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Abstract: In this paper, an analysis of forced transverse harmonic vibration with constant changes

of the exciting force in a dynamic system consisting of two beams is presented together with

a model of a leaf spring. In this junction both beams are made of shape memory material

(SMA). The constructional friction is also taken into account. For the purpose of the analysis

an equivalent linearization of the elasticity-damping features of the beams was conducted. As an

effect of linearization a junction was acquired with both stiffness of elements and viscosity damping.

The obtained differential equations were solved using the asymptotic Bogolubov-Krylov-Mitropolski

method. The results of the conducted simulation are presented on graphs, showing the influence of

unitary pressure on the system’s damping properties.
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1. Introduction

Movement in real mechanical systems is bound with vibration damping which

is a manifestation of dissipation of mechanical damping (aero- and hydrodynamic

damping), i.e.:

1. friction in mobile junctions (bearings, ways, etc.),

2. friction in immobile junctions (riveted, forced, wedged, etc.) called construction

friction.

The nature of constructional friction is considered taking into account the

elastic deformation of the system under stress. A slip of the surfaces of joined materials

occurs and friction forces appear, while the system is stressed. Those forces cause

amplitude decrease due to the dissipation of mechanical energy.

Researches on constructional friction are related to simplified models of joints

and are done with the following assumptions, given in [1]:
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• the material the joints are made of is ideally elastic,

• Coulomb’s law describes the intensity of friction forces on the surface of the

slip of joined elements,

• unitary pressure in the joint has uniform distribution.

As regards quality, the shape memory alloys (SMA) are a new group of

construction materials. Counted among SMA are two-ingredient alloys consisting of

metals (one of which stands right to chrome in the periodic table, an the other one

stands left to it), and alloys of noble metals. In certain conditions, alloys of copper and

uranium also show shape memory features. Alloys used in practice include “Nitinol”

– a group of alloys with 53%–57% mass of nickel and three-ingredient Cu-Zn-Al [2].

Among the shape memory effect we distinguish:

• one-way shape memory effect,

• two-way shape memory effect,

• effect of pseudo-elasticity.

Shape memory alloys have a spectrum of unique features, not appearing in

other materials. The most important are:

• Young’s modulus depends on temperature and deformation,

• inner friction depends on amplitude and the temperature at which the deform-

ation is performed,

• depending on the temperature, the yield point changes,

• depending on the temperature, the electric resistance changes.

Those unique features of SMA are connected with the reverse martensite

transformation, which occurs in temperatures close to environmental temperature.

Most of the papers describing constructional friction, are devoted to the

determination of the static hysteresis loop, basing on the effects occurring in the

slip zones and their experimental verification.

Among works not following the classic assumptions of constructional friction

we can mention [3], in which the author conducted an analysis of vibrations with non-

uniform distribution of the unitary pressure, and [4], in which the authors have taken

into account the elastic interaction with the base, assuming that the friction factor has

a viscosity-coulomb characteristic. In [5] an analysis of the dynamic of an inseparable

sleeve-shaft joint, where the shaft is made of SMA material, is conducted. On the

other hand, in [6] the author examined the influence of inertia momenta of the sleeve-

shaft joint on the vibration’s amplitude. In [7] the problems of damping vibrations

of a set of two beams were examined using an analytic method taking into account

constructional friction.

2. Building the mathematical model

For the purpose of the analysis we assume that the joint is inseparable and

consist of two beams, thus acquiring a model of a leaf spring which is very often used

in vehicles as an element of the kinematical chain. A scheme of the analyzed system

is presented in Figure 1.

For the purpose of the analysis we assume the following:

1. the pressure has a uniform distribution,
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Figure 1. A scheme of the investigated system dependence for pseudo-elastic materials

2. the coefficient of dry friction has a constant value along the whole length,

3. both beams are made of a material with shape memory (SMA),

4. the constructional friction between beams is taken into account.

