. The authors point out that reduction
should be done by choosing the best subset of parent nodes instead of dropping them
randomly. Conversion into DAGs is more complex – the cycles may have common
edges and it is difficult to find an efficient algorithm for such operation. So the edges
are thrown away according to a random value.

However, the algorithm equipped with the two additional operators behaves
rather poorly, i.e. it slowly converges to rather local optima in the case of complex
graphical structures. It seems that such behavior of the algorithm is caused mainly by
rather artificial transformation of the original search space (i.e. the space of all DAGs
with n nodes) into n2-Hamming space (i.e. collection of binary strings of length n2).
We think that the structures of BNs cannot be represented by binary or other strings,
or operators on such strings cannot lead out to better structures because:

• Those will often result in cyclic structures. Repair operators tend to increase the
“noise” (they change structures as drastically as the genetic operators). If we
want to preserve convergence, we need to use very small values for probabilities
of genetic operators or very “conservative” selection strategies. The authors
propose a so-called ELITIST criterion: an existing population is extended with
offspring (the size of the population is doubled) and then it is reduced to the
initial size by dropping the worst individuals.
• Crossing over such strings depends on the ordering of variables (their parent
sets) in the individual; especially it should be distinct if we use single-point
crossover. Schemata Theorem (consult [12]) does not work in this case.
• Mutation alternates every bit with some probability pM . For n variables, every
variable has (n−1) possible parents. Unfortunately we are interested only in
graphs with nodes having at most m parents. This implies that in every row of
the incidence matrix there are at most m bits equal to 1 and at least (n−m)
bits equal to 0. For quite big values of n we have “sparse” (containing mostly 0s)
individuals. So, during mutation we generally add some new arcs to the graph
and then delete some of the arcs in the offspring by the reduction operator. Then
we convert the structure into DAG by randomly dropping some arcs. Hence we
can think of mutation as extending some parent sets and then reducing them,
firstly deterministically (by reducing their sizes) then non-deterministically
(by converting a new structure into DAG). Furthermore, individuals tend to
converge to m∗n arcs because mutation increases the number of edges. How
about networks with many nodes and few arcs?
• We have carried out some experiments with a program written according to
indications of the authors of the algorithm with the same parameters and with

q0306n4i/513 10X2003 BOP s.c., http://www.bop.com.pl

514 M. Kozłowski and S. T. Wierzchoń

the same database. Then we ran some experiments with the same parameters
but without crossover. The results obtained were the same in both cases. This
confirms that the algorithm in fact works as described above.

4. Genesis of a new algorithm

It is clear that a different approach should be used: instead of adapting the
problem to the requirements of GAs let us try to adapt the very idea of this
methodology to our needs. Let us reconsider the nature of genetic operators first.

Mutation should slightly disorder the structure – in other words – when mutat-
ing we expect that an individual will be replaced with one of its neighbors (according
to some definition of neighborhood). That is the mutation operator is responsible
for exploration of the close neighborhood of the individuals in a population. Simple
modification of parents of single variable can considerably affect the value of the CH
metric. So mutation that usually changes parents of at most one variable is preferred.
It requires shorter representation of individuals or smaller value of pM . Smaller value
of pM results in that changing more than one parent of the variable at once gets
almost impossible. Shorter representation seems to have no such disadvantages.

Crossover should produce new solutions based on given structures and thus
explore new areas of the search space. It is desired that offsprings have some properties
or components of both parents (individuals producing offspring). In our problem
“component” means a parent set πj for given variable xj . Because of the restrictions
(only DAGs are allowed), the hypothesis of building blocks (a corollary from Holland’s
Schemata Theorem) doesn’t work in our case, at least in the simple, binary form. The
crossover should not take into account any ordering given a priori. That is if we
encode DAG in the form of some linear representation (a string), we decide to order
somehow the variables – this ordering should not impact crossover. That condition is
not fulfilled by the crossover proposed in the standard algorithm described above.

Avoiding creation of cyclic structures during both mutation and crossover is
strongly preferable. For faster implementation we also want those operators to run as
parallel as possible for distinct variables of the individual. In addition, we can think
of such implementations of those operators that are able to absorb some suggestions
from experts, i.e. to explore more carefully some areas of the search space without
precocious convergence of the population to solutions in those areas.

Selection should result in preferring some areas of the search space by throwing
away worse and increasing the number of better individuals. To carefully explore the
search space the population cannot converge too quickly to one region of the space,
which usually causes convergence to local minimum.

