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Abstract: Paper presents results of numerical modelling of behaviour of plane strain reinforced
concrete elements under eccentric compression. In the analysis, a finite element method was used
based on an elasto-plastic constitutive law by Drucker-Prager with hardening and softening for
concrete and an elasto-plastic constitutive law by von Mises for reinforcement. The effects of
boundary conditions at the element ends, eccentricity of the compressive load, element slenderness,
area of the longitudinal and horizontal reinforcement on the load bearing capacity of elements were
studied. The effect of the mesh refinement on the bearing capacity of elements was also analysed.
A satisfactory agreement with model tests was achieved.

Keywords: eccentric compression, concrete, finite element method, reinforced concrete, reinforce-
ment

1. Introduction

Reinforced concrete columns and walls supporting slabs and beams are fre-
quently subject to eccentric compression. The calculation of the bearing capacity of
such elements is, however, difficult since it depends upon many different factors such
as: element slenderness, load eccentricity, boundary conditions at the ends, area and
shape of the cross-section of concrete, area and spacing of the vertical and horizontal
reinforcement, reinforcement ratio, compressive strength of concrete, compressive and
tensile strength of reinforcement, type and character of load (short or long-term,
monotonic or cycling), concrete shrinkage and concrete creep. To calculate the op-
timal reinforcement area and thus to decrease building costs, a theoretical prediction
of the influence of these factors on stresses in the entire element is needed. To obtain
this information, a finite element method can be used [1–4].

The intention of the paper is to numerically analyse the behaviour of plane
strain reinforced concrete elements (walls) subject to eccentric compression. The
analysis was carried out with a conventional finite element method. The material
and geometric non-linearities were taken into account. To describe plain concrete
for monotonic loading without confining pressures, an elastic-plastic smeared crack
constitutive law by Drucker-Prager with isotropic hardening and softening was used.

Q0306E2I/411 10X2003 BOP s.c., http://www.bop.com.pl



412 T. Majewski and J. Tejchman

In turn, the behaviour of reinforcement was modelled by an elasto-plastic constitutive
law by von Mises with isotropic hardening. During calculations, both a full interaction
and a full slip between concrete and reinforcement was considered. The effect of load
eccentricity, boundary conditions at the element ends, element slenderness, area of
the longitudinal and horizontal reinforcement on the bearing capacity of elements was
studied. The effect of the mesh refinement was analysed as well. Due to the lack of
comprehensive experiments carried out with reinforced concrete walls, the numerical
calculations were compared with results of laboratory tests performed on columns by
Kim and Yang [5].

The bearing capacity of reinforced concrete columns was experimentally studied
by many researchers. The effect of the load eccentricity was investigated by Makovi [6],
Gruber and Menn [7], Kiedroń [8], Billinger and Symons [9], Lloyd and Rangan [10].
Billinger and Symons [9], and Kim and Yang [5] studied the effect of the column
slenderness. Szuchnicki [11] analysed the influence of the cross-section. In turn, the
effect of creep was investigated by Kordina et al. [12], the effect of lateral pre-
stressing by Gardner et al. [13], the effect of the vertical reinforcement by Kim
and Yang [5], Lloyd and Rangan [9], and the effect the horizontal reinforcement
by Oleszkiewicz et al. [14] and Korzeniowski [15, 16]. In turn, the influence of the
concrete strength was shown in tests by Kim and Yang [5], Kiedroń [7], Billinger and
Symons [8], and Lloyd and Rangan [9]. The results of experiments have evidently
shown that bearing capacity of columns decreases with increasing load eccentricity,
slenderness, ratio of the end fixing and creep. The increase of concrete strength
influences significantly the bearing capacity for small eccentricities. The lateral pre-
stressing and horizontal reinforcement increase the bearing capacity of cylindrical
elements.

There exist several theoretical models to calculate the bearing capacity of
elements under eccentric compression. A satisfactory agreement between experimental
and theoretical results was achieved with a numerical uniaxial model proposed by
Korzeniowski [15, 17], Fragomeni and Mendis [18], and Mendis [19].

The paper is organised as follows. At the beginning, basic assumptions incor-
porated in the formulation of a constitutive model for concrete and reinforcement
are outlined. Later, the details of finite element implementation are given. Next,
the numerical results on reinforced concrete element subject to eccentric load are
described to demonstrate the validity of the numerical model. The results are com-
pared with model tests. Finally, general conclusions from the theoretical research are
provided.