2.1. The linearization of elasticity and damping properties

In order to carry out the linearization we consider free vibrations of the

system of two beams, the dimensions of which are given in Figure 1. To carry out

the linearization we modify the pseudo-elastic characteristic of the SMA material

presented in Figure 2. It is done by extracting from it the linear elastic characteristic.

The scheme of the modification is presented in Figure 3.

Figure 2. Simplified stress-deflection

Figure 3. A scheme of modification of the shape memory material’s (SMA) characteristic
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As an effect of the modification we consider the sleeve’s differential equation of

motion in the following form:

mÿ+kby= νF (y). (1)

Thus we obtained a harmonic oscillator’s differential equation of motion with nonlin-

ear disturbance which is described by the following relationship:

νF (y)= sign ẏ











k(y3−y4) for y3<y<y4,
k(y−y4) for y4<y<y3,
0 for −y1<y<y4,
k(y−y1) for y <−y1,

(2)

where m is the body’s mass, k= 24EI
l4
p

– the beam’s stiffness for deflecting, E – the

beam’s Young modulus, I – the second moment of area, lp – the length of the joint,

ν – the amplitudes at the beginning and of the phase transition.

To evaluate the equivalent stiffness and equivalent damping coefficients we used

the asymptotic Bogolubov-Krylov-Mitropolski method assuming the first approxim-

ation of the following form:

y= yA cos(Θ+ξ), (3)

where yA and ξ are determined by a system of differential equations of the first

approximation:
yA
dt
= νA1(t,yA,ξ),

dξ

dt
=ω0+νB1(t,yA,ξ).

(4)

Basing on [8], the equations of the first approximation, in the case of free vibrations

can be written as follows:

dyA
dt
=−

ν

2πmω0

2π
∫

0

F0(yA,ϑ)sinϑdϑ,

dξ

dt
=ω0−

ν

2πmω0yA

2π
∫

0

F0(yA,ϑ)cosϑdϑ,

(5)

where

F0(yA,ϑ)=F (yA cosϑ,−yAω0 sinϑ),

ϑ=Θ+ξ.
(6)

The equations describing the equivalent damping coefficient and equivalent frequency

of vibrations become the following:

heq(yA)=−
ν

2πmω0yA

2π
∫

0

F0(yA,ϑ),

ω2eq(yA)=ω
2
0−

ν

πmyA
F (yA<ϑ)cosϑdϑ.

(7)
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Using the given Equations (7), we determine the dependences describing the equival-

ent stiffness and resistance coefficients to have the following form:

ceq(yA)= 2heq(yA)m=−
ν

2πmω0yA

2π
∫

0

F0(yA,ϑ)sinϑdϑ,

keq(yA)=ω
2
eq(yA)m= k−

ν

πyA

2π
∫

0

F0(yA,ϑ)cosϑdϑ.

(8)

Taking into account the equations for non-linear disturbance (2), we obtain:

ceq(yA)=−
ν

πω0yA

2π
∫

0

f0(yA,ϑ)sinϑdϑ=

=
2

πω0yA











β3
∫

0

k(y3−y4)sinϑdϑ+

β4
∫

β3

k(y−y4)sinϑdϑ+

π
∫

−β1

k(y+y1)sinϑdϑ











, (9)

and

keq(yA)= k−
ν

πyA

2π
∫

0

F0(yA,θ)cosθdθ=

= k−
2

πyA











β3
∫

0

k(y3−y4)cosϑdϑ+

β4
∫

β3

k(y−yA)sinϑdϑ+

π
∫

−β1

k(y−y1)cosϑdϑ











. (10)

After integrating, we obtain the following expressions:

ceq(yA)=
ω0
π

[

cosβ3−cosβ4+cosβ1−
1

2
(cos2β3−cos

2β4+cos
2β1+1)

]

, (11)

and

keq(yA)= k+
k

π

[

3

2
(sin2β3−sin2β4−sin2β1)+(β3−β4−β1)

]

, (12)

where we have taken into account, that:

cosβi=
yi
yA
, (13)

and y2= yA is the vibration’s amplitude.

