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Abstract: The offshore structures, such as multi-articulated towers, manipulators working in waving
fluid are more and more popular structures. Commonly they are modelled as an inverted pendulum.
The motion of such tower immersed in waving fluid is under consideration. It is assumed that the
tower is hinged to the seabed by the hinge with friction. The joint of tower elements is the hinge
with friction, as well. Motion of tower loaded by regular wave fluid force is considered. The numerical
experiment shows that the multi-potential systems may move chaotically for some parameters of the
tower and the fluid.
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1. Introduction

The multi-articulated towers are becoming more and more popular in the off-
shore structures engineering. They are used for mooring the tank in the neighborhood
of oil platforms. This removes the probable platform damage due to the tank motion.

Moreover, using the multi-articulated towers is economically useful due to
reduced mass of such tower.

The manipulators working immersed in water are modelled as the multi-arti-
culated towers, as well. They are loaded by regular waves, but the response of such
a tower can be multi-periodic, or chaotic (see [1]). The multi-articulated towers are
modelled as an inverted pendulum (compare with [2]), moored to the seabed by the
hinge with one degree of freedom. Each element of the tower has one degree of freedom.
Therefore, the multi-articulated tower with n elements has n degrees of freedom. For
the considered system (the tower/fluid) the motion equations represent an initial
problem, e.g. the system of n ordinary differential equations with n unknowns and
the initial conditions for the variables and their differentials with respect to time, in
the initial time. The double-articulated tower is the subject of the present work.
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2. Double-articulated tower

The considered tower consists of two elements (Figure 1). The motion of the
tower goes in (x,y) plane. Therefore, the tower has two degrees of freedom: the
plane angles between every element axes and the vertical axis. The deflections of
the elements are very small, comparing to their displacement, so the elements are
treated as rigid bodies. The tower is moored to the seabed by the hinge with friction.
The elements are connected to one another by hinges with friction, as well.

Figure 1. The model of the double-articulate tower

The following external forces acting on the tower elements are included in
consideration: the gravity force, the buoyancy force, the wave forces (drag and inertia
forces), the forces due to the added mass effect and the friction forces in the hinges.
To obtain the wave forces the Morison equation has been used. The lower element is
fully immersed in fluid, the upper element is partially immersed. Therefore, the length
of the immersed part is treated as a function of both the elements position and the
wave elevation. The wave elevation is governed by:

η=Acos(kxs−σt). (1)

Using the Equation (1) in the equation of the tower geometry:

ls=
η+h− l1cosϕ
cosθ

(2)

gives the non-linear equation with respect to the length of the immersed part of the
upper element, in implicit form:

lscosθ=h− l1 cosϕ+Acos[k(l1 sinϕ+ ls sinθ)−σt], (3)

where h – fluid depth, A – wave amplitude, T – wave period (σ = 2π/T ), k – wave
constant, l1 – the length of the lower element.
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3. The forces and elements acting

on the element of the tower

The considered forces acting on each tower element are presented in Figure 2.
The forces and the moments acting on the lower element are marked with subscript
equal to 1, while the forces and moments acting on the upper element are with
subscript 2. The moments acting on the lower element are taken with respect to
the point O1, and for the upper element moments are written with respect to the
point O2.

Figure 2. The forces acting on the double-articulated tower

The buoyancy force and the moment due to the buoyancy force are:

F1= ρ′gπ
D2

4
l1j, (4)

F2(t,ϕ,θ)= ρ′gπ
D2

4
ls(t,ϕ,θ)j, (5)

MF1= ρ′gπ
D2

4
l21
2
sinϕk, (6)

MF2(t,ϕ,θ)= ρ′gπ
D2

4
l2s(t,ϕ,θ)
2

sinθk, (7)

where ρ′ is the mass density of the fluid.
The gravity force and the moment due to gravity force:

G1= ρ1gπ
D2

4
l1j, (8)

G2(t,ϕ,θ)= ρ2gπ
D2

4
l2j, (9)

MG1= ρ1gπ
D2

4
l21
2
sinϕk, (10)
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MG2(θ)= ρ2gπ
D2

4
l22
2
sinθk, (11)

where ρ1 is the mass density of the lower element, ρ2 – the mass density of the upper
element, l2 – the length of the upper element, D – the diameter of both elements.

The wave forces:
– the drag force (and moment)

FMD1=CDρ′
D

2
n1

l1
∫

0

|vn1(t,ϕ,ϕ̇)|vn1(t,ϕ,ϕ̇)ds, (12)

FMD2=CDρ′
D

2
n2

ls(t,ϕ,θ)
∫

0

|vn2(t,ϕ,θ,ϕ̇, θ̇)|vn2(t,ϕ,θ,ϕ̇, θ̇)ds, (13)

MMD1=−CDρ′
D

2
k

l1
∫

0

|vn1(t,ϕ,ϕ̇)|vn1(t,ϕ,ϕ̇)sds, (14)

MMD2=−CDρ′
D

2
k

ls(t,ϕ,θ)
∫

0

|vn2(t,ϕ,θ,ϕ̇, θ̇)|vn2(t,ϕ,θ,ϕ̇, θ̇)sds, (15)

– the inertia force (and moment)

FMA1=CMρ′
D2

4
n1

l1
∫

0

an1(t,ϕ)ds, (16)

FMA2=CMρ′
D2

4
n2

ls(t,ϕ,θ)
∫

0

an2(t,ϕ,θ)ds, (17)

MMA1=−CMρ′
D2

4
k

l1
∫

0

an1(t,ϕ)sds, (18)

MMA2=−CMρ′
D2

4
k

ls(t,ϕ,θ)
∫

0

an2(t,ϕ,θ)sds, (19)

where CD, CM are the drag and inertia coefficients, vn1 – the relative velocity of the
lower element and fluid particles, vn2 – the relative velocity of the upper element and
fluid particles, an1 – the acceleration of fluid particles in normal direction of the lower
element, an2 – the acceleration of fluid particles in normal direction of the upper
element.