2. Constitutive model for concrete

The behaviour of concrete has been the object of intensive research over the
last few decades. Despite of many significant contributions, the description of the
mechanical response of concrete still poses a formidable challenge. It is because
concrete is a discrete, strongly heterogeneous material and its behaviour is very
complex due to localised modes during the damage (micro- and macro-cracks, shear
zones). The most important properties of concrete are:
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• compressive strength is several times higher than tensile one,
• elastic behaviour takes place up to one third of the compressive strength during
uniaxial compression and up to two third of the tensile strength by uniaxial
extension,
• during biaxial compression, compressive strength is about 20–30% higher than
during uniaxial one,
• failure surface is close to parabolic in a principle stress space,
• shape of the failure surface in deviatoric planes changes from a curvilinear
triangle for low hydrostatic pressures to nearly circular at high pressures,
• progressive transition from compaction to dilatancy is observed during com-
pression,
• non-associated flow rule prevails,
• ductile (stable) damage occurs at high pressures and brittle (unstable) damage
at low pressures,
• shear strength is different in a triaxial compression and extension test,
• elastic modulus depends on pressure,
• material is anisotropic,
• creep and shrinkage are of importance,
• scale effects in model tests due to localisation of deformations (cracks, shear
zones) exist.

Continuum models describing the mechanical behaviour of concrete were for-
mulated within non-linear elasticity [20–23], rate-independent plasticity [24–27], en-
dochronic theory [28, 29], plastic-fracturing theory [30, 31] and lattice models [32].
Elasto-plastic models found, however, the widest application in solving of practical en-
gineering problems. The simplest ones use criteria following Rankine, Coulomb-Mohr
and Drucker-Prager with or without closing caps in the tensile and compression re-
gion [1, 33, 34]. Others to realistically describe the triaxial strength of concrete apply
a non-linear Drucker-Prager criterium [35], parabolic Leon criterium [36], extended
Leon criterium [37] and own formulations [2, 24, 26, 27, 38–40].

To model the behaviour of plain concrete elements under eccentric loading,
in the first step, a linear non-associated Drucker-Prager constitutive law for concrete
with isotropic hardening and softening was used which combines the cohesive strength
of the cement paste with the frictional adhesion of aggregate interaction. The failure
surface was closed in the tensile and compressive regime by a linear limit cap surface.
Therein, a constant elastic modulus was used. The constitutive law can be summarised
as follows:

ε̇ij = ε̇eij+ ε̇
p
ij , (1)

ε̇pij =λ
∂g

∂σij
, (2)

τ =(0.5sijsij)1/2, (3)

f = τ+µ(κp)p−c, (4)

g= τ+α(κp)p, (5)

wherein τ is the second invariant of the deviatoric stress tensor, sij – non-symmetric
deviatoric stress tensor (sij =σij−pδij), p – mean stress, σij – stress tensor, f – yield
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Figure 1. Yield and flow potential curves in the τ , p-plane
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Figure 2. Measures of frictional strength µ=sinφ and volume change α=sinβ (φ – internal
friction angle, β – dilatancy angle, κp – second invariant of the deviatoric deformation tensor)

function, g – potential function, µ – measure of the frictional strength, α – measure
of the volume change, c – cohesive strength, κp – second invariant of the deviatoric
deformation tensor, εij – deformation tensor, ε̇ij – rate of deformation tensor, λ –
proportionality factor. The superimposed indexes e and p designate the elastic and
the plastic deformation, respectively. In the τ , p-plane, the equations f =0 and g=0
describe a yield and a flow potential curve (Figure 1). The factors µ in Equation (4)
and α in Equation (5) are related (similarly as for granular materials [41]) to the angle
of internal friction φ (µ= sinφ) and the angle of dilatancy β (α= sinβ). They can
be identified with the help of uniaxial compression test. Figure 2 shows the evolution
of the assumed measures µ and α versus κp. At the beginning of deformation, the
material behaves contractant and becomes dilatant if φ > φcr (index cr stands for
a critical (residual) value). To obtain realistic values of the tensile and compressive
strength, the failure surface was closed at the tensile and compressive side by linear
caps described by (Figure 1):

p=−fcc, p= ftt, (6)

where fcc and ftt are the biaxial compressive and biaxial tensile strength, respectively.
The constitutive law includes two functions to be estimated µ = f(κp) and

α= f(κp), and 5 material parameters: E (elastic modulus), ν (Poisson’s ratio), c, fcc
and ftt.

