
TASK QUARTERLY 6 No 4 (2002), 669–680

COHERENT POTENTIAL APPROXIMATION

TECHNIQUE IN A SIMPLE EXAMPLE

OF RESISTIVITY CALCULATIONS

FOR BINARY ALLOYS

MACIEJ WOŁOSZYN AND ANDRZEJ Z. MAKSYMOWICZ

Faculty of Physics and Nuclear Techniques,

University of Mining and Metallurgy,

Mickiewicza 30, 30-059 Cracow, Poland

woloszyn@novell.ftj.agh.edu.pl

(Received 15 May 2002)

Abstract: Technique of the Coherent Potential Approximation applied for calculations of the
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1. Introduction

The Coherent Potential Approximation (CPA) method [1] is a powerful ana-

lytical technique for calculations of density of states ρ(ω) for binary alloys AxB1−x.

Not only is density of states obtained but also so called coherent potential can be

extracted from the calculations, and used in further studies. In this example we apply

it to get the residual resistivity in alloys.

Before we proceed with the presentation of the CPA methods, some comments

on the applicability or restrictions of this technique are necessary.

The two components of the alloy, elements A and B, must be expressed in terms

of the same starting densities ρ0(ω). This means, that we have to have the same

bandwidth of A and B elements. Therefore compounds composed of two transition

metals, such as FexV1−x alloy, are acceptable, while, for example, a transition metal

and a rare earth compound would not be treatable correctly in the CPA, because the

bandwidth of f -electrons of the rare earth elements is very narrow.

The CPA is a one electron approximation, and any corrections due to electron-

electron correlations, or interaction of electrons with the lattice etc., may only be

incorporated by a suitable modification of the density of states of pure elements which

is the input information for the CPA method. Also, within the CPA we do not get the

TQ406R-I/669 10X2003 BOP s.c., http://www.bop.com.pl



670 M. Wołoszyn and A. Z. Maksymowicz

dispersion relation or the wavefunctions. If, however, we are interested in a simplified

description of the system, such as the density of states ρ(ω) only, the CPA is highly

recommended.

The CPA technique is based on the concept of an effective medium, which

replaces the actual environment seen by an electron. Due to the lack of translational

invariance in alloys, the actual environment cannot be treated analytically. However,

the effective medium restores the necessary symmetry for further mathematical

treatment. This means, that we calculate the properties of the effective medium,

described in terms of a coherent potential V (with a proper translational invariance),

and we leave the problem of the optimal choice of V as a separate task. This is the

essence of the CPA method – how to establish V .

In this paper we describe the CPA method answering the following questions:

• How is the density of states extracted from a given Green function of pure
elements and any coherent potential V ?

• Why is the potential V resulting from the CPA optimal?
Then we use the numerical findings specifically to translate the obtained V into

a resistivity 1/σ of a binary alloy AxB1−x versus its concentration x.

In summary, CPA is a powerful technique; yet restricted to (a) alloys of the

same electronic structure (density of states) of both components A and B of the alloy,

(b) one electron calculations with all the consequences of this approximation.

In a sense, it may be considered as an alternative to the first principle (ab

initio) tedious calculations, if a more detailed knowledge of the electronic structure –

the dispersion relation or the wave functions – is not necessary.

2. Hamiltonian of an effective medium

The basic CPA method assumes the same shape of functions describing the

density of states in components A, B of AxB1−x alloy. This condition assures identical

kinetic energies of electrons ε(k) for both A and B.

However, we allow different atomic level limits εi, i=A, B. Thus, the Hamilto-

nian describing such system has the form:

H =
∑

k

ε(k)a†kak+
∑

i

εia
†
iai, (1)

where the dispersion relation ε(k) is the same for both pure A or B elements, and

index i stands not only for the lattice site i, yet also brings information which atom

i=A, B occupies this site (this is the εi value).

The first term, written in the Bloch representation, defines the kinetic energy

of an electron. The scale and the origin of energy in this work is chosen so that

−1≤ ε(k)≤ 1, and the width of the band is 2. In the CPA application we only need
the density of states function ρ0(ω) (normalized to unity) corresponding to ε(k).

As we mentioned above, the second term
∑

iεia
†
iai (the Wannier representa-

tion) describes the shift of atomic levels depending on the kind of atom occupying

site i.

