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Abstract: The subject of the paper is analysis of wheel of a moving railway vehicle which is

subjected to a moving oscillating force. Rail ring is treated as a beam of small curvature connected to

wheel axle with a Winkler foundation. Bernoulli-Euler and Timoshenko beam model is used. Results

are gained using Fourier transformation. Space and space-time graphs, showing wave propagation in

subcritical and supercritical zones of excitation, concerning resonance of transverse vibrations, are

included.
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1. Introduction

Due to the increase of the speed of rail vehicles the dynamic behaviour of

train/track interaction is getting more and more important. In the modelling of

interaction between wheel and rail, the influence of contact force oscillation cannot be

neglected. This behaviour of the contact force can be caused by the periodic spacing

of sleepers or corrugation of wheels and rails, as well as polygonalisation of railway

wheels. The problem of the non-constant contact forces was studied in [1]. Our study

will give an insight of wave propagation phenomena in the wheel-tyre subjected to

moving oscillating force.

q0306b1i/343 10X2003 BOP s.c., http://www.bop.com.pl



344 R. Bogacz, M. Kocjan and W. Kurnik

2. Equations of motion

In the general case the equations that describe the displacements of curved

beam are given as follows:
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∂2w

∂t2
=0,
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(1)

()′ = ∂()
∂s
, where s is arc co-ordinate. The remaining notations are: EI – bending

stiffness of rim, R – average wheel radius, w – transverse displacement, η – external

damping coefficient, A – area of beam cross section, ρ – mass density, t – time.

The normal force and bending moment are described by the following expres-

sions:

N =EAε=
EA

R
(w+η′),

M =−EI
R2
(w′′+w).

(2)

According to the research presented in paper [2], a straight symmetric beam on a visco-

elastic foundation is so close in behaviour to a curved beam, that this similarity can

be used for technical purposes as well. The above assumption was found to be valid

for stationary vibrations of rail wheel [3].

The transverse beam displacement of the wheel rim as a beam can be expressed

by formula [2]:
d6N

ds6
+
1

R2
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ds4
+λ4
d2N

ds2
=0, (3)

where λ= β
EI
, and β is the Winkler foundation coefficient.

We are looking for the solution of Equation (3) which has the following form:

N(s)=C exp(rs). (4)

After substituting Equation (4) into Equation (3) we obtain the characteristic

equation with the following non-zero roots:
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2> 1.

Solution of the Equation (3) will be defined as:
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where L – characteristic length, N1,2,3,4 – parameters calculated from the following

boundary conditions.

The additional two terms are neglected due to the given radius of the wheel R

and perfect circularity. In such a case the boundary conditions are as follows:
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(5)

where F – external load.
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In the case when the curvature of the beam is neglected, the equation of rim

transverse can be written in the form shown in [4–6]:

EI
∂4w

∂x4
+ρA

∂2w

∂t2
+η
∂w

∂t
+qw= δ(x−vt)(F0+F1 cosωt), (6)

where x – Cartesian co-ordinate, q – Winkler foundation coefficient, δ() – Dirac’s dis-

tribution, F0 – constant force component in moving reference frame, δ(x−vt)F1 cosωt
– force oscillating with frequency ω and moving with velocity v.

In the coordinate frame moving with constant velocity the Equation (6) can be

written as follows:
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After introducing dimensionless parameters and variables Equation (7) takes a form:
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Applying Fourier’s transformation to Equation (8), as was done in [5] we gain

in denominator of transform the following characteristic equation:
[

S4−4V 2S2+8V ΩS+4(1−Ω2)
][

S4−4V 2S2−8V ΩS+4(1−Ω2)
]

=0. (9)

Equation (9) was solved numerically. The result of excitation by a periodic structure of

length L is given in Figure 1a. The experimental results of sleeper excitation presented

in [1] confirm the qualitative form of the resonance (Figure 1b). The results for values

of dimensionless velocity V between 0 and 0.3 according to the speed of fast trains

will be also presented. The range of dimensionless frequencies is limited to Ω∈ 〈0, 2〉
if the Bernoulli-Euler model is to be used.

(a) (b)

Figure 1. (a) Regions of solutions of characteristic equation: I – 4 real compound roots,

II – 2 compound and 3 real roots, III – 4 real roots; (b) results of experimental verification

3. Results of the analysis

In the process of moving wheel and oscillating force there is a difference between

the distance covered by waves travelling forward and backward until they reach the
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point of the wheel/rail contact. Such a difference is increasing with increase of velocity.

The distance covered by waves moving forward and backward in case of moving wheel

in comparison with the distance when the wheel is not in movement is shown in

Figure 2.

D

vp

Figure 2. Distance covered by wave generated at the point of contact between wheel and rail as

a function of movement velocity normalised to wave velocity (for waves propagating backwards

velocity is negative), D – distance normalised to distance covered when wheel is not moving,

vp – movement velocity normalised to wave propagation velocity

Superposition of waves propagating in opposite directions in wheel rim was

shown in Figures 3 and 4. If the train’s speed is greater than 0 the symmetry of

displacements is present in pre-resonant region and the asymmetry in post-resonance

region. If the dimensionless velocity is V = 0.3, resonance occurs for excitation

frequency Ω=0.808.

Figure 3. Superposition of waves when V =0.3 and Ω=0.5, .. . ,0.9
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Figure 4. Superposition of waves when V =0.3 and Ω=0.9, . .. ,1.3

Figure 5. Vibration forms for selected values of time if V =0.3 and Ω=0.85

The behaviour of the wheel rim when dimensionless velocity is 0.3 and fre-

quency of excitation is 0.85 or 1.5 is shown in Figures 5 and 6. In Figure 7 waves

propagation in opposite direction from source of vibration occurs when dimension-

less velocity is 0.85, 1.0 or 1.5. The change of direction of waves propagation mov-

ing forward from the source can be seen for excitation frequency equal to Ω = 1.0.

The propagation is characteristic for wave propagating back of the source. If the

excitation frequency is lower than Ω= 1.0 waves propagate to the source, if the fre-

quency value is higher waves propagate from the source. If excitation frequency is

Ω=1.0 sharp, the length and propagation velocity of wave back from source is infinite

(see Figure 7b).
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Figure 6. Vibration forms for selected values of time if V =0.3 and Ω=1.5

Ω=0.85, V =0.3

Ω=1.0, V =0.3

Ω=1.5, V =0.3

Figure 7. Propagation of waves from source of excitation
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Figure 8. Displacement of the rim as a function of circumferential coordinate

for chosen values of velocity

Figure 9. Angle of distortion of the rim as a function of circumferential

coordinate for chosen values of velocity

q0306b1i/349 10X2003 BOP s.c., http://www.bop.com.pl



350 R. Bogacz, M. Kocjan and W. Kurnik

In the case of the Timoshenko beam model subjected to the stationary force

δ(x−vt)F0 the displacement and the angle of distortion of the rim as a function of
circumferential coordinate for chosen values of velocity is presented in Figures 8 and 9.

4. Conclusions

The results show symmetry of displacement in sub-resonant region, which is

not present in post-resonant one. In the range of frequencies between boundary of

first region and line Ω=1, the propagation of waves in the direction to the source of

disturbances is possible. The investigations made in the paper could be the foundation

used for optimal design of railroad wheels and tracks, especially in the case of high-

speed motion of vehicles. Optimisation for track design will concern sleepers’ spacing

and pad properties. In the future the research model will be extended to viscoelastic

structures with damping and curvature influence (in the case of small wheels).
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