
TASK QUARTERLY 6 No 3 (2002), 483–492

LEARNING DECISION RULES

USING A DISTRIBUTED

EVOLUTIONARY ALGORITHM

WOJCIECH KWEDLO AND MAREK KRĘTOWSKI

Department of Computer Science,

Technical University of Bialystok,

Wiejska 45a, 15-351 Bialystok, Poland

{wkwedlo,mkret}@ii.pb.bialystok.pl

(Received 20 April 2002)

Abstract: A new parallel method for learning decision rules from databases by using an evolutionary

algorithm is proposed. We describe an implementation of EDRL-MD system in the cluster of

multiprocessor machines connected by Fast Ethernet. Our approach consists in a distribution of

the learning set into processors of the cluster. The evolutionary algorithm uses a master-slave model

to compute the fitness function in parallel. The remainder of evolutionary algorithm is executed in

the master node. The experimental results show, that for large datasets our approach is able to

obtain a significant speed-up in comparison to a single processor version.

Keywords: decision rule learning, distributed evolutionary algorithms

1. Introduction

Data Mining and Knowledge Discovery in Databases (KDD) is a process of

identifying valid, potentially useful and understandable patterns in data [1]. The

two main goals of KDD are prediction i.e. the use of available data to predict

unknown variables and description i.e. the search for some interesting patterns and

their presentation in an easy to understand way. An important prediction task is

classification of an example to one of predefined classes. Usually the classifier is

created from the learning set, which contains description of some examples with known

class labels.

One of the most well-known classification techniques used in KDD is discovery

of decision rules from data. Many rule induction methods e.g. AQ-family [2], CN2 [3]

or C4.5 [4] were proposed. The advantages of the rule-based approach include natural

representation and ease of integration of learned rules with background knowledge.

It is a well-known fact, that most applications of KDD require the capability

of efficient processing of large databases. Unfortunately data mining algorithms,

which offer very good performance (e.g. classification accuracy), are computationally

q0306n1i/483 10X2003 BOP s.c., http://www.bop.com.pl

484 W. Kwedlo and M. Krętowski

expensive. A possible solution to this problem is a parallel implementation of the

given algorithm.

In the paper we present a new distributed approach to decision rules learning.

Our method consists in re-implementation of the existing system EDRL-MD (Evol-

utionary Decision Rule Learner with Multivariate Discretization) [5] on a cluster of

Symmetric Multi-Processing (SMP) machines. For communication between nodes of

the cluster Message Passing Interface (MPI) [6] is used.

The system learns decision rules using an evolutionary algorithm [7] (EA). EAs

are stochastic techniques which have been inspired by the process of biological evolu-

tion. Their advantage over greedy search methods is the ability to avoid local optima.

Several EA-based systems, which learn decision rules in either propositional (e.g.

GABIL [8], GIL [9], GA-MINER [10], EDRL [11]) or first order (e.g. REGAL [12, 13],

SIAO1 [14]) form have been proposed.

The main advantage of EDRL-MD in comparison with other EA-based systems

lies in dealing with continuous-valued attributes. Most decision rule systems employ

univariate discretization methods, which search for threshold values for only one

attribute at the same time. In contrast to them, EDRL-MD learns rules simultaneously

searching for threshold values for all continuous-valued attributes. This approach is

called [5] multivariate discretization.

The remainder of the paper is organized as follows. The next section presents

EDRL-MD system. The distributed implementation of the system in a parallel

environment is described in Section 3. Section 4 is devoted to presentation of the

results of computational experiments investigating scalability of our approach. The

last section contains the conclusion and possible direction of future work.

2. Learning decision rules with EDRL-MD

In this section we briefly present the main topics (i.e. representation of solutions

and genetic search operators) of the learning system EDRL-MD. More detailed

description can be found in [5].