If we have an assumption: no more than m=4 parents for any variable, we can
use arrays n×4 instead of n×n. For any variable we keep only numbers (names) of
its parents. If there are fewer than 4 parents we fulfill rows with NULL symbols. We
will treat those NULLs in the same way as “normal” parents.

With this new representation it is possible to modify parents of each node
by random exchange of some fields from the row corresponding to that node by
some allowed new values computed separately in every iteration. We can infer which
variables are allowed and which are not, we can consider some parents more desired

q0306n4i/514 10X2003 BOP s.c., http://www.bop.com.pl

Evolutionary Algorithm for Learning Bayesian Structures from Data 515

and some less for any variable. To do so we need some (partial) ordering of the nodes
of a DAG; precise definition of this ordering is given in Subsection 4.1. So we are able
to suggest some fragments of structures. Finally, we can create those sets of possible
parents with avoidance of cycles in mind.

Similarly, we can introduce new and “safe” (i.e. resulting in acyclic structures)
crossover operator. It is implemented as follows. Given two randomly chosen parent
structures, choose randomly a node in the first parent. For every parent of this node
we leave its predecessors untouched, while parents of remaining nodes are replaced
by the parents from the second structure. Let us note that such an operator: (a) does
not produce cyclic structures, and (b) uses the natural precedence ordering instead
of the abstract nodes ordering forced by the binary representation of DAGs. Figure 2
illustrates the operator.

Parents

Children

Figure 2. Crossover operator. The variable no. 5 (marked black) has been selected. Its
predecessors in both parent individuals are marked dark grey. Those variables (their parents)
become untouched, while for other variables (the white ones) we take whole parent sets

from the other individual

It is also worth saying that if we cache components of the CH criterion for every
variable we do not need to compute it again after crossover. This makes that operator
extremely fast.

4.1. A Partial Order in a DAG

Let an ith node be a parent of the node j in a DAG. It is obvious that:

1. the longest incoming path is shorter for the ith node than for the jth node,

2. the longest outgoing path is longer for the ith node than for the jth node.

This means that it is possible to partition nodes of any DAG into disjoint
subsets (layers) in two ways: considering the longest paths incoming or outgoing from
those nodes. Let us denote labels of those layers according to the length of those
paths. Let nodes with no parents always belong to the 0 layer i.e. for the ordering

q0306n4i/515 10X2003 BOP s.c., http://www.bop.com.pl

516 M. Kozłowski and S. T. Wierzchoń

according to incoming paths – the layer number is equal to the longest path incoming
to the node, while for the “outgoing ordering” it is equal to:

(the longest path in the DAG – the longest path outgoing from the node)

Figure 3 shows that those two partitions can result in different subsets for the same
DAG.

“incoming” “outgoing”

Figure 3. Nodes of the graph divided into “layers” according to
“incoming” and “outgoing” ordering

The main difference can be observed for those nodes that are separated (have
no edges).

Let us notice that if for any node in layer l (l > 0) we add a parent belonging
to the “previous” layer l′< l, it won’t result in a cycle. This means that both of those
divisions are some partial orderings of the nodes. Thus our new mutation operator
can be described as follows: nodes allowed to be parents of any node i are simply
nodes belonging to “previous” layers (including some number of NULL symbols).

4.2. The algorithm

The pseudocode given below summarizes our remarks on a new approach to
learning BNs.

0. Set i=0.
1. We generate randomly popSize individuals (0th population).
2. Selection. Create an auxiliary population (i+1)th by copying some individuals
form the ith population.

3. Crossover (performed with probability pC):

(a) choose (randomly) a pair of parent structures,
(b) select randomly a node, say n,
(c) do not change parent nodes of n and nodes being predecessors of n; replace
parents of the remaining nodes of the first (second) structure by the parents
of these nodes in the second (first) structure,

(d) apply “avoid local minimum” operator after crossover, i.e. select (with
probability pE) two nodes and exchange them (e.g. 1st node becomes 5th

node and 5th node becomes 1st node); this operator resembles somehow the
“shaking” procedure of stochastic annealing. Every individual is mutated
then, we calculate adequate component of the Cooper-Herskovits formula.