When using constitutive models with material softening, the calculated FE-
results show a pathological dependency on the mesh size [41–43]. It is because the
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governing equations of motion change their type and the boundary value problem
becomes, thus, mathematically ill-posed [44]. To avoid this deficiency, enriched ap-
proaches must be used which take into account a material (characteristic) length, such
as: Cosserat [41, 44, 45], non-local [46, 47], higher order deformation gradient [44, 48]
and viscous models [48, 49]. By taking into account a material length, scale effects
can be captured [41–49]. The results presented in this paper do not depend strongly
on the mesh refinement since the FE-studies were performed for a force-controlled
case. Thus, only small softening region of concrete was taken into account.

3. Constitutive model for reinforcement

To simulate the behaviour of reinforcement, an associated elasto-plastic con-
stitutive law by von Mises with isotropic hardening was assumed. In this case, the
yield and potential functions are:

f = g= τ−σy(κp). (7)

The equivalent yield strength function σy is shown in Figure 3 (fyd – yield stress).

Figure 3. Equivalent yield strength function σγ versus second invariant of the deviatoric
deformation tensor κp assumed for reinforcement (fγd – yield stress)

4. Initial FE-studies

4.1. Finite element data

During initial FE-calculations, the effects of the following parameters on the
element behaviour were carefully investigated:

• eccentricity,
• boundary conditions at the top,
• slenderness,
• area of the vertical reinforcement,
• horizontal reinforcement and
• mesh discretisation.
The height of the wall was h = 0.80m, width b = 0.04m (h/b = 20) and

length l = 1.0m (plane strain) To investigate the effect of the mesh on the results,
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(a) (b) (c)

Figure 4. Meshes used for FE-calculations: (a) loose, (b) dense, (c) fine

three different discretisations have been used, namely a 10× 20-mesh, a 10× 40-
mesh and 10× 80-mesh, where each quadrilateral is composed of four triangular
elements (Figure 4). Using such elements, the effect of volumetric locking can be
avoided [50]. Linear shape functions for displacements were applied. The calculations
were carried out mainly with a fine mesh (Figure 4c). In this case, the height of
all elements was 10mm and the width of elements along the cross-section was 2, 1,
5, 4× 6, 5, 1 and 2mm. In the quadrilateral element columns located 2mm from
both sides, the vertical symmetric steel bars with a width of 1mm were assumed.
Thus, the reinforcement area was As1=As2=1000mm2 and the reinforcement ratio
ρ = (As1+As2)/(dl) = 2000/[(40− 2.5)× 1000] = 5.33% (As1 – reinforcement area
in the less compressed zone or tensile zone, As2 – reinforcement area in the more
compressed zone, d=37.5mm – effective width).

Quasi-static deformation was initiated through a monotonically increasing
vertical load prescribed to the element top. To induce an eccentricity, vertical load
on the top was applied. The load increment ∆P in each load step n was assumed to
be ∆P =1kN. The calculations were also performed with smaller steps (without the
effect on results). The vertical force at which the loss of the calculation convergency
(due to concrete softening) was assumed as the bearing capacity of the element.
During this analysis, a smooth bottom was always fixed: the vertical displacement
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of the bottom nodes was u2 = 0 and the horizontal displacement of two sides nodes
along the bottom was u1=0. The smooth top was fixed (the horizontal displacement
of two side nodes was u1=0), free or had a hinge (the horizontal displacement of the
mid-point u1 = 0). Boundary conditions along the vertical sides were traction-free.
A full interaction between the concrete and reinforcement was assumed.

As the initial stress state, the vertical normal stress σ22 = γcx2 was assumed
(γc = 25kN/m3 denotes the volume weight of the concrete, x2 is the vertical co-
ordinate measured from the specimen top).

To take into account geometric non-linearities, the calculations were carried
out with large deformations. In this case, an Updated Lagrangian formulation [51]
was applied. The changes of the element configuration and the element volume were
considered.

To satisfy the consistency condition f = 0, the trial stress method (linearised
expansion of the yield condition about the trial stress point) using an elastic predictor
and a plastic corrector with radial return mapping algorithm was applied [52].