We assume that a learning set E= {e1,e2, . .. ,eM} consists ofM examples. Each

example e∈E is described by N attributes (features) A1,A2, .. . ,AN and labeled by

a class c(e) ∈C. The domain of a nominal (discrete-valued) attribute Ai is a finite

set V (Ai), while the domain of a continuous-valued attribute Aj is an interval

V (Aj) = [lj ,uj]. For each class ck ∈ C by E
+(ck) = {e ∈ E : c(e) = ck} we denote

the set of positive examples and by E−(ck)=E−E
+(ck) the set of negative examples.

A decision rule R takes the form IF t1 ∧ t2 ∧ .. .∧ tr THEN ck, where ck ∈ C and

the left-hand side (LHS) is a conjunction of r (r≤N) conditions t1,t2,. . .,tr; each of

them concerns one attribute. The right-hand side (RHS) of the rule determines class

membership of an example. A ruleset RS is a disjunctive set of decision rules with

the same RHS. By cRS ∈C we denote the class on the right-hand side of the ruleset

RS.

In our approach the EA is called once for each class ck ∈C to find the ruleset

separating the set of positive examples E+(ck) from the set of negative examples

E−(ck). The search criterion, in terminology of EAs called the fitness function prefers

q0306n1i/484 10X2003 BOP s.c., http://www.bop.com.pl

Learning Decision Rules Using a Distributed Evolutionary Algorithm 485

rulesets consisting of few conditions, which cover many positive examples and very

few negative ones.

2.1. Representation

The EA processes a population of candidate solutions to a search problem

called chromosomes. In our case a single chromosome encodes a ruleset RS. Since the

number of rules in the optimal ruleset for a given class is not known, we use variable-

length chromosomes and provide the search operators which change the number of

rules. The chromosome representing the ruleset is a concatenation of strings. Each

fixed-length string represents the LHS of one decision rule. Because the EA is called

to find a ruleset for the given class cRS , there is no need for encoding the RHS.

Figure 1. The string encoding the LHS of a decision rule (kj = |V (Aj)|). The chromosome

representing the ruleset is the concatenation of strings. The number of strings in a chromosome

can be adjusted by some search operators

The string is composed (Figure 1) of N substrings. Each substring encodes

a condition related to one attribute. The LHS is the conjunction of these conditions.

In case of a continuous-valued attribute Ai the substring encodes the lower li and

the upper ui threshold of the condition li <Ai ≤ ui. It is possible that li =−∞ or

ui=+∞.

For a nominal attribute Aj the substring consists of binary flags. Each of the

flags corresponds to one value of the attribute.

Note that it is possible that a condition related to an attribute is not present

on the LHS. For a continuous-valued attribute Ai it can be achieved by setting

both li = −∞ and ui = +∞. For a nominal Aj it is necessary to set all the flags

f1j ,f
2
j , .. . ,f

|V (Aj)|
j .

(a) (b)

Salary Amount Purpose

Car House School

IF (Amount < 250)
−∞ +∞ −∞ 250 1 1 1

THEN Accept

IF (100<Salary < 250)& (Amount < 500)
100 250 −∞ 500 1 1 1

THEN Accept

IF (Salary > 750)& (Purpose = car or house)
750 +∞ −∞ +∞ 1 1 0

THEN Accept

Figure 2. Representation of rulesets: (a) an example chromosome consisting of three strings,

(b) the corresponding ruleset

q0306n1i/485 10X2003 BOP s.c., http://www.bop.com.pl

486 W. Kwedlo and M. Krętowski

Figure 3. Positive example insertion operator

Figure 2 shows an example chromosome for a dataset with two numerical

attributes: Salary and Amount, and one nominal attribute Purpose. It is assumed

that the EA is searching for the optimal ruleset for the class Accept.

2.2. Genetic operators

EDRL-MD employs six search operators. Four of them: changing condition,

positive example insertion, negative example removal, rule drop are applied to a single

ruleset RS (represented by a chromosome). The other two: crossover and rule copy

require two arguments RS1 and RS2.