As an effect the linearization we obtain a substitute beam made of a viscous-

elastic material (Kelvin-Voigt model) with keq stiffness and ceq viscosity resistance

factor. The substitute beam’s Young’s modulus is described by the following depend-

ance:

Eeq =
klp
m

[

1+
1

π

[

3

2
(sin2β3−sin2β4−sin2β1)+(β3−β4−β1)

]]

. (14)

2.2. Building the mathematical model

With the above assumptions concerning the constructional friction, we can

furthermore assume that the friction on the shaft-sleeve contact surface is a dry

q0306b2i/355 10X2003 BOP s.c., http://www.bop.com.pl



356 Z. Gałkowski

friction. The force referred to unitary length is described by the Coulomb’s law and

is thus proportional to pressure:

q=µ ·p ·b, (15)

where µ is the friction coefficient, p is the unitary pressure, and b is the beam’s width.

The tangential force referred to beam’s length unit is:

t=
3

4h
αF, (16)

where h is the beam’s thickness, and α – the load coefficient at any moment of the

movement.

To construct the differential equation of motion for the system presented in

Figure 1, it is necessary to determine a general dependence describing the deflection

of the system’s end as a function of the load.

2.2.1. Phase I – the load (0<α1<α1M )

• no slip

In this phase the tangential force t has a constant value along the whole length

of the beams. As long as t < q there is no slip between the beams and the beams’

deflection is described with the equation:

y11=
l3p

24EeqI
αF =

αF

keq
, (17)

where keq =
24Eeq
l3
p

is the beams’ stiffness for deflecting.

In the state when the tangential forces are equal to the friction forces (t= q)

the load factor is:

α01=
4qh

3
=
4µpbh

3
, (18)

and then the deflection is:

y10=
4µpbh

3keq
. (19)

• during the slip

When the translation is bigger than that given by formula (19), the slip

will appear simultaneously along the whole length of the beams. We determine the

deflection by analyzing the deflection of one of the beams where the loading force is

αF/2 and the friction forces are distributed over the contact with the second beam,

that is:

y12=α1F
l3p
6EeqI

−qh
l3p
6EeqI

=(4α1−3α01)
F

keq
. (20)

The maximum deflection, at the moment when (1=α1=α1M ), has the value of:

y1M =
F

keq
(4α1M −3α01). (21)

2.2.2. Phase II – unloading (α1M <α2<α2M )

• no slip

The tangential stress, in this phase of the movement, in the beams’ plain has

the following value:

t= q−
3

4h
(α1M −α2)F. (22)
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The deflection of the system of beams’ is described by the dependence given below:

y21= y1M −
l3p

24EeqI
(α1M −α2)F =

F

keq
(3α1M −3α01+α2). (23)

During further unloading with the stressing force value of α02F the tangential forces

equal the friction forces of the opposite sign – like in the first phase, that is:

q−
3(α1M −α02)

4h
=−q, (24)

thus:

α02=α1M −2α01. (25)

The deflection of the end of the system of two beams at this moment is described as

follows:

y20=
l3p

24EeqI
(4α1M −5α01)F =

F

keq
(4α1M −5α01). (26)

• during the slip

When the translation is bigger than that given by formula (26), the slip

will appear simultaneously along the whole length of the beams. We determine the

deflection by analyzing the deflection of one of the beams where the loading force is

αF/2 and the friction q forces are distributed over the contact with the second beam,

that is:

y22= y20−
l3p
6EeqI

(α02−α2)F =
F

keq
(3α01−4α2). (27)

The maximum deflection, at the moment when (1=α2=α2M ), has the value of:

y2M =−
l3p
6EeqI

(α02−α2)F =−
F

keq
(4α2M −3α01). (28)

