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Abstract: In the paper we discuss how to calculate the dipole moment using the electron density
data. A few numerical methods are compared. We have found that usually the interpolation of
electron density gives the most accurate results.
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1. Introduction

There are many commercial programs, which allow one to perform the density
functional calculations and to find ground states of medium size systems. Programs
are, for example, used to estimate the binding energies for molecules adsorbed on
surfaces and to find the preferred adsorption sites. Such programs like Castep
(Accelrys Inc.) [1, 2] give also information on the electron density as a function of
space. Therefore, one may use these data and calculate the dipole moment of the
system studied. Such information is important because the dipole moment of adsorbed
atoms can be measured in experiments [3], for example, using the static capacitor
method for measurements of the surface potential of gases adsorbed on evaporated
metal films [4]. According to MacDonald and Barlow’s the following equation describes
the surface potential SP [5]:

SP=4πµ0na(1+9αn3/2a ) [mV], (1)

where na [at/cm2] and α [cm3] denote concentration and polarizability of the ad-
sorbate and µ0 [D] is the normal component of its dipole moment at na ∼ 0. If the
amount of adsorbed substance (for example hydrogen) is low then the surface poten-
tial, which can be directly measured, is proportional to na and the proportionality
constant is related to the dipole moment. It would be interesting to compare such
result with numerical calculations.

Figure 1 shows the cluster representing (100) the surface of TiH2. The cluster
consists of 6 atoms of titanium and 8 atoms of hydrogen, because, due to the periodic
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Figure 1. The (100) surface
of TiH2 with adsorbed
atoms of hydrogen

Figure 2. The electron density for atom of hydrogen
adsorbed on the (100) surface of TiH2 in the top position:

distances on both axes are given in Å

boundary conditions, the Ti atoms at the cell’s edges belong to the neighbouring
cells, too. There is an additional hydrogen atom adsorbed at the top position over
the central titanium atom. Figure 2 shows the electron density around the hydrogen
atom adsorbed on the (100) surface of TiH2 in the top position. As one can see, the
electron density is not spherically symmetric, so a dipole moment different from zero
is expected.

For the periodic boundary conditions used, the cluster represents a two-
dimensional layer of TiH2. The electron densities for a TiH2 cluster with and without
the hydrogen atom are usually different, so the dipole moments of both systems are
different, too. Formally, one may calculate them, subtract one from another and thus
obtain the change in the dipole moment of the surface caused by the presence of
a single hydrogen atom (or precisely, by a submonolayer of hydrogen). But is such
approach accurate enough? The problem is caused by the fact that density functional
packages do not give us the functional form of the electron density, but the electron
density averaged over a small area of space around the grid points.

2. Theory

The Castep program [1, 2] uses the density functional theory to calculate
the electron density of the ground state of many atom systems. The functional for
the exchange/correlation contribution may be approximated within the local density
approximation and the gradient correction may be taken into account. The electron-
ion interaction is described using pseudopotential concept. For transition metals the
pseudopotential is generated using the optimization scheme of Lin [6]. It is transferable
(i.e. can be used in different chemical environments), and sufficiently soft (relatively
small basis can be used). The program uses the periodic boundary conditions so it is
especially useful in studying the properties of crystalline solids and periodic surfaces.
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If a single molecule is studied then the cell should be large enough to avoid interactions
with its replicas. Castep performs optimization of wavefunctions in reciprocal space.
The minimisation is achieved using band-by-band technique. Castep uses special k-
point sampling for integration over the Brillouin zone, fast Fourier transforms (FFT)
to evaluate matrix elements, and wavefunction symetrization for crystals with point-
group symmetry higher then P1. The small k-point sampling with a kinetic energy
cut-off 400–600eV was used in calculation. Finally, the program returns the values
of electron density at the lattice points inside the simulated cell in the real space.
The number of these points is a control parameter of the program and we usually use
between 30 and 100 points in each direction. Castep includes a procedure based on
Gasteiger method [7], which calculates the dipole moment, but as we show below it
is not accurate and it is worthwhile to study other approaches.