The above Hamiltonian cannot be solved, because the second term is not

translationally invariant in general and, therefore, it cannot be converted into Bloch
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state and absorbed by the first term. The latter is true only for a special case of site

independent atomic levels:

εi= ε=const, (2)

when the obvious solution of a sheer rigid band ρ(ω)= ρ0(ω−ε) takes place.
Let us summarize the main points.

1. The reference Hamiltonian

H0=
∑

k

ε(k)a†kak, −1≤ ε(k)≤ 1 (3)

describes a virtual reference crystal with the dispersion relation ε(k), or the

corresponding density of states:

ρ0(ω), −1≤ω≤ 1. (4)

(This function ρ0(ω) is the necessary information for the CPA.) The construc-

tion of the Green function G(z) is equivalent to a more general Kramers-Kronig

relation between G(z) and the density of states:

G(z)=

+∞
∫

−∞

ρ(ω)

z−ωdω,

ρ(ω)=− 1
π
ImG(ω+i0+).

(5)

Then, for the reference crystal we assume that

F0(z)=

+∞
∫

−∞

ρ0(ω)

z−ω dω, (6)

or

ρ0(ω)=−
1

π
ImF0(ω+i0

+), (7)

are known, where F0 stands for the reference Green function.

2. Pure crystal A Hamiltonian is given by

HA=
∑

k

ε(k)a†kak+
∑

i

εAa
†
iai=

∑

k

(ε(k)+εA)a
†
kak, (8)

which of course is expressed by a stiff shift of the reference band only:

ρA(ω)= ρ0(ω−εA), (9)

GA(ω)=F0(ω−εA). (10)

3. Real binary alloy AxB1−x Hamiltonian

H =
∑

k

ε(k)a†kak+
∑

i

εia
†
iai (11)

is not directly convertible into the desired Bloch form, so we are forced to use

the effective media ideology introduced below.
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4. Effective medium Hamiltonian, for which we restore the symmetry is therefore

He=
∑

k

ε(k)a†kak+
∑

i

V a†iai=
∑

k

(ε(k)+V )a†kak (12)

and is obtained by replacing εi by a site i-independent potential V . Now:

Ge(z)=F0(z−V ), (13)

ρe(ω)=−
1

π
ImGe(ω+i0

+), (14)

yet ρe(ω) is no longer given by ρe(ω)= ρ0(ω−V ) as this time we allow V to be
complex and energy dependent:

V =V (ω), ImV 6=0. (15)

The effective medium will be discussed more in details within the CPA tech-

nique described in the next chapter. However, it is worth to note that at this

stage we may propose for example:

V =0

V = εA, εB

V =xεA+(1−x)εB

for reference crystal,

for pure crystals A, B

for alloy AxB1−x

(16)

within so called Virtual Crystal Approximation. All the above examples corres-

pond to the stiff band picture when the energy independent and real V makes:

ρe(ω)= ρ0(ω−V ). (17)

Within the CPA the simplest Virtual Crystal Approximation is replaced by:

V =VCPA(ω), ImV 6=0 (18)

and then ρe(ω) 6= ρ0(ω−V ). The density of states of the effective medium must
now be calculated from the basic formula (14). Below we discuss how to do it.

3. Coherent Potential Approximation

for the effective medium

The main idea of the CPA is to replace the real system by an effective medium.

Instead of using real potentials εi = εA, εB depending on atom remaining on site i,

we use the average potential V , common for all sites. As it was shown in the previous

section, the effective Hamiltonian is then:

He=
∑

k

(ε(k)+V )a†kak. (19)

This yields the Green function (13) in terms of pre-calculated F0(z). The density of

states of the effective medium, given by Equation (14), needs V in Equation (13) to

be calculated. Here the CPA enters.
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The idea is simple. First, we introduce a single impurity at the site i=0 defined

by the potential

Vi=

{

εA or εB for i=0,
V for i 6=0, (20)

which is a fully solvable case. The corresponding Green functions GAe or G
B
e at this

impurity site are known in terms of the Green function of the medium:

GAe (z)=
Ge(z)

1−(εA−V )Ge(z)
, (21)

and similarly

GBe (z)=
Ge(z)

1−(εB−V )Ge(z)
. (22)

Now, with these partial Green functions we demand the net Green function Ge of the

effective medium to be self consistent:

Ge=xG
A
e +(1−x)GBe (23)

for AxB1−x binary alloy, with the obvious density of states superposition rule

ρe(ω)=xρ
A
e (ω)+(1−x)ρBe (ω) (24)

as a consequence.