For the solution of the non-linear equation of motion governing the response of
a system of finite elements, a modified Newton-Raphson scheme with line search
was used [51]. The calculations were performed using a symmetric elastic global
stiffness matrix. The iteration steps were performed using convergence criteria based
on translations (found by means of preliminary FE-calculations).

4.2. Numerical results

The following data were assumed for concrete during FE-calculations: E =
20000MPa, ν =0.2, φp=40̊ , φcr =30̊ , βp=10̊ , βcr = 0̊ , (κp)p=0.5%, c=3.9MPa,
ftt = 1.5MPa (p – peak value, cr – residual value), Figure 1. In the calculations,
a linear cap in the compressive regime was neglected. The numerical calculations for
reinforcement were performed with E=210000MPa, ν=0.3 and fγd=200MPa.

First, a plane strain FE-analysis for uniaxial compression and extension with
a concrete specimen, and for uniaxial extension with a steel bar was carried out.
Figure 5 presents the results for a concrete specimen with a height of h = 80mm,
width of b= 4mm and length l = 1.0m. Both top and bottom were assumed to be
very smooth. In this study, constant vertical displacements were prescribed to the
top boundary. The calculated uniaxial compressive strength, fc=P/(bl), is equal to
fc=22MPa for the vertical strain of the top ε̄22=0.2% (Figure 4a), P is the resultant
vertical force on the top. The residual strength is 16kPa. It is a fictitious value
because the damage of concrete takes place after the peak in a softening regime before
a residual strength is obtained. In turn, the uniaxial tensile strength is ft=3MPa for
the vertical strain of the top ε̄22=0.02% (Figure 4b). With these calculated values of
fc and ft, the cohesive strength assumed, c=3.9MPa, is approximately equal to the
shear strength following the Mohr’s assumption [53]:

τ =0.5
√

fcft=0.5
√
22 ·3=4.0MPa (8)

Figure 6 presents the calculated mean vertical force on the top of a steel bar with
a height of h=80mm and a width of b=4mm for a very smooth top and bottom versus
the vertical strain of the top. The uniaxial tensile yield strength, fγ = fγd=200MPa,
is obtained for the vertical strain of the top ε̄22= fyd/E=0.095%.
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Figure 5. Calculated stress-strain curve during uniaxial compression and tension for the concrete
specimen (P – vertical force on the top, b=0.04m – specimen width, l=1m – specimen length,

ε̄22 – mean vertical strain)

Figure 6. Calculated stress-strain curve during uniaxial tension for the steel bar (P – vertical
force on the top, b=4mm – specimen width, l=1m – specimen length, ε̄22 – mean vertical strain)
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Figures 7–15 demonstrate numerical results of the finite element simulation for
reinforced concrete walls. The vertical stresses shown were calculated as mean values
from four triangles creating one quadrilateral. The displacements of the mesh were
magnified by the factor 20.

Figure 7 shows the FE-results for a centrally loaded wall (eccentricity e= 0)
with a fixed both top and bottom. Presented is the evolution of vertical normal
stresses σ22 in the concrete and reinforcement along the cross-section at the height
of H = h, H = 0.75h and H = 0.5h (measured from the bottom) versus the loading

(a)

(b)

(c)

Figure 7. Vertical normal stresses versus load step n at (a) H =h, (b) H =0.75h, and
(c) H =0.5h from FE-calculations (e/b=0, fixed-fixed end conditions, s – steel, c – concrete)
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step n being equivalent to the vertical force on the top P . The normalised bearing
capacity of the wall N = P/(γcb2l) is equal to 26500 and is by 15% smaller than
this resulting from the multiplication of the uniaxial compressive strength of concrete
fc=22MPa (Figure 5) with the concrete area Ac=34000mm2, and the yield stress of
reinforcement fγd=200MPa (Figure 6) with the reinforcement area As=2000mm2.
The vertical displacement of the top changes from u2 = 3mm (edges) to u2 = 4mm
(mid-point) for n= 1100. The vertical normal stresses reach in the concrete 20MPa
(H = 0.75h and H = 0.5h), and 12–25MPa (H = h). In turn, the vertical normal
stresses σ22 in the reinforcement in a residual state are equal to fγd=200MPa in the
entire wall except of the top region (σ22 =150MPa). They show a small kick at the
moment when concrete starts to behave plastically.