Let us consider the simulated supercell C in the form:

[xmin,xmax]× [ymin,ymax]× [zmin,zmax]

where xmin, xmax, ymin, ymax, zmin, zmax give the range of grid points. The numbers
of grid points in each direction are ii, jj, kk, respectively.

Let ρ(x,y,z) denote the electron density function. The total charge of elec-
trons is:

ρC =
∫ ∫

C

∫

ρ(x,y,z)dv (2)

and the dipole moment of the system composed of electrons and atomic cores
(nuclei) is:

~µ=
∑

m

~rmqm+
∫ ∫

C

∫

~rρ(x,y,z)dv, (3)

where ~rm are the positions of the nuclei, and qm are their charges.

The integrals in Equations (2) and (3) can be evaluated by a number of different
methods. In the following we consider a few of them, namely:

1. The direct method:

ρd=
ii
∑

i=1

jj
∑

j=1

kk
∑

k=1

f(i,j,k), ~µ d=
ii
∑

i=1

jj
∑

j=1

kk
∑

k=1

~r(i,j,k) ·f(i,j,k), (4)

where

f(i,j,k)=

xi+∆x/2
∫

xi−∆x/2

dx

yj+∆y/2
∫

yj−∆y/2

dy

zk+∆z/2
∫

zk−∆z/2

dz ρ(x,y,z),

where i=1, .. . ,ii; j=1, .. . ,jj; k=1,. .. ,kk and
~r(i,j,k)=

[

xmin+ i ·∆x− ∆x2 ,ymin+j ·∆y−
∆y
2 ,zmin+k ·∆z−

∆z
2

]

.

The values of f(i,j,k) at the grid points correspond to the electron density
obtained from Castep.
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2. The integration by parts:

ρI=
ii
∑

i=1

jj
∑

j=1

kk
∑

k=1

f(i,j,k), ~µ I= [µx,µy,µz], (5)

where

µx=xmax ·ρI−

xmax
∫

xmin

dx

x
∫

xmin

ds

ymax
∫

ymin

dy

zmax
∫

zmin

dz ρ(s,y,z) ,

µy = ymax ·ρI−

ymax
∫

ymin

dy

y
∫

ymin

ds

xmax
∫

xmin

dx

zmax
∫

zmin

dz ρ(x,s,z) ,

µz = zmax ·ρI−

zmax
∫

zmin

dz

z
∫

zmin

ds

xmax
∫

xmin

dx

ymax
∫

ymin

dy ρ(x,y,s).

Here the fourth order integrals are evaluated using the simplest step-by-step
Euler integration.

3. The Taylor expansion method:

ρT,n=
ii
∑

i=1

jj
∑

j=1

kk
∑

k=1

fnT (i,j,k),

~µT,n=
ii
∑

i=1

jj
∑

j=1

kk
∑

k=1

~r (i,j,k) ·fnT (i,j,k),

fnT (i,j,k)=

xi+∆x/2
∫

xi−∆x/2

dx

yj+∆y/2
∫

yj−∆y/2

dy

zk+∆z/2
∫

zk−∆z/2

dz fnT (i,j,k,x,y,z),

fnT (i,j,k,x,y,z)=f (i,j,k)+
n
∑

l=1

1
l!

(

(x−xi)
∂

∂x
+(y−yj)

∂

∂y
+(z−zk)

∂

∂z

)l

ρ(x,y,z) ,

(6)

where the derivatives heave the meaning of numerical derivation of f(i,j,k)
from its grid values.

4. The 3D cubic interpolation:

ρC=
ii
∑

i=1

jj
∑

j=1

kk
∑

k=1

nn
∑

l=1

nn
∑

m=1

nn
∑

n=1

fClmn (i,j,k),

~µC=
ii
∑

i=1

jj
∑

j=1

kk
∑

k=1

nn
∑

l=1

nn
∑

m=1

nn
∑

n=1

~rlmn(i,j,k) ·fClmn (i,j,k),

fClmn (i,j,k)=
3
∑

p=0

3
∑

r=0

3
∑

s=0

wp,r,si,j,k (x−xi+ l ·∆x/nn)
(p)

(y−yj+m ·∆y/nn)(r)(z−zk+n ·∆z/nn)(s).

