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Abstract: The paper presents numerical simulations of behaviour of concrete elements subjected to
uniaxial compression for plane strain. FE-calculations are performed with two different elasto-plastic
constitutive laws for concrete. Numerical results obtained suffer from mesh sensivity due to the
presence of material softening. To obtain a well-posed boundary problem and a mesh independent
solution, conventional constitutive laws with softening require an extension (called regularisation)
to describe properly the localisations of deformations. In this paper elasto-plastic constitutive laws
are extended by non-local strain terms. Owing to them, localisations of deformations are realistically
captured.
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1. Introduction

The phenomenon of localisation of deformation occurs in many engineering
materials like metals, soils, polimers and concrete. In the case of localisation, deform-
ations are concentrated in a small region of the material, whereas in the remaining
part they are negligible. Due to the localisation of deformation, a degradation of
the material strength develops (second-order work is negative). The localisations can
occur as:

• cracks (if cohesive properties of the material dominate over frictional ones) or
• shear bands (if frictional properties are crucial).

Classical FE-analyses of the behaviour of material with softening are not
able to describe properly both the thickness of localisation zones and distance
between them. They suffer, namely, from mesh sensivity (its size and alignment),
Bažant [1], de Borst [2]. They produce, thus, unrealiable results: localisations become
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narrower upon mesh refinement, and computed force-displacement curves depend on
the thickness of localisations (in particular in a post-peak regime). The reason is
that differential equations of motion change their type (for static calculations from
elliptic to hyperbolic) and the boundary problem is mathematically ill-posed (de Borst
et al. [3]). In this case, deformations tend to localise in zero-thickness zones when using
analytical calculations or in one-element wide bands by FE-modeling. Thus, classical
constitutive models require an extension in the form of a characteristic length to
describe (regularize) the thickness and distance of localisations.

One of the regularisation techniques is to include viscosity in the constitutive
model. Time derivatives of velocity of strains are added to equations of motion
(Loret and Prevost [4], Sluys and de Borst [5]). This method is useful in dynamic
calculations. For quasi-static problems, the amount of viscosity required to obtain
a proper regularisation is often too high from a physical point of view (Sluys and de
Borst [5]).

Another method of regularisation is to use a polar constitutive law laid down
within a Cosserat continuum (Cosserat and Cosserat [6]). The rotational degrees-
of-freedom (independent from displacement degrees-of-freedom) are extra introduced
into a classical continuum theory. Curvatures (the spatial derivatives of rotations) are
connected to couple stresses. The deformation and stress tensor are non-symmetric.
The Cosserat continuum was applied first as a regularisation technique in an elasto-
plastic formulation by Mühlhaus [7]. Later this model has been used by Tejchman
and Wu [8], de Borst [9], Tejchman et al. [10] to model shear localisations in granular
bodies where pronounced rotations of grains take place.

The next way of regularisation is a strain gradient model. In this model,
additional higher-order spatial derivatives of strains are included in constitutive
equations (Schreyer and Chen [11], Zbib and Aifantis [12], Mühlhaus and Aifantis [13],
de Borst and Mühlhaus [14] and Sluys [15]).

The other way of regularisation is a non-local model (Eringen [16, 17]). The
model can be considered as a generalization of a strain gradient model with second-
order strain gradient terms (Mülhaus and Aifantis [13], de Borst and Mühlhaus [14]).
In this model, a strain measure depends not only on the plastic strain in the material
point considered but also on the plastic strain around the point (Bažant et al. [18]).
The remaining general stresses and strains are usually local. The non-local model has
been used next by Brinkgreve [19], Chen [20], Strömberg and Ristinmaa [21], Marcher
and Vermeer [22].

In this paper, the results of FE-calculations of a concrete specimen subjected to
uniaxial compression with two elasto-plastic models (with and without regularisation)
are demonstrated. The FE-analysis was carried out with an elasto-plastic law by
Drucker-Prager and von Mises. An elasto-plastic by von Mises was extended by non-
local terms according to a Brinkgreve’s proposal [19].