Applying Equations (21) and (22) to Equation (23) we get:

1=
x

1−(εA−V )GAe
+

1−x
1−(εB−V )GBe

, (25)

which, after some simple algebra takes on a more often used form:

0=x
(εA−V )GAe
1−(εA−V )GAe

+(1−x) (εB−V )G
B
e

1−(εB−V )GBe
. (26)

In short, Equation (26) is the key CPA equation for suitable choice of V . Yet, since

the Green functions GAe and G
B
e are energy ω-dependent, the VCPA(ω) also depends

on energy. This means we have to apply Equation (26) for each energy ω. Not only is

the density of states of the medium (14) now available, but we also get partial density

of states for a single impurity εA in VCPA medium:

ρAe (ω)=−
1

π
Im

Ge
1−(εA−VCPA)Ge

. (27)

The concept of single impurity embedded in a medium may be illustrated as in

Figure 1. Also, Equation (26) for Green function technique specialists is interpreted

as a result of zero net scattering of an electron on the impurity.

Let us summarize the main points. For given ρ0(ω), εA, εB and x the full

algorithm may be constructed to calculate ρe(ω) and partial ρ
A
e (ω), ρ

B
e (ω) density of

states for single impurities in the effective medium.

Still, we have not explored as yet the information concerning the imaginary

part of VCPA. This is discussed in the next section.

4. Resistivity and the Coherent Potential Approximation

The coherent potential V which is obtained as a result of the CPA calculations

for the given energy ω is a complex number. Its imaginary part provides information
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Figure 1. The idea of the CPA: components A and B (here shown as black and white circles)

of a disordered system are replaced by an effective medium (grey ones). The reference site

may be occupied by A with the probability x, or by B with the probability 1−x

about relaxation time τ for an electron at the state of energy ω. As it is well known,

the stationary solution of the Schrödinger equation has the time-dependent part of

the wave function in the form:

ψ∝ e−iωt/h̄, (28)

which makes the density of electrons |ψ|2 at any position ~r in space a time-independent
quantity.

However, the CPA idea of the formal replacement

ω→ω+V (29)

makes

|ψ|2∝ e−t/τ (30)

with the relaxation time τ related to the CPA potential V

1

τ
∝−ImV. (31)

On the other hand τ is related to the conductivity σ in simple Drude model (see

e.g. [2]) as:

σ=
ne2

m
τ. (32)

Thus, we obtain a relation between V and the residual resistivity (at T =0):

1

σ0
∝−ImV (ω=EF ), (33)

which is a part of the total resistivity 1/σ = 1/σ0+1/σ(T ) originating from the

scattering on defects and impurities (1/σ(T ) is a temperature dependent result of

scattering on phonons). The imaginary part of the potential V is taken at the Fermi

level EF .

In alloys, the concentration of elements is the parameter controlling the degree

of disorder. Only for pure elements the lattice periodicity takes place and then the

residual resistivity vanishes. For an alloy, a simple parabolic approximation often

works. This is the Nordheim’s rule [3] (see Figure 2):

1

σ
∝x(1−x). (34)
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1/
σ
0

x

Figure 2. Illustration of the Nordheim’s rule on parabolic resistivity dependence

on concentration of alloy compound

The previously calculated density of states function ρ(ω) must be used for

finding the Fermi level EF from:

EF
∫

−∞

ρ(ω)dω=n, (35)

where the filling of the band in a binary alloy is n= nAx+nB(1−x), if nA and nB
denote the number of electrons for pure A and B elements.

5. Numerical procedure

Difficulties in finding analytical solutions of the CPA equation for more complic-

ated (and thus closer to reality) functions ρ0 lead to the necessity of using numerical

procedures.

A convenient way to treat the problem is to consider an iterative formula

equivalent to the CPA condition (26):

V (n+1)=V (n)+
〈T 〉(n)

1+〈T 〉(n)Ge(z)
(36)

with

〈T 〉(n)=
∑

i=A,B

pi
εi−V (n)

1−(εi−V (n))Ge(z)
(37)

and pA= x, pB=1−x. In order to obtain the value of the coherent potential V , the
iteration described by Equation (36) is repeated until |V (n+1)−V (n)| < ε, where ε

determines the requested precision of calculations.