Figures 8–9 show the results for two eccentricities: e/b=0.2 and e/b=0.3 in the
case of fixed-fixed boundary conditions. The normalised bearing capacity of the wall
decreases strongly with increasing e/b: N = 26500 (e/b= 0), N = 20000 (e/b= 0.2)
and N = 16900 (e/b= 0.3). The vertical normal stresses in the reinforcement in the
less compressed zone are significantly smaller than fγd = 200MPa. They are fully
developed in the more compressed zone at H =0.75h and H =0.5h (e/b=0.2) and at
H = h and H =0.75h (e/b=0.3). The vertical displacement of the top changes from
0.40mm to 0.84mm (n = 700, e/b = 0.2) and from 0.27mm to 0.78mm (n = 600,
e/b = 0.3). The maximum horizontal displacement is equal to 1.25mm (n = 700,
e/b=0.2) and 1.35mm (n=600, e/b=0.3).

(a) (b)

(c) (d)

Figure 8. FE-calculations: deformed mesh (n=600) and vertical normal stresses versus load step
n at (a) H =h, (b) H =0.75h, (c) H =0.5h, and (d) H =0.25h for the case of e/b=0.2 and

fixed-fixed end conditions (s – steel, c – concrete)
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(a) (b)

(c) (d)

Figure 9. FE-calculations: deformed mesh (n=600) and vertical normal stresses versus load step
n at (a) H =h, (b) H =0.75h, (c) H =0.5h and (d) H =0.25h for the case of e/b=0.3 and

fixed-fixed end conditions (s – steel, c – concrete)

The effect of the boundary condition at the top with e/b=0.3 is presented in
Figures 10–11. The normalised bearing capacity decreases significantly with increasing
degrees of freedom. It is equal to N =16900 (fixed-fixed end conditions), N =12125
(fixed-hinge end conditions) and N =8000 (fixed-free end conditions). For the case of
fixed-free end conditions, the vertical displacement of the top changes from 0.15mm
to 0.8mm, and the maximum horizontal displacement is 10.3mm (n= 300). In this
case, the vertical normal stresses in the reinforcement and concrete (less compressed
zone) reach a tensile region (except of the top region), Figure 11.

The decrease of the slenderness ratio h/b from 20 to 5 increases the normalised
bearing capacity by about 20% (e/b=0.3, fixed-fixed end conditions), Figure 12.

The decrease of the reinforcement area in the entire wall by the factor 5
(As1=As2=200mm2, ρ=1.07%, ρ1= ρ2=0.53%) decreases the normalised bearing
capacity by 30% (Figure 13).

The calculations were carried out also with a smaller longitudinal reinforcement
in the less compressed zone (e/b = 0.3, fixed-fixed end conditions). One assumed
As1 = 1000mm2 and As2 = 200mm2. In this case, the bearing capacity of the wall
was smaller by only 5%.

The results of the normalised bearing capacity of walls N = P/(γcb2l) are
summarised in Tab.1 for different e/b, h/b, ρ1, ρ2 and conditions at the top.

To investigate the effect of the horizontal reinforcement on the bearing capacity,
some horizontal stir-ups along the wall height were added to vertical bars. One
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(a) (b)

(c) (d)

Figure 10. FE-calculations: deformed mesh (n=400) and vertical normal stresses versus load
step n at (a) H =h, (b) H =0.75h, (c) H =0.5h, and (d) H =0.25h for the case of e/b=0.3 and

fixed-hinge end conditions (s – steel, c – concrete)

(a) (b)

(c) (d)

Figure 11. FE-calculations: deformed mesh (n=600) and vertical normal stresses versus load
step n at (a) H =h, (b) H =0.75h, (c) H =0.5h, and (d) H =0.25h for the case of e/b=0.3 and

fixed-free end conditions (s – steel, c – concrete)
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(a) (b)

(c) (d)

Figure 12. FE-calculations: vertical normal stresses versus load step n at (a) H =h,
(b) H =0.75h, (c) H =0.5h, and (d) H =0.25h for the case of e/b=0.3, h/b=5 and

fixed-fixed end conditions (s – steel, c – concrete)

(a) (b)

(c) (d)

Figure 13. FE-calculations: deformed mesh (n=400) and vertical normal stresses versus load
step n at (a) H =h, (b) H =0.75h, (c) H =0.5h, and (d) H =0.25h for the case of e/b=0.3,