2. Constitutive models for concrete

2.1. Drucker-Prager yield criterion

One of two models for concrete defined inAbaqus package is an inelastic concrete
model [23, 24]. This model is designed for concrete elements subjected to essentially

q0306e4i/438 10X2003 BOP s.c., http://www.bop.com.pl



A Non-local Elasto-plastic Model to Describe Localisations. . . 439

monotonic straining at low confining pressures. It uses isotropic hardening with an
associated flow rule. It enables to define material softening in compressive and tensile
region. Concrete model is fully defined with the following parameters and material
functions:

• modulus of elasticity,
• Poisson’s ratio,
• stress-strain curve in uniaxial compression,
• stress-strain curve in uniaxial tension,
• the ratio of the ultimate biaxial compressive stress to the ultimate uniaxial
compressive stress rσbc,
• the absolute value of the ratio of the uniaxial tensile stress at failure to the
ultimate uniaxial compressive stress,
• the ratio of the magnitude of a principal component of plastic strain at ultimate
stress during biaxial compression to plastic strain at ultimate stress in uniaxial
compression rεbc,
• the ratio of the tensile principal stress at cracking in plane stress (when the other
principal stress is at the ultimate compressive value) to the tensile cracking
stress under uniaxial tension rf ,
• shear coefficient after cracking ρc.

In a compression region, concrete is modeled by a Drucker-Prager yield surface
(“compression” surface in Figure 1):

fc= q−
√
3a0p−

√
3τc=0,

where p = −tr(σij)/3 is the mean stress, q =
√

3
2sijsij – the equivalent deviatoric

stress measure, sij – the deviatoric stress, a0 – the constant and τc – the hardening
(cohesive) parameter assumed from the relation stress-strain for uniaxial compression.
In a tensile region, a crack detection surface is equal to (Figure 1):

ft= q′−
(

3−b0
σt
σut

)

p′−

(

2−
b0
3
σt
σut

)

σt=0,

where σut is the failure stress in uniaxial tension, b0 – the material constant, σt –
the hardening parameter in tension, p′ and q′ – the values defined as p and q for
compression (but without stress components associated with open cracks). The flow
rule is defined as:

dεpij = dλ
∂g

∂σij
,

where εpij is the plastic strain increment tensor, dλ is the plastic multiplier and g is
the potential function. By using associated flow rule, f = g.

To calculate the displacement u0 at stress in tension equal to zero, the fracture
energy Gf , required to open a crack of an unit area, is assumed as a material constant
(Hilleborg [25]):

u0=
2Gf
σut
.

Concrete tensile behaviour after cracking is described by the stress evolution versus
the displacement in the localisation zone. To compute this displacement, calculated
global strain is multiplied by a characteristic length associated with the size of finite
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Figure 1. Concrete failure surfaces in the p−q plane (σuc – ultimate uniaxial compressive stress)

elements. For planar elements, the characteristic length is equal to the square root
of the integration point area and for solid elements it is equal to the cube root of
the integration point volume. The main advantage of this model is the ability to
describe the concrete behaviour under monotonic loading in a realistic way (Kupfer
and Gerstle [26]) with only 9 material constants.

2.2. Von Mises yield criterion

The second constitutive model used in FE-calculations is an elasto-plastic one
by von Mises with isotropic hardening and softening. The yield function f and
potential function g are defined as:

f(q,κ)= g= q−σ0(εp),

where q is the Mises equivalent deviatoric stress, σ0 is the equivalent strength and εp
denotes the equivalent plastic strain (εp=

√

2
3e
p
ije
p
ij) used as a measure of hardening

and softening (epij – plastic deviatoric strain tensor).