The changing condition is a mutation-like operator, which alters a single

condition related to an attribute Ai. If Ai is nominal, a flag randomly chosen from

f1i ,f
2
i , .. .,f

|V (Ai)|
i is flipped. For a continuous-valued attribute a threshold (li or ui)

is replaced by a random boundary threshold.

The positive example insertion operator modifies a single decision rule R in

the ruleset RS to allow it to cover a new random positive example e+ ∈ E+(cRS),

currently uncovered by R (Figure 3). All conditions in the rule, which conflict with

e+, have to be altered. In case of a condition related to a nominal attribute Ai the

flag, which corresponds to Ai(e
+), is set. If Ai is a continuous-valued attribute and the

condition li<Ai≤ui is not satisfied because ui<Ai(e
+) the threshold ui is replaced

by ûi, where ûi is the smallest boundary threshold such that ûi ≥Ai(e
+). The case

when Ai(e
+)≤ li is handled in a similar way.

The negative example removal operator alters a single rule R from the ruleset

RS. It selects at random a negative example e− from the set of all the negative

examples covered by R (Figure 4). Then it alters a random condition in R in such

a way, that the modified rule does not cover e−. If the chosen condition concerns

a nominal attribute Ai the flag which corresponds to Ai(e
−) is cleared. If Ai is

a continuous-valued attribute then the condition li<Ai≤ui is narrowed down either

to l̂i <Ai ≤ ui or to li <Ai ≤ ûi, where l̂i is the smallest boundary threshold such

that Ai(e
−)≤ l̂i and ûi is the largest boundary threshold such that ûi<Ai(e

−).

q0306n1i/486 10X2003 BOP s.c., http://www.bop.com.pl

Learning Decision Rules Using a Distributed Evolutionary Algorithm 487

Figure 4. Negative example removal operator

Rule drop and rule copy operators are the only ones capable of changing the

number of rules in a ruleset. The single argument rule drop removes a random rule

from a ruleset RS. The two argument rule copy adds to one of its arguments RS1,

a copy of a rule selected at random from RS2, provided that the number of rules

in RS1 is lower than maxR. maxR is an user-supplied parameter, which limits the

maximal number of rules in the ruleset.

The crossover operator selects at random two rules R1 and R2 from the

respective arguments RS1 and RS2. Then it applies a uniform crossover [7] to the

strings representing R1 and R2.

2.3. The fitness function

Consider a rulesetRS which covers pos positive examples and neg negative ones.

The number of positive and negative examples in the learning set is denoted by POS

and NEG , respectively. The ruleset RS classifies correctly pos positive examples and

NEG−neg negative ones. Hence the probability of classifying correctly an example

from the learning set is given by:

Pr(RS)=
pos+NEG−neg

POS+NEG
. (1)

Obviously we are interested in rulesets with possibly high classification accuracy.

However, optimizing directly Equation (1) will yield disastrous results. For instance,

it is trivial to find a ruleset consisting of POS rules, that each of them covers one

positive example and no negative ones. Although for that ruleset Pr(RS) = 1.0, it

will not be able to classify correctly unknown examples because it is too specialized

and overfits the learning data.

To avoid the overfitting we take two steps. Firstly, we limit the number of rules

in a chromosome to maxR, where maxR is a user-supplied parameter. Secondly, our

q0306n1i/487 10X2003 BOP s.c., http://www.bop.com.pl

488 W. Kwedlo and M. Krętowski

fitness function depends not only on the probability (1), but also on the complexity

of the ruleset. As a measure of complexity we take:

Compl(RS)=α log10(L+1)+1, (2)

where L is the total number of conditions in the ruleset RS and α is a user supplied

parameter. Finally, the fitness function is given by:

f(RS)=
Pr(RS)

Compl(RS)
. (3)

3. Implementation in a distributed environment

As Equation (1) shows, to determine the fitness of a chromosome it is necessary

to calculate the counts of positive and negative examples denoted by pos and neg ,

respectively. To obtain pos and neg the algorithm has to iterate through all the

examples in the learning set. For each example ei ∈E the algorithm checks if ei is

covered by the ruleset RS. If the example matches a premise of at least one rule from

the RS it is regarded as covered. Then, depending on the type of the example either

the counter of positive examples or the counter of negative examples is incremented.