Quite often a starting value of the potential V is the Virtual Crystal Approx-

imation (VCA) potential:

V (0)=VVCA=xεA+(1−x)εB. (38)
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6. Analytical results

For some specific ρ0(ω) it is possible to solve the CPA Equation (26) analytic-

ally. One of these cases is that of the semi-elliptical bare density of states:

ρ0(ω)=

{

2
π

√
1−ω2, |ω|< 1,

0, |ω| ≥ 1. (39)

Using Equation (6) we obtain the expression:

F0(z)= 2(z−
√

z2−1), (40)

and from Equation (13) the form of the coherent potential may be written in terms

of Ge(z)=F0(z−V ):
V = z− 1

Ge(z)
− 1
4
Ge(z). (41)

ρ
(ω
)

ω

Figure 3. Density of states function ρ(ω) (normalized to unity) for binary alloy with x=0.2 and

εA=−εB=0.4, found analitically for the semi-elliptical ρ0(ω)

Let us consider the example of a binary alloy (AxB1−x) with energies εA = ε,

εB=−ε. The CPA Equation (26) in this case gives a cubic equation for Ge:
G3e−8zG2e+4

[

1−4
(

ε2−z2
)]

Ge−16[(2x−1)ε+z] = 0. (42)

The above equation has to be solved for all values of z to find the relation for the Green

function Ge(z) and consequently the density of states function ρ(ω) (see Figure 3),

and then the residual resistivity presented in Figures 4 and 5.

7. Numerical results

To calculate the density of states for a given value of energy the following

information on AxB1−x alloy is needed:

• the density of states function ρ0(ω) for both components of the alloy,
• atomic levels εi for i=A, B,
• concentration x.
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1/
σ
0

x

Figure 4. Residual resistivity 1/σ0 (in arbitrary units) as a function of concentration x

for semi-elliptical ρ0(ω) with nA=0.3, nB=0.3, 0.7, 0.9 and εA=−εB=0.4. The solid line
presents theoretical values from Nordheim’s parabolic rule

1/
σ
0

x

Figure 5. Residual resistivity 1/σ0 (in arbitrary units) as a function of concentration x

for semi-elliptical ρ0(ω) with nA=0.5, nB=0.1, 0.5, 0.7 and εA=−εB=0.4. The solid line
presents theoretical values from Nordheim’s parabolic rule

For example, ρ0(ω) can be approximated using any number of linear segments

with the exception of vicinity of band edges, where we used the square root approx-

imation to reproduce van Hove singularities:

ρ(ω)∝ (ω−ω0)1/2. (43)

ρ0(ω) shown in Figure 6 is slightly modified (to account for the van Hove

singularities) density of states proposed for transition metal alloys in some papers [4].

It was used to calculate all the results presented in this section. The values of atomic

levels were εA=0.5 and εB=−0.5.
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ρ
0
(ω
)

ω

Figure 6. Function ρ0(ω) proposed for transition metal alloys and used in numerical calculations

ρ
(ω
)

ω

Figure 7. The results of the CPA calculations of density of states function ρ(ω) for a binary alloy

AxB1−x (εA=−εB=0.5)

The resulting density of states obtained for several values of the A component

concentration x in binary alloy AxB1−x is shown in Figure 7.

Values of resistivity for different concentrations are presented in Figures 8 and 9.

As expected, the maximum values of 1/σ0 were found for similar amounts of elements

A and B. However, the obtained dependence is far from the parabola claimed by

semi-empirical Nordheim’s rule.

8. Conclusions

The Coherent Potential Approximation method was presented, then applied

for calculations of the density of states in binary disordered alloys AxB1−x, and
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1/
σ
0

x

Figure 8. Residual resistivity 1/σ0 (in arbitrary units) versus concentration x

for nB=0.3, 0.7, 0.9; in all cases nA=0.3 and εA=−εB=0.5. The solid line presents
theoretical values from Nordheim’s parabolic rule

1/
σ
0

x

Figure 9. Residual resistivity 1/σ0 (in arbitrary units) versus concentration x

for nB=0.3, 0.7, 0.9; in all cases nA=0.5 and εA=−εB=0.5. The solid line presents
theoretical values from Nordheim’s parabolic rule

followed by a simplified approach to extract also the residual resistivity 1/σ0 from

the complex form of the potential, which is specific to the Coherent Potential

Approximation.

Comparison of the relation 1/σ0 versus concentration x of system components

obtained for the semi-elliptical, analytically solvable ρ0(ω), and that proposed for

transition metal alloys (Figure 6) suggests a rather weak dependence of the resistivity

1/σ0 on the details of starting ρ0(ω). Yet the shape of 1/σ0 = f(x) is far from the

parabola claimed by the Nordheim’s rule.
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