3. Non-local approach

As a regularisation technique to describe localisations of deformation in material
with softening, a non-local approach is used. The aim of a non-local approach is to
obtain a well-posed boundary value problem, to ensure mesh independence and to
promote convergence of numerical procedures. In this approach, average stresses σ∗ij
and average strains ε∗ij are defined as:

σ∗ij(xn)=
1
A

∫ ∫ ∫

w(x′n)σij(xn+x
′

n)dx
′

1dx
′

2dx
′

3,

ε∗ij(xn)=
1
A

∫ ∫ ∫

w(x′n)εij(xn+x
′

n)dx
′

1dx
′

2dx
′

3,

where a superimposed star denotes a non-local mode, xn is a global, x′n is a local
coordinate with n = 1,2,3, w is a weighting function, σij , εij – local stresses and
strains in the entire body and A is a weighted volume:

A=
∫ ∫ ∫

w(x′n)dx
′

1dx
′

2dx
′

3.

The integral of the function w over the domain r must be equal to 1:
∞
∫

∞

w(r)dr=1.
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Usually, the error function is taken as a weighting function w [19]:

w(r)=
1
l
√
π
e−(

r

l
)2 , (1)

where r is a distance from the considered point to all points of the body and l
is a characteristic (internal) length related to the width of the localisation zone.
The averaging is, thus, restricted to a small representative area around the material
point considered. In homogenous bodies, the non-locality can be related only to the
equivalent plastic strain measure ε∗p in the softening regime (Bažant [18]):

ε∗p(x)=
1
A

∫

V

w(r)εp(x+r)dV. (2)

According to a Brinkgreve’s proposal [19] (see also Strömberg [21]), the non-local
variable ε∗p can be defined as:

ε∗p(x)= (1−α)εp(x)+
α

A

∫

V

w(r)εp(x+r)dV, (3)

where α is a parameter. This formulation consists of a local and a purely non-local
part. It turned out to be more effective (for α> 1) to describe localisations than the
formulation including only a non-local part [19]. For α=0, a classical (local) theory is
obtained, and for α=1, Equation (2) is recovered. To simplify calculations (de Borst
and Mühlhaus [14]), plastic strain rates can be approximated by total strain rates:

dε∗p(x)≈ dεp(x)+α





1
A

∫

V

w(r)dε(x+r)dV −dε(x)



,

where dεp is the plastic and dε is the total increment of the equivalent strain.

4. Numerical calculations

Numerical calculations were performed for plane strain using a concrete spe-
cimen 15cm wide and 30cm high subject to uniaxial compression (Figure 2a). All
nodes at the lower edge were fixed in vertical direction. To preserve the stability of
the specimen, the node in the middle of the lower edge was kept fixed. The deforma-
tions were initiated through constant vertical displacement increments prescribed to
nodes along the upper edge of the specimen. The lower and upper edges were smooth.
To investigate the effect of the mesh on the results, various discretisations were used:
coarse (5×10), medium (10×20) and fine (15×30) where each quadrilateral is com-
posed of four diagonally crossed triangular elements, with linear shape functions. The
localisation was induced by a small material imperfection at the lower left corner of
the specimen (Figure 2b).

To solve a non-linear equation system, the full Newton method was applied
for local constitutive laws, and the modified Newton-Raphson scheme with an
elastic stiffness matrix for a non-local constitutive law. A geometric nonlinearity was
included. Cauchy stresses and logarithmic strains were used. At least 1000 increments
were required to obtain a vertical displacement of the top, ∆v=1.5mm.
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(a) (b)

Figure 2. Uniaxial concrete compression: (a) geometry and boundary conditions of the specimen,
(b) location of imperfection

Figure 3. Stress–strain curve for concrete in uniaxial compression

In an elasto-plastic constitutive law by Drucker-Prager, the Young modulus
was taken as E = 29GPa and Poisson’s ratio as ν = 0.18. The stress-strain curve
in uniaxial compression assumed for calculations is shown in Figure 3 (softening
modulus H =1.5GPa). The compressive strength of the concrete specimen is 32MPa
at ε= 2.2%% and the residual concrete strength is 12MPa. The strength in uniaxial
tension is assumed to be σut =2.4MPa. To model the behaviour of concrete in tension,
the displacement u0 was taken as 7 ·10−5m. This value is equivalent to the fracture
energy Gf =84kN/m. Other material constants were chosen as: rσbc=1.16, r

ε
bc=1.28,

rf =0.33 and ρc=1.0. The imperfection in the model was introduced in this way that
the maximum strength of concrete during uniaxial compression was diminished by 2%.