The force and the moment due to the added mass effect:

FAD1=−(CM −1)ρ′π
D2

4
l21
2
ϕ̈n1, (20)

FAD2=−(CM −1)ρ′π
D2

4
l2s(t,φ,θ)
2
θ̈k, (21)

MAD1=−(CM −1)ρ′π
D2

4
l31
3
ϕ̈n1, (22)
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MAD2=−(CM −1)ρ′π
D2

4
l3s(t,φ,θ)
3
θ̈k. (23)

It is assumed, that friction occurs in each hinge. To obtain the friction moments in
the hinges the kinetic friction law is used:

MFR1= ρF
√

X21 +Y
2
1 , (24)

MFR2= ρF
√

X22 +Y
2
2 , (25)

where ρF is the kinetic radius of friction, X1, Y1 are the friction forces in hinge O1,
X2, Y2 are the friction forces in the hinge between the tower elements i.e. in the
point O2.

4. The motion equations

The Newton-Euler motion equations for rigid bodies are used to obtain the
motion equation of the double articulated tower immersed in the waving fluid.
Therefore, the motion of the tower is described by the initial problem:

a1ϕ̈=(a2+a3)θ̈cos(θ−ϕ)+a4(θ̇)2 sin(θ−ϕ)+(a5+a6)sinϕ

+a7 cos(θ−ϕ)+a8−MFR1 sign(ϕ̇),

b1θ̈=b2[ϕ̈cos(θ−ϕ)+(ϕ̇)2 sin(θ−ϕ)]+b3 sinθ+b4−MFR2 sign(θ̇)

(26)

with the initial conditions:
ϕ=ϕ0 for t=0, (27)

θ= θ0 for t=0, (28)

ϕ̇= ϕ̇0 for t=0, (29)

θ̇= θ̇0 for t=0, (30)

where a1 = IS1+m1l1l2C1+2m2l2l1lC1+ (CM − 1)ρ
′πD2l31/12, a2 = −2m2l2lC1lC2,

a3=−2(CM−1)ρ′πD2l2s(t,ϕ,θ)/8, a4=2m2l2lC1lC2, a5=(G1+2G2)lC1, a6=2F2lC1,
a7 = 2(FMD2+FMA2)lC1, a8 =MMD1+MMA1−MFR1 sign(ϕ̇), b1 = IS2+m2l2l2C2+
(CM − 1)ρ′πD2l3s(t,ϕ,θ)/12, b2 = −m2l2l1lC2, b3 = G2lC2, b4 = MMD2 +MMA2 −
MFR2 sign(θ̇), m1= ρ1πD2/4, m2= ρ2πD2/4.

The system of differential equations given above is nonlinear in implicit form.
To solve such system of equations the implementations and modification of proper
numerical method to solve the systems of ordinar differential equation should be
constructed.

5. The numerical experiment

To perform the numerical experiment a computer program has been created
following the algorithm presented in [3].

The aim of this paper is to show the chaotic motion of the multi-articulated
tower loaded by regular waving fluid. It is well known that the chaotic motion occurs
in multi-potential systems. The considered double-articulated tower may possess one
stable equilibrium position, i.e. both elements have stable position at angle position
equal to zero. The other case is for tower with three equilibrium positions: one of the
elements has three equilibrium positions (two stable ones and one unstable) and the
other element has one stable equilibrium position at the position angle equal to zero.
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(a)

(b)

(c)

(d)

Figure 3. The phase planes and the Poincaré cross-sections for two degrees of freedom
of the double-articulated tower under wave loading with period (a) T =3.8s, (b) T =3.5272s,

(c) T =3.1s, (d) T =2.8s

It is also possible that the tower has 9 equilibrium positions, each element has three
equilibrium positions (one unstable and two stable ones).

Example. The double-articulated tower with 9 equilibrium positions is con-
sidered. The tower parameters are: ρ1 = 1313.47kg/m3, ρ2 = 648.66kg/m3, l1 = 1m,
l2=1m, h=1.3m.

The influence of the wave period changes on the tower response has been
examined. For quite a long period of fluid waving the period of tower response is equal
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to the period of the wave. For wave with period T =3.8s (Figure 3a) both elements
of the tower move between proper positions of the stable equilibrium positions.
Moreover, the period of the tower motion is two times longer than the wave period.
The decreasing of the wave period (T =3.5272s) yields doubling of the tower motion
period (Figure 3b). Figure 3c consists of the phase planes and Poincaré cross-sections
of the response of the tower loaded by wave with period T =3.1s. The period of the
tower motion is 16 times longer than the period of the loading. The observed ’route
to chaos’ suggests that the double-articulated tower may perform the chaotic motion.
Other calculations for double-articulated tower show the considered tower responses
with periods 5, 7, and 9 times longer than the wave period. While the tower is loaded
by wave with period T =2.8s the period of the tower motion is 3 times longer than the
period of loading (see Figure 3d). The conclusion of the Sharkovsky theorem (see [4])
is that the period of the tower motion can be any multiple of the loading period.

6. Conclusions

The dynamic response of the double-articulated tower under wave loading is
presented in this work. The motion of the considered tower is described by a sys-
tem of ordinary differential equation with initial conditions. Numerical experiments
show that the systems (the double-articulated tower)/(waving fluid) with the tower
multiperiodic or chaotic motion do exist.
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