ρ1= ρ2=0.53% and fixed-fixed end conditions (s – steel, c – concrete)
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Table 1. Normalised bearing capacity of walls N

h/b e/b ρ1 [%] ρ2 [%] End conditions N =P/(γcb2l)

20 0 2.67 2.67 fixed-fixed 26500

20 0.2 2.67 2.67 fixed-fixed 20000

20 0.3 2.67 2.67 fixed-fixed 16900

20 0.2 2.67 2.67 fixed-hinge 17075

20 0.3 2.67 2.67 fixed-hinge 12125

20 0.3 2.67 2.67 fixed-free 8000

5 0.3 2.67 2.67 fixed-fixed 20000

20 0.3 0.53 2.67 fixed-fixed 16250

20 0.3 0.53 0.53 fixed-fixed 11750

assumed 7 horizontal stir-ups with a thickness of 0.2mm or 1mm at the spacing
of s=10cm (s/b=2.5). No increase of the bearing capacity was obtained.

The calculations with different meshes of Figure 4 showed that the maximum
vertical force on the top with a fine mesh (Figure 4c) was in average by 5% smaller
than in the case of a medium dense mesh (Figure 4b), and by 15% smaller than in the
case of a coarse mesh (Figure 4c). Thus, one can assume that the calculated results
with a mesh of Figure 4c would change only insignificantly when using a finer mesh.

5. Comparison with experiments

5.1. Model tests

In the experiments on 30 rectangular columns performed by Kim and Yang [5],
the following parameters were varied: column slenderness (h/b= 3, 18, 30), longit-
udinal steel ratios (ρ1 = ρ2 =0.99, 1.98%), compressive concrete strength (fc =25.5,
63.5, 86.2MPa). The cross-section of columns was 0.08×0.08m2, the height 0.24–
2.4m and the eccentricity e/b = 0.3. The thickness of the concrete cover measured
from the bar centre to the concrete surface was 15mm. The boundary conditions at
the column ends were both hinged. The rate of loading was controlled by a constant
rate of the vertical displacement. The vertical force on the top, lateral deflection and
strains of deformed bar at the mid-height of columns were measured.

The experiments showed that columns with h/b=3 failed at their mid-height
by increased compressive strain, and columns with h/b=18 and h/b=30 by increased
tensile strain. The maximum lateral deflection at the ultimate load was 0.4mm
(h/b=3), 15–16mm (h/b=18) and 30–33mm (h/b=30) with ρ1 = ρ2 =0.99% and
fc=25.5MPa, and 0.43mm (h/b=3), 18–20mm (h/b=18) and 26–27mm (h/b=30)
with ρ1= ρ2=0.99% and fc=63.5MPa. The experiments revealed that the ultimate
load for a short high-strength concrete column was significantly enhanced (but not
for a slender column). The possibility of stability failure for a slender column was
increased with an increase of concrete strength. The increment of the ultimate load
due to an increase in longitudinal reinforcement for the short column was less than
for a slender one, and the heavier reinforcement for a slender column led to a more
stable column.

5.2. Numerical simulations

The numerical calculations were performed with a short and slender column
from model tests of Section 5.1 (b=0.08m, e/b=0.3, ρ1= ρ2=0.99%, fc=25.5MPa,
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fyd=387MPa). In the first case (short column), the height was h=0.24m (h/b=3).
In the second case (slender column), the height was h = 2.4m (h/b = 30). The
12×42-mesh consisted of 2016 triangular elements.

The following data were assumed for concrete: E=23665MPa, ν=0.2, φp=40̊ ,
φcr = 20̊ , βp = 10̊ , βcr = 0̊ , (κp)p = 0.3%, c = 4.568MPa, fcc = fc = 25.5MPa
ftt = ft = 1.5MPa (Figure 1), and for reinforcement: E = 210000MPa, ν = 0.3 and
fγd=387MPa.

The boundary conditions at the ends were both hinged. The top and the
bottom were smooth. One node in the middle of the bottom and the top was
fixed (u1 = 0, u2 = 0). A full slip between concrete and vertical reinforcement was
assumed (horizontal displacements of nodes at the interface concrete-reinforcement
were the same).