4. Mutation:

(a) calculate layers using one (randomly selected) division criterion; next steps
are executed for every node separately (it means concurrently),

q0306n4i/516 10X2003 BOP s.c., http://www.bop.com.pl

Evolutionary Algorithm for Learning Bayesian Structures from Data 517

(b) create a list, i.e. select all nodes belonging to lower layers than a given
node and add some NULLs (we suggest that half of that list should contain
NULLs – the number of edges won’t change too much),

(c) for every parent of the node (including NULL parents) we generate a ran-
dom value – if it’s lower than pM we exchange that parent with randomly
selected node (or NULL) from the list created in the previous step (4b).

5. Calculate adequate component of the Cooper-Herskovits formula.
6. Go to step 2.

5. Results

To verify the algorithm from Section 4.2 a number of experiments have been
performed. All experiments were run on the database generated form the ALARM
network introduced by Beinlich in [13] and presented in Figure 4. It is a complex
structure consisting of 37 variables, very hard to be learned. That database was chosen
for comparative reasons, since it is a very popular model for testing algorithms working
on BNs. It was also used by Larrañaga et al. for testing their genetic approach. For the
proper structure of the network the value of CH criterion should be equal to 144071

(the less the better). For a random structure it is equal to ∼ 23000. Structures with
the value below 14440 are quite acceptable.

Figure 4. Structure of the ALARM network

The values of the parameters pM , pC , and pE have been selected experimentally.
Our algorithm usually finds best results before 3000 iterations (see Figure 5),
sometimes those are a little improved later so we agreed on the “safe” value 5000
iterations.

The algorithm is sensitive to probabilities of evolutionary operators, especially
the probability of mutation. Good values for pC and pE vary from 0.3 to 0.5 without
significant decrease of the results obtained. We found the best results for the pM equal
to 0.002–0.003, for the value of 0.004 those were significantly worse. Fortunately

1. We operate on the dataset generated by ourselves and that value is slightly different to the
analogous value for the Larrañaga’s dataset which was 14412

q0306n4i/517 10X2003 BOP s.c., http://www.bop.com.pl

518 M. Kozłowski and S. T. Wierzchoń

Figure 5. Best values of fitting function in successive iterations

it is quite easy to set this parameter to the right value by gradually decrementing
it (starting with or example 0.05) and observing the results obtained in successive
runs. These observations confirm the error-threshold phenomena described in the
evolutionary biology literature, cf. e.g. [14] or [15]. The error threshold is a critical
(and rather low) mutation rate at which the population evolutionary dynamics
changes radically. There exists a phase transition between an “ordered” (selection-
dominated) regime and “disordered” (mutation-dominated) one. Mutation rates above
this critical value cause a loss of the genetic information gained so far.

We have run tests on different population sizes. Populations smaller than 40
individuals tend to be a little “unstable”, which means that sometimes considerably
worse or better results happen. Populations of the size 80 result in comparable but sub-
optimal structures (cf. Table 1). Populations twice bigger give much better solutions
in the sense of the value of the CH criterion (cf. Table 2). Again this observation is in
accordance with evolutionary biology. In Eigen’s quasispecies theory [14], it has been
observed that in the case of small population size, the evolution process is essentially
stochastic, while for very large population size the evolution becomes a deterministic
process which can be described in terms of the ordinary differential equations. When
the population size is infinite then: (1) the evolution process always converges, and
(2) the final population is a quasispecie, that is the distribution of the sequences in
the neighborhood of the master sequence (optimal solution).

Table 1. Results obtained with the population of 80 individuals, where:

min absolute – minimal value found
generation – generation in which the minimal value was found
min last – minimal value of the last population
avg. last – average value of the last population

PopSize=80, pC =0.4, pM =0.003, pE =0.4

run 1 2 3 4

min absolute 14426 14418 14416 14424

generation 2826 2563 1756 2127

min last 14426 14418 14417 14424

avg. last 14548 14538 14580 14525

q0306n4i/518 10X2003 BOP s.c., http://www.bop.com.pl

Evolutionary Algorithm for Learning Bayesian Structures from Data 519

Table 2. Results obtained with the population of 160 individuals

PopSize=160, pC =0.4, pM =0.003, pE =0.4

run 1 2 3 4

min absolute 14404 14408 14414 14416

generation 3990 4848 2853 661

min last 14404 14408 14417 14416

avg. last 14535 14505 14520 14517

This does not mean that the corresponding structures are closer to the desired
ones in the sense of the Hamming distance or in the sense of correct parent sets. This
is because changing one arc causes changing some arcs in the neighborhood – the
criterion selected prefers structures that can better factorize the joint distribution
function (and then allow proper knowledge propagation) instead of searching for
as many as possible “cause-effort” relations. So we can observe some “regions” of
disordered arcs. For example in Figure 7 such region are variables 4, 19, 20, 27, and
in both underlying structures nodes 17 and 24.