2.2.3. Phase III – loading (α2M <α3<α3M )

• no slip

The tangential stress in this phase of motion on the beams’ surface of contact

has the value:

t= q−
3

4h
(α1M −α2)F. (29)

The deflection of the system of beams is described by the dependence given below:

y31= y2M +
l3p

24EeqI
(α2M −α3)=

F

keq
(3α1M −3α01+α2). (30)

During further unloading with the stressing force value of α03F the tangential forces

equal the friction forces of the opposite sign – like in the first phase, that is:

q−
3(α1M −α20)

4h
= q, (31)

thus:

α03=α2M −α02. (32)

The deflection of the end of the system of two beams at this moment is described as

follows:

y30=
l3p

24EeqI
(4α2M −α01)F =

F

keq
(4α2M −5α01). (33)
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• during the slip

After the transition is bigger than by (33), the slip will appear simultaneously

along the whole length of the beams. We determine the deflection by analyzing the

deflection of one of the beams where the loading force is αF/2 and the friction q forces

are distributed over the contact with the second beam, that is:

y32= y30+
l3p
6EeqI

(α03−α3)F =
F

keq
(α01−α3). (34)

The maximum deflection, at the moment when (α3=α3M ), has the value of:

y3M =
l3p
6EeqI

(α03−α2)F =
F

keq
(4α3M −α+01). (35)

Using that method we can determine the deflection in the fourth, fifth and further

phases of the movement.

Generalizing the above, we can describe any phase of the movement.

The expressions describing the deflection in each phase of the load, starting

with the second phase can by generalized. Having in mind that in the second, fourth

etc. phase of the movement the rate at which the deflection changes is negative

(sign y = −1), while in the first, third etc. phase of the movement it is positive

(sign y = 1) the deflection, basing on Equations (17), (23) and (30), in phases when

there is no slip, can be presented as follows:

y(i+1)1=

[

−yi+
F

keq
(αi−αi+1)

]

sign ẏ. (36)

Corresponding with that, the deflection in phases when the friction equals the

tangential forces (t= q), using Equations (19), (26) and (33) can be presented as:

yi0=
F

keq
(4αiM −5αi1)sign ẏ. (37)

Finally, deflection during the slip, basing on Equations (20), (27) and (34) can be

presented as:

y(i+1)2=
F

keq
(αi+1−3αi0)sign ẏ. (38)

Basing on dependences (36)–(38) the deflection at any moment of the movement can

be described as follows:

yi+1=







[

−y1+
F
keq
(αiM −αi+1)

]

sign ẏ for αiM >α> 2αi0,

F
keq
(4αi+1−αi0)sign ẏ for 2αi0>α>α(i+1)M .

(39)

Making an inverse transformation of Equation (39), we get the dependence of loading

as a function of the deflection of the springs end in the following form:

F (y,ẏ,t)=

{

FiM −keq(yA sign ẏ+yi) for yiM >y>yi0,
1
4 (3FiM +keqyi sign ẏ) for yi0>y>−yA.

(40)

Basing on relation (4) we presented the course of the loading force in Figure 4.

Using the obtained dependence between the loading force and the deflection of

the end of the spring we can modify the motion equation into the following form:

mÿ+F (y,ẏ,t)=P (t), (41)

where function F (y,ẏ,t) is given in expression (40).
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Figure 4. The course of loading force as a function of the deflection

Having all that in mind we can now move on to analyzing Equation (41) in the

conditions of harmonic forcing with constant rate of increase of frequency and force,

that is:
P (t)=P0 sinΘ,

Θ=
εt2

2
+ϕ0,

ω(t)=
dΘ

dt
= εt,

(42)

where P0 is the the amplitude of the forcing force, ε – the angular acceleration, Θ –

the phase of the movement, ω(t) – the forcing force frequency.

Analyzing Equation (40) we can notice that there is a component proportional

to the deflection in an explicit form. To extract this component we modify the elastic-

damping characteristic of the joint. A scheme of the modification is presented in

Figure 5.

