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Abstract: The problems of modelling, simulation and analysis of vibro-impact motion of compact

hard bodies are considered. In particular, dynamic elasto-plastic contact is simulated by using

Johnson’s analytical model of spherical bodies’ contact. The results are compared with behaviour of

the system with discrete linear-perfectly plastic model of contact.

Keywords: motion simulation, non-linear dynamics, vibro-impact systems

Notation

Y – uniaxial yield stress,

p̄Y – limiting mean pressure on contact surface,

ϑY – coefficient in the relationship: p̄Y =ϑY Y ; according to von Mises yield criterion ϑY =1.1,

F – normal force,

P – external constant load,

FY – limiting normal force for elastic deformation,

δ – total indentation (relative approach),

δY – limiting indentation for elastic deformation,

δc – maximum indentation,

δr – change in indentation during unloading,

δf – final indentation, when the compressed bodies separate, δf = δc−δr,

R∗ – effective radius of contact curvature,

R̄∗ – effective radius of contact curvature after plastic deformation, when δ= δc,

E∗ – effective Young’s modulus,

y(t) – vertical position of the mass centre of the moving mass,

yC(t) – vertical position of the point of the half-space lying outside the contact zone,

yb(x) – rigid constraint, i.e. the vertical position of the center sphere rolling on the rigid irregular
surface, under the assumption of constant contact between them.

1. Introduction

The object of modelling and simulation is dynamic unilateral contact of hard

deformable bodies. The contact is referred to as unilateral because the bodies may
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separate from each other. The term “hard” means that the bodies’ compliance is

small, in consequence of which the area of contact is very small in comparison to their

cross sections, even though the normal forces and local relative displacements, elastic

or plastic, are very high.

(a) (b)

Figure 1. Examples of dynamic contact of hard compact bodies:

(a) sphere in contact with a half-space oscillating in a vertical plane;

(b) sphere rolling on the irregular surface of a half-space

Contact vibrations or vibro-impact motion may be excited for example by

oscillations of one or both bodies (Figure 1a) or by surface irreguralities (Figure 1b) in

case of moving contact point. The wordmoving relates to internal coordinate systemas
fixed with the bodies. A moving contact point is present both in sliding and rolling

motion.

The Hertz theory was developed 120 years ago and concerns the static contact

of elastic smooth and non-conforming bodies. It provides a good basis for modelling

and simulation of dynamic unilateral contact in case of loads (normal forces) which

satisfy the assumptions of the theory, in particular the assumption that the strains

within the contact zone are purely elastic and the material of the bodies is strain-rate

independent.

The computer model was developed to widen the scope of the investigation for

the cases in which the plastic region is present within the contact zone, but it is fully

contained by the surrounding material which is still elastic. The computer model is

based on analytical static models of hard bodies’ contact, i.e. the Hertzian model in
elastic range [1, 2] and the Johnson’s model in elastic-plastic (i.e. contained plastic)
range [3, 4]. In the Johnson’s model the relationship between the normal force and

the relative approach (indentation) during unloading differs from that during loading,

due to plastic deformations.

The development of an appropriate physical and computer model of dynamic

unilateral contact of hard deformable bodies is important in the analysis of dynamical

processes existing for instance in rolling bearings, cam mechanisms, gears and in train

movement in the wheel/rail system [5].

2. Analytical Hertzian and Johnson’s model

In the strain and stress analysis in the contact zone of spherical bodies it is

convenient to use the notions of effective modulus E∗ and effective radius R∗. For two

bodies of the radii R1, R2, made of the material of the Young’s modulus E1, E2 and
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the Poisson’s numbers λ1, λ2 the effective modulus E∗ and effective radius R∗ are

computed from the formulas:

1/R∗=(1/R1+1/R2) 1/E∗= [(1−λ
2

1
)/E1+(1−λ

2

2
)/E2]. (1)

According to the Hertz theory, in the elastic range of deformations, the relationship

between the normal force F and the indentation δ during unloading is the same as

during loading, and it is given by the formula:

F (δ)= 4/3E∗R
1/2
∗ δ

3/2. (2)

On the basis of experimental observations some physical assumptions were made in

the Johnson’s model, and for these assumptions rigorous analytical relationships were

obtained. During loading with the normal force greater than the limiting force FY
(and less than Fp≈ 650FY ) the relationship F (δ) is given by the formula:

F (δ)=FY (2δ/δY −1)[1+(3ϑY )
−1 ln(2δ/δY −1)]. (3)

Even when plastic deformations occur during loading, unloading has entirely elastic

character and therefore the relationship F (δ) is analogous to (2):

F (δ)= 4/3E∗R̄
1/2
∗ (δ−δf )

3/2. (4)

In formula (4) the symbol R̄∗ denotes a new value of the effective radius. In the

Johnson’s model the effective radius changes when δ = δc, i.e. when elastic-plastic
loading ends, and elastic unloading starts. A new value is calculated by the formula

R̄∗ =R∗(2δc/δY −1)
1/2. During unloading the indentation decreases from δc to δf ,

and the difference δr = δc−δf equals δr = δY (2δc/δY −1)
1/2.

Figure 2 shows the relationship F (δ) in the range 〈0,4δY 〉 during loading and

three force-indentation curves for three values of maximum indentation δc, that is,

for δc = 2δY , 3δY , 4δY . The curve number 1 is a graph of relationship (2), i.e. it
extrapolates the relevant Hertzian relationship beyond the range 〈0,δY 〉, in which

purely elastic strains exist. Figure 3 represents the simplest model of elastic-plastic

contact. In the elastic range the relationship F (δ) is linear. External force F > FY
induces plastic flow. The maximum indentation δc and the final indentation δf depend

on the dynamics of the system and time history of external load. After changing the

indentation scale into the relative strain scale and the normal force scale into the stress

Figure 2. Force-indentation curves: 1 – by the Hertz theory, extrapolated for F >FY ;

2 – resulting from Johnson’s model, during loading; 3, 4, 5 – resulting from Johnson’s model,

during unloading, for the maximum indentation δc=2δY , 3δY , 4δY , respectively
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Figure 3. Force-indentation curve for linearly elastic and perfectly plastic model of contact

scale the graph in Figure 3 becomes the strain-stress characteristic of compression of

elastic-purely plastic material. The Johnson’s model of contact of spherical bodies

assumes such a characteristic of material of both bodies in contact.

The occurrence of plastic deformations, their magnitude and area of plastic

zone, depend very much on the uniaxial yield stress Y . According to the Hertz theory

the limiting normal force FY for elastic deformations is determined by the formula:

FY =(3π/4)
2ϑY Y R

2

∗
(ϑY Y/E∗)

2. (5)

For instance, for steel of compressive yield stress 1GPa the limiting force FY is as

many as 1.95 times greater than for steel of yield stress 0.8GPa.

3. Investigation via computer simulation

Exemplary simulation results, shown in Figure 4, concern the case of oscillations

of the mass m (see Figure 1a) lying at an initial time on the platform, which is a half-

space in physical terms. At the initial instant of time the effective radius of one-

point contact of the mass with the platform R∗=0.475m. The mass is pressed with

constant force P =40kN, which is ten times greater than the weight of the oscillating

massm. The vertical motion of the platform, strictly speaking the motion of the points

outside the contact zone which don’t undergo displacements due to elastic and plastic

deformations, is given by the harmonic: function z =−a+acos2πf , the amplitude

a=0.1mm, and the frequency f =560Hz is about two times greater than the contact

resonance frequency. The excitation of such a frequency arises, for example, when the

wheel of the rail vehicle rolls along a corrugated rail and the speed of the vehicle is

100km/h and the wavelength of corrugations is 5 cm.

At the present stage the mass-platform system is not yet a model of a specific

technical system. The accepted values of parameters could be the parameters of

a simplified model of contact between the wheel of a light rail vehicle and the

rail. However, in the last case the contact is of moving (rolling) type, so for an

appropriate relationship between oscillation frequency and rolling speed the contact

zone moves with constant speed and within this moving zone only loading happens;

force-indentation characteristic at unloading doesn’t influence the vertical motion.