This step is shown on Figure 5.

Figure 5. Computation of the fitness of the ruleset RS

In many practical applications the size of the learning set is very large.

Moreover, the CPU time required by the remaining components of the EA i.e.

genetic search operators and selection does not depend on the size of the learning

set. Consequently, the computational complexity of the algorithm is dominated by

the calculation of the fitness.

In our approach we decided to implement the computation of fitness function

in a distributed manner. The algorithm runs in a master-slave model. The dataset

is divided evenly into subsets; each subset is placed on a single slave processor

(see Figure 6). Each slave processor is responsible for the evaluation of the rules

on the corresponding subset. At the beginning of an iteration of EA the master

processor broadcasts (Figure 7a) the population i.e. the set of chromosomes to all slave

processors. For each ruleset in the population a slave processor counts the number of

covered positive and negative examples from its subset. The master processor gathers

q0306n1i/488 10X2003 BOP s.c., http://www.bop.com.pl

Learning Decision Rules Using a Distributed Evolutionary Algorithm 489

Figure 6. Initialization of the algorithm

Figure 7. Computation of the fitness function

(Figure 7b) results from each slave, sums up the counts for each ruleset and computes

the fitness.

In addition to the number of positive and negative examples each slave chooses

randomly one positive example not covered by the ruleset and one negative example

covered by the ruleset. The numbers of these examples are also sent to master, because

they are necessary to apply positive example insertion and negative example removal

operators. The data concerning all the rulesets is packed by the slave in one message,

which is sent using a single MPI Gather operation.

q0306n1i/489 10X2003 BOP s.c., http://www.bop.com.pl

490 W. Kwedlo and M. Krętowski

When the fitness of all chromosomes is computed the remaining part of the

iteration of EA (i.e. the selection and genetic operators) is executed solely on the

master processor. For each ruleset the master chooses two examples needed by the

insertion and removal operators randomly from the candidates sent by slaves.

4. Experimental results

In this section experimental results are presented. We have tested the parallel

version of EDRL-MD on five datasets of varying size. The datasets were taken from

the repository of publicly available data at the University of California, Irvine [15].

The description of the datasets is shown in Table 1.

Table 1. The datasets used in the experiments

No. of attributes No. of
Dataset Size

(Numeric/Nominal) classes

german 1000 7/13 2

cmc 1473 2/7 3

page blocks 5473 10/0 5

nursery 12960 0/8 5

thyroid 7200 6/15 3

To evaluate the proposed approach we performed an experiment on a 6 CPU

cluster consisting of three two-processor machines (Pentium III 700) running Linux.

The machines in the cluster were connected via a Fast Ethernet switch. For

message passing LAM (Local Area Multicomputer) MPI [16] implementation was

used.

The total processing time of the algorithm is proportional to the number of

generations, which in turn depends on the termination condition. In our approach

algorithm stops when the fitness of the best chromosome does not improve during

consecutive NTERM generations. Because the EA is a probabilistic algorithm, the

number of generations and the processing time can vary significantly with different

runs on the same data. However, an average time of a single generation is approxim-

ately the same for the given learning set. This time was used to evaluate scalability

of our method.

Figure 8 shows average time of generation depending on the number of slave

CPU processors. Note that in case when the number of slaves is equal to the number

of CPUs one processor acts both as slave and master.

Figure 9 shows the speed-up obtained by our implementation for all datasets

compared to the ideal case of linear speed-up.