Figures 4 and 5 present the results: deformed meshes for different discretisations
(deformation scale factor is equal to 6.0) and load-displacement diagrams. The
deformations localise in one element wide shear band with the inclination of 45̊
which is equal to the mesh alignment. A severe mesh-dependency is obtained since
the thickness of the shear zone decreases with decreasing element size. The maximum
equivalent plastic strains occur in three elements across the shear band (grey color
indicates elements with larger strains). In the load-displacement diagram (Figure 5),
the vertical force denotes the sum of all vertical nodal forces along the top and the
displacement is related to the displacement of the top edge. The curves for all meshes
are similar up to the peak. The maximum force is equal to Pmax=6.18 ·103kN for the
vertical displacement vmax≈ 1mm. After the peak, the evolution of the vertical force
depends on the mesh. A strong unstable failure mechanism occurs.

The FE-results with an elasto-plastic law by von Mises are shown in Figures 6
and 7. Similar material parameters were assumed. Figure 6 shows deformed meshes
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Figure 4. Deformed meshes and equivalent plastic strains for different discretisations using
an elasto-plastic model by Drucker-Prager (without regularisation)

Figure 5. Load–displacement diagrams for different mesh discretisations
(Drucker-Prager criterion without regularisation)

and equivalent plastic strains. The deformations and strains localise again in one
element wide shar band with the inclination of 45̊ . The maximum vertical force along
the top is equal to Pmax=5.45·103kN for the displacement vmax=0.66mm. The load-
displacement curves are again equal in a pre-peak regime and differ significantly after
the peak (Figure 7). For a medium and fine mesh, the strength degradation is very
sharp.

Figures 8 and 9 demonstrate the FE-results with a non-local elasto-plastic
constitutive law by von Mises. Two additional constants were taken into account:
the parameter α and the characteristic length l (Equation (1)) both determining the
width of the localisation zone. The calculations were performed with the parameter
α changing from 1 to 4 and the parameter l changing from 2cm to 10cm. Deformed
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Figure 6. Deformed meshes and equivalent plastic strains for different discretisations using
an elasto-plastic model by von Mises (without regularisation)

Figure 7. Load–displacement diagrams for different mesh discretisations
(von Mises criterion without regularisation)

meshes and equivalent plastic strains for α= 2 and l= 3cm are shown in Figure 8.
Deformations localise in a band wider than one finite element. The thickness of the
shear zone is approximately 7cm (≈ 2l) and does not depend upon the mesh size. The
load-displacement diagrams are presented in Figure 9. The maximum load is the same
as in a local model (Figure 7). The evolution of the vertical force along the top after
the peak is the same for all discretisations. The results show that the thickness of the
localised shear zone increases with increasing parameters α and l. The thickness is
approximately equal to αl. The maximum vertical load is independent of α and l. The
material softening decreases with increasing l. For α=1, the model is less effective to
describe the thickness of the localisation zone.
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Figure 8. Deformed meshes and equivalent plastic strains for different discretisations using
an elasto-plastic model by von Mises (with regularisation)

Figure 9. Load–displacement diagrams for different mesh discretisations
(von Mises criterion with regularisation)

5. Conclusions

FE-calculations demonstrate that conventional elasto-plastic models suffer from
mesh-dependency. The thickness and the inclination of shear zones, and the load-
displacement diagram in the post-peak regime depend strongly on the mesh discret-
isation. The addition of a non-local strain measure results in a full regularisation of
the boundary value problem. Numerical results converge to a finite size of localisation
upon mesh refinement. The thickness of localised zones increases with an increase of
a characteristic length.

The numerical study on localisations of deformation in concrete will be contin-
ued. An elasto-plastic constitutive law by Drucker-Prager will be extended by a non-
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local plastic strain measure. The characteristic length will be identified with the mean
size of aggregate.
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[14] de Borst R and Mühlhaus H B 1991 Proc. 4 th Int. Conf. on Nonlinear Eng. Comp. (Bićanić N,
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