Figure 6. Sample structure found (CH=14408)

The same erroneous arcs in both structures: 18→ 17, 26→ 17, 36→ 24, 37→ 24,
33→ 27 can also suggest that a larger dataset should be used.

For the population size of 200 our algorithm 3 times of 4 found structures with
CH=14407, two of them were exactly the structures we were searching for. For the
population of 80 our algorithm works about 20–30 minutes on the Celeron400/256
MB RAM. For larger populations – proportionally longer.

6. Conclusions and further research

In this paper we have proposed a new approach to learning Bayesian networks.
We adapted evolutionary methodology to specific requirements of the problem being
solved. We showed fast and efficient implementation of genetic operators on DAG
structures. Thanks to this we are able to learn complex Bayesian network structures
without difficult to be fulfilled assumptions, for example about linear ordering of

q0306n4i/519 10X2003 BOP s.c., http://www.bop.com.pl

520 M. Kozłowski and S. T. Wierzchoń

Figure 7. Sample structure found (CH=14425)

variables. In this way we proposed how to simply dynamically divide the set of
variables into ‘classes’ and thus define another, natural (non-linear) ordering.

The mutation proposed by us is not only efficient and simple but thanks to
it we can further develop our approach toward absorption of experts‘ suggestions.
In our algorithm the very basic part of the individual is now not an arc (or its
absence) between two nodes, but a parent set of given variable. Our operators work
on such parent sets. During mutation we slightly change parent sets of distinct
variables. According to suggestions of experts or any preprocessing (based on, for
example, computation of described by Pearl and Rebane weights of arcs) we can
prepare some “preferences”. Some parents (if available) can be more probable, some
- less. Given such suggestions we can go further and implement mutation as changing
a whole parent set according to the suggestions mentioned above and nodes availability
(according to division into layers). We plan to concentrate on that and on the
possibilities of such “suggesting” in our further research.

References

[1] Jordan M I (Ed.) 1998 Learning in Graphical Models, The MIT Press, London
[2] Lauritzen S L 1996 Graphical Models, Oxford University Press
[3] Pearl J 1986 Artificial Intelligence 29 241
[4] Heckerman D in [1] pp. 301–354
[5] Cowell R G, David A P, Lauritzen S L and Spegelhalter D J 1999 Probabilistic Networks and
Expert Systems, Springer-Verlag, New York

[6] Robinson R W 1997 Lecture Notes in Mathematics 622: Combinatorial Mathematics V
(Little C H C, Ed.), Springer-Verlag, pp. 28–43

[7] Chickering DM, Geiger D and Heckerman D 1994 Technical Report MSR-TR-94-17, Redmond
WA: Microsoft Research

[8] Cooper G F and Herskovits E 1992 Machine Learning 9 309
[9] Buntine W 1996 IEEE Trans. on Knowledge and Data Engineering 8 195
[10] Geiger D and Heckerman D 1995 Uncertainty in Artificial Intelligence 11 (Besnard P and
Hanks S, Eds.), Morgan Kaufmann, pp. 196–207

[11] Larrañaga P, Poza M, Yurramendi Y, Murga R H and Kuijpers C M H 1996 IEEE Trans.
on Pattern Analysis and Machine Intelligence 18 912

[12] Goldberg D E 1989 Genetic Algorithms in Search, Optimization and Machine Learning,
Reading, Mass.: Addison-Wesley

q0306n4i/520 10X2003 BOP s.c., http://www.bop.com.pl

Evolutionary Algorithm for Learning Bayesian Structures from Data 521

[13] Beinlich I A, Suermondt H J, Chavez R M and Cooper G F 1989 Proc. 2nd European Conf.
on Artificial Intelligence in Medicine, London, Springer-Verlag, pp. 247–256

[14] Eigen M 1971 Naturwissenschaften 58 465
[15] Peliti L Introduction to the Statistical Theory of Darwinian Evolution, arXiv:cond-mat/9712027

q0306n4i/521 10X2003 BOP s.c., http://www.bop.com.pl

522 TASK QUARTERLY 6 No 3 (2002)

q0306n4i/522 10X2003 BOP s.c., http://www.bop.com.pl