The results show that for two smaller datasets (german and cmc) the speed-up

is relatively small. The most probable reason for such result is very high latency of

our Fast Ethernet interconnect. However, for the larger dataset the algorithm is able

to obtain a significant, almost linear speed-up.

5. Conclusions and future work

In this paper we have shown, that the computational efficiency of evolutionary

algorithms for data mining applications can be significantly improved by the use

q0306n1i/490 10X2003 BOP s.c., http://www.bop.com.pl

Learning Decision Rules Using a Distributed Evolutionary Algorithm 491

Figure 8. Average time of EA generation for five datasets

Figure 9. Speedup relative to one slave CPU

of parallel machines. We proposed a parallel version of EDRL-MD based on data

distribution approach. The experimental results suggest that for large datasets near-

linear speed-up is possible.

q0306n1i/491 10X2003 BOP s.c., http://www.bop.com.pl

492 W. Kwedlo and M. Krętowski

Several directions of future research exist. One of them is the load balancing

in heterogeneous clusters, which could be easily achieved by non-even division of the

learning set.

Especially for smaller datasets our results were negatively affected by the high

latency of Fast Ethernet used as the interconnect. However, the latency could be

reduced almost by two orders of magnitude, by using more modern interconnect (e.g.

Dolphin or Myrinet). In such case it would be possible to achieve higher than linear

speedup for some datasets because the distributed learning set would more efficiently

utilize the cache memory of slave processors. We are going to test this hypothesis

using hardware with a low-latency interconnect.

Acknowledgements

The authors are grateful to Prof. Leon Bobrowski for his support and useful

comments. This work was supported by the grant W/WI/1/02 from Technical

University of Bialystok.

References

[1] Fayyad U M, Piatetsky-Shapiro G, Smyth P and Uthurusamy R (Eds.) 1996 Advances in

Knowledge Discovery and Data Mining, AAAI Press

[2] Michalski R S, Mozetic I, Hong J and Lavrac N 1986 Proc. 5 th Nat. Conf. on Artificial

Intelligence, Philadelphia, PA, pp. 1041–1045

[3] Clark P and Niblett T 1989 Machine Learning 3 261

[4] Quinlan J R 1993 C4.5: Programs for Machine Learning, Morgan Kaufmann

[5] Kwedlo W and Krętowski M 1999 Springer Lecture Notes in Computer Science 1704 392

[6] Snir M (Ed.) 1998 MPI – The Complete Reference, 2nd Edn., MIT Press

[7] Michalewicz Z 1996 Genetic Algorithms + Data Structures = Evolution Programs, 3rd Edn.,

Springer

[8] De Jong K, Spears W M and Gordon D F 1993 Machine Learning 13 168

[9] Janikow C 1993 Machine Learning 13 192

[10] Flockhart I W and Radcliffe N J 1996 Proc. 2nd Int. Conf. on Knowledge Discovery and Data

Mining, KDD-96, Portland, OR, AAAI Press, pp. 299–302

[11] Kwedlo W and Krętowski M 1998 Springer Lecture Notes in Computer Science 1510 370

[12] Giordana A and Neri F 1995 Evolutionary Computation 3 (4) 375

[13] Neri F and Saitta L 1996 IEEE Trans. on Pattern Analysis and Machine Intelligence 18 1135

[14] Augier S, Venturini G and Kodratoff Y 1995 Proc. 1st Int. Conf. on Knowledge Discovery

and Data Mining, KDD-95, Montreal, Canada, AAAI Press, pp. 21–26

[15] Murphy P and Aha D UCI Repository of Machine-learning Databases,

http://www.ics.uci.edu/pub/machine-learning-databases

[16] Burns G, Daoud R and Vaigl J 1994 Proc. of Supercomputing Symposium ’94, University

of Toronto, pp. 379–386

q0306n1i/492 10X2003 BOP s.c., http://www.bop.com.pl