Figures 14–16 present the calculated results: deformed mesh and the evolution
of vertical normal stresses σ22 in concrete and reinforcement along the cross-section at
the height of H =h, H =0.75h and H =0.5h (measured from the bottom) versus the
loading step n being equivalent to the vertical force P , and the axial force-lateral
deflection diagrams. To compare the calculated ultimate load for walls with the
experimental ones for columns, the calculated maximum vertical load on the wall
top was multiplied with the factor 0.08 corresponding to the size of the cross-section
of columns perpendicular to the loading plane.

In the case of a short column, the vertical normal stresses in the reinforcement
are in the tensile zone 100MPa, and in the compressive zone are slightly smaller than

(a) (b)

(c)

Figure 14. FE-calculations: deformed mesh (P =80kN) and vertical normal stresses versus load
step n at (a) H =h, (b) H =0.75h, and (c) H =0.5h for the case of h=0.24m, e/b=0.3,

ρ1= ρ2=0.99% and hinge-end conditions (s – steel, c – concrete)
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(a) (b)

(c)

Figure 15. FE-calculations: deformed mesh (P =40kN) and vertical normal stresses versus load
step n at (a) H =h, (b) H =0.75h and (c) H =0.5h for the case of h=2.4m, e/b=0.3,

ρ1= ρ2=0.99% and hinge-end conditions (s – steel, c – concrete)

Figure 16. Load-deflection diagrams from experiments and FE-calculations (e – experiment,
c – calculation, 1 – short column, 2 – slender column)

fγd. For a slender column they are 20MPa and 140MPa, respectively. In both cases,
the compressive strength of concrete is obtained.

The ultimate loads from calculations were 87kN (short column) and 44kN
(slender column), respectively. These values compare well with experimental ones
equal to 83kN and 35–38kN, respectively. In the case of lateral deflections at the
mid-height, the numerical results result in 0.45mm (short column) and 15mm (slender
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column), and the experimental values are 0.4mm (short column) and 30–33mm
(slender column).

The FE-analysis was also performed with fcc=1.25fc. In this case, one obtained
the ultimate load 90kN with a short column and 62kN with a slender column.

6. Conclusions

The numerical results from the FE-analysis on the behaviour of reinforced con-
crete elements under eccentric loading are in satisfactory agreement with experimental
results. They show that:

The bearing capacity of elements increases with decreasing slenderness, eccent-
ricity, degrees of freedom at both ends, and increasing reinforcement area in the more
compressed zone.

A symmetric reinforcement is inefficient because the reinforcement located on
the less compressed side never yields.

The vertical normal stresses can change in concrete and reinforcement along
the element height.

The FE-studies for reinforced concrete elements under eccentric loading will be
continued. In the next step, a more realistic constitutive relation for concrete will be
used [1, 2, 27, 40]. A non-local approach [47, 54] will be adopted to obtain a well-
posed boundary value problem. The numerical results will be directly compared with
experiments.
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[12] Kordina K and Warner R F 1975 Über den Einflußdes Kriechens auf die Ausbiegung schlanker
Stahlbetonstützen, Deutscher Ausschußfür Stahlbeton, Berlin, Heft 250

[13] Gardner N J, Ramkrishna M G and Tak-Fong W 1992 ACI Struct. J. 89 (5)
[14] Oleszkiewicz S, Ruppert J and Najib S 1973 Proc. Polish Conf. Civil Engineers, PZITB,
Krynica (in Polish)

[15] Korzeniowski P 1997 Archives of Civil Engineering, Warsaw XLIII (2) 149
[16] Korzeniowski P 2000 Confined Reinforced-concrete Columns, Publication of the Gdansk
University of Technology, Gdansk, pp. 1–133 (in Polish)

[17] Korzeniowski P 1996 Analysis of Slender Columns Subject to Eccentric Compression, PhD
Thesis, Gdansk University of Technology (in Polish)

[18] Fragomeni S and Mendis PA 1997 J. Struct. Engng., ASCE 123 (5) 680

Q0306E2I/427 10X2003 BOP s.c., http://www.bop.com.pl



428 T. Majewski and J. Tejchman

[19] Mendis P A 2000 ACI Struct. J. 97 (6) 895
[20] Liu T C Y, Nilson A H and Slate F O 1977 J. Engng. Mech. Div. ASCE 103 423
[21] Palaniswamy R and Shah S P 1974 J. Struct. Div. ASCE 100 901
[22] Kompfner T A 1983 Ein Finites Elementmodell für die geometrisch und physikalisch nicht-
lineare Berechnung von Stahlbetonschalen, PhD Thesis, Stuttgart University
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