Figure 5. A scheme of the joint’s characteristic’s modification

As a result of the modification the system’s differential equation of motion takes

the following form:

mÿ+keqy=−νF0(yẏ,t)+P (t), (43)

where the non-linear disturbance is described by the dependence:

νF (y,ẏ,t)=

{

(

3
4FiM −3keqy

)

sign ẏ for −yA sign ẏ > y >−(yA−2y0i)sign ẏ,
3
4FiM sign ẏ for −(yA−2y0i)sign ẏ > y >yA sign ẏ.

(44)

3. Solving the equation of motion

We will solve Equation (43) using the asymptotic Bogolubov-Krylov-Mitropol-

ski method shown in [8], assuming that the first approximation has the form of:

y= yA cos(Θ+ξ), (45)
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where yA and ξ are determined by a system of differential equations of the first

approximation:
dyA
dt
= νA1(t,yA,ξ),

dξ

dt
=ω0−ω(t)+νB1(t,yA,ξ),

(46)

where, using the notation:

ϑ=Θ+ξ,

F0(yA,ϑ)=Fn(yA cosϑdϑ,−yAϑ̇sinϑdϑ),
(47)

the equations of the first approximation describing the formulas of amplitude deriv-

ative and phase derivative, in the case when slip occurs, assume the following form:

dyA
dt
=−

ν

2πmω0

2π
∫

0

F0(yA,θ)sinθdθ+heqyA−
P0

m[ω0−ω(t)]
cosξ, (48)

dξ

dt
=ω0−ω(t)−

ν

2πmω0yA

2π
∫

0

F0(yA,θ)cosθdθ+
P0

m[ω0−ω(t)]
sinξ, (49)

where

νF0(yA,ϑ)=

{

(

3
4FiM −3keqyA cosϑ

)

sign ẏ for −yA sign ẏ > y >−(yA−2y01)sign ẏ,
3
4FiM sign ẏ for −(yA−2y01)sign ẏ > y >yA sign ẏ.

After integration of Equations (47) and (48) we eventually get the differential

equations of the first approximation:

• in the case when the slip occurs:

dyA
dt
=
1

πmω0

3

2

[

(FiM −2keqyA)(1−cosϕ)+keqyA sin
2ϕ
]

+heqyA−
P0

m[ω0+ω(t)]
cosξ,

(50)

dξ

dt
=ω0−ω(t)−

1

πmω0
3
2

[(

FiM
yA
−4keq

)

sinϕ+keq

(

ϕ+
sin2ϕ

2

)]

+
P0

myA[ω0+ω(t)]
sinξ.

(51)

• in the case when there is no slip:

dyA
dt
=heqyA−

P0
m[ω0−ω(t)]

cosξ, (52)

dξ

dt
=ω0−ω(t)−

1

mω0

3

2
keq+

P0
myA[ω0+ω(t)]

sinξ. (53)

Using the obtained Equations (50)–(53) we conducted a numeric simulation, invest-

igating the influence of the friction factor µ on the course of vibration amplitude. The

results are shown in Figure 6.
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Figure 6. The influence of unitary pressure on the course of harmonically forced

vibration’s amplitude

From the numerical analysis, shown in Figure 6, it arises that using materials

with shape memory in a joint of two beams, when the amplitude is bigger than

y1 results in more intensive damping; when yA <min(y1,y0) we observe undamped

harmonic vibrations. Increasing the friction factor µ results in a decrease of the

vibrations’ amplitude and narrows the range in which resonance vibrations take place.

4. Conclusions

1. Using SMA material to build the leaf spring increases the effectiveness of

damping in the joint.

2. An increase of the friction factor µ effects in a decrease of the vibrations’

amplitudes and narrows the range where big amplitudes occur.

3. Taking into account the constructional friction and the SMA material’s pseudo-

elastic properties in the analyzed joint, results in origination of zones in which

damped and undamped vibrations take place, which is a result of both pseudo-

elasticity and constructional friction.
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