For comparison purposes Figure 5 presents three characteristic time patterns

for entirely elastic vibro-impact system from Figure 1b. At low frequencies the bodies

q0306a-i/338 10X2003 BOP s.c., http://www.bop.com.pl



Modelling and Simulation of Dynamic Unilateral Elasto-plastic Contact. .. 339

(a) (b)

(c)

Figure 4. Simulation results for the system of Figure 1a with the Johnson’s model of contact:

(a) yield stress of the value Y =109N/m2 is not exceeded, (b) non-moving contact point, yield

stress Y =6 ·108N/m2 was exceeded; (c) moving contact point, yield stress Y =6 ·108N/m2

was exceeded. Lines indications: 1 – harmonic excitation yC(t), 2 – vertical position y(t)
of the center of mass m

(a) (b) (c)

Figure 5. Three characteristic samples of time histories of the purely elastic system

from Figure 1b for excitation frequency: (a) below the contact resonance frequency,

(b) close to the resonance frequency, (c) over the resonance frequency.

Lines indications: 1 – rigid constraint yb(t), 2 – sphere vertical position y(t)

stay in contact. The difference between the rigid constraint yb(t) and the mass centre

vertical position y(t) is a measure of indentation δ. When the bold line is over the

thin one, the sphere and the platform do not contact each other. At frequencies close

to the contact resonance frequency characteristic high bounces off the platform are

observed, whereas at high frequencies the oscillation amplitude of the mass m is lesser

than the amplitude of the rigid constraint and the bodies lose and come into contact

alternately. The method for numerical computation of the rigid constraint yb(t) for any

given profile of irregular surface is presented in [5]. In the case of non-moving contact

point and a smooth surface, like in the system of Figure 1a, the rigid constraint yb(t)

is equivalent to excitation yC(t).

Simulation results show that in the case of a non-moving contact point the

dynamic behaviour of the system under investigation is determined to a large extend

by a significant change of the effective radius R∗ due to plastic deformation. In

consequence of this change the contact stiffness increases, which appears for instance

q0306a-i/339 10X2003 BOP s.c., http://www.bop.com.pl



340 Z. Kowalska

in starting of bouncing of the mass after the first plastic deformation (see Figure 4b).

Time history y(t) shown in Figure 4a, obtained for the same value of frequency of

excitation as in Figure 4b, is characteristic for frequencies much higher than the

contact resonance frequency, whereas high bouncing of the sphere off the platform

shown in Figure 4b is typical at contact resonance. This situation can be explained

as follows: the increase in contact stiffness moves the contact resonance frequency

towards higher frequencies. Therefore the bouncing occurs at frequencies higher than

in the case of high value of the yield stress Y (Figure 4a).

(a) (b)

(c)

Figure 6. Simulation results for the system of Figure 1a, non-moving contact point, linearly

elastic – perfectly plastic model of contact (see Figure 3), and for three different values of the

external constant load P : (a) at the load P =10 ·mg, (b) at the load P =12 ·mg,

(c) at the load P =13 ·mg. Lines indications: 1 – harmonic excitation yC(t), 2 – change
in a distance between two bodies’ points being outside the contact region at the normal force

F =0N, so that the difference between the line 3 and the line 2 is the indentation δ, 3 – vertical

position of the mass center y(t) (moved downward by the value of radius R∗)

Figure 6 shows the results of simulation of the system from Figure 1a with

a discrete model of compliance for the contact region; strictly speaking – the model

consisting of a linear spring connected in series with a perfectly plastic element. The

force-indentation characteristic is shown in Figure 3. The linear contact stiffness is

equal to FY /δY . The limiting normal force FY and the limiting indentation δY were

computed from the Hertzian formulas.

The system with the discrete contact model has entirely different dynamical

properties from that with the continuum contact model by Johnson. Figure 6 shows

three exemplary time histories. In the first case (Figure 6a) the limiting normal force

for elastic deformation FY was exceeded only at the beginning of the oscillations, then

the motion stabilises and the permanent deflection does not increase.

With an increase in constant load the amplitude of oscillations of the mass m

decreases quickly with time, and simultaneously the two bodies approach each other

quickly. Such a discrete elastic-perfectly plastic model seems to be more appropriate
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for simulation of full plastic flow, which happens according to Johnson when the

normal force is hundreds times greater than the limiting force FY .

Concluding, dynamic behaviour of the simple system under consideration with

the contact model by Johnson is very complex, especially at frequencies near to the

contact resonance frequency. In order to perform a more thorough and quantitative

analysis sophisticated tools (software) and procedures for analysis of strongly non-

linear dynamical systems are planned to be applied.
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