(7)

In such approach each ∆x×∆y×∆z cell is divided into (nn)3 subcells (nn in
each direction) and the electron density is separately approximated by cubic 3D
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polynomial in every subcell. In order to perform such approximation we have to
assume that the first and second derivatives are continuous at the segment boundaries:

ρ(1)+x (x0,y0,z0)= ρ(1)−x (xii,yjj ,zkk) ρ(2)+x (x0,y0,z0)= ρ(2)−x (xii,yjj ,zkk),

ρ(1)+y (x0,y0,z0)= ρ(1)−y (xii,yjj ,zkk) ρ(2)+y (x0,y0,z0)= ρ(2)−y (xii,yjj ,zkk),

ρ(1)+z (x0,y0,z0)= ρ(1)−z (xii,yjj ,zkk) ρ(2)+z (x0,y0,z0)= ρ(2)−z (xii,yjj ,zkk),

ρ(1)−x (xi,yj ,zk)= ρ(1)+x (xi,yj ,zk) ρ(2)−x (xi,yj ,zk)= ρ(2)+x (xi,yj ,zk),

ρ(1)−y (xi,yj ,zk)= ρ(1)+y (xi,yj ,zk) ρ(2)−y (xi,yj ,zk)= ρ(2)+y (xi,yj ,zk),

ρ(1)−z (xi,yj ,zk)= ρ(1)+z (xi,yj ,zk) ρ(2)−z (xi,yj ,zk)= ρ(2)+z (xi,yj ,zk),

(8)

where i=1, .. . ,ii−1; j=1,. . .,jj−1; k=1,. . .,kk−1.
Two different numerical expressions were used to calculate the first derivative.

Method I uses the formula:

∂

∂x
fCI(i,j,k)=

1
2∆x

(

f(i+1,j,k)−f(i−1,j,k)
)

, (9)

whereas method II calculates derivatives as:

∂

∂x
fCII(i,j,k)=

1
8∆x
(f(i+1,j+1,k+1)−f(i−1,j+1,k+1)+

f(i+1,j+1,k−1)−f(i−1,j+1,k−1)+

f(i+1,j−1,k−1)−f(i−1,j−1,k−1)+

f(i+1,j−1,k+1)−f(i−1,j−1,k+1)).

(10)

The corresponding expressions were used for the derivatives in other directions.

3. Results and discussion

As a test we calculated the dipole moment of simple molecules (e.g. H2, H2O,
HB, CO, NH3, PH3, CH4, C10H8). These molecules were placed inside a cubic
supercell. The results for the total charge of considered electrons ρ [e] and the length
of dipole moment µ [D] are given in Tables 1–9.

In all tables the following notation has been used: ( )D – the direct method,
( )I – the integration by parts method, ( )T,1 – the Taylor expansion method, first
order, ( )T,4 – the Taylor expansion method, fourth order, ( )CI,1 – the 3D cubic
interpolation, method I, no subcells, ( )CI,7 – the 3D cubic interpolation, method I,
7 subcells, µGast – method of Gasteiger [7], ρExp – number of electrons considered in
calculated electron density, µExp – experimental value of dipole moment [8].

Table 1. The total charge and dipole moment for H2; the cubic supercell, side 5Å,
grid 30×30×30

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

2.0 2.0 2.0 2.0 1.77 1.96 1.77 1.96 2.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

0.01 0.0 0.02 0.02 0.05 0.01 0.05 0.01 — 0.0
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Table 2. The total charge and dipole moment for H2; the cubic supercell side 10Å,
grid 60×60×60

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

2.0 2.0 2.0 2.0 2.34 2.04 2.34 2.04 2.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

0.0 0.0 0.0 0.0 0.04 0.01 0.04 0.0 0.0 0.0

Table 3. The total charge and dipole moment for CH4; the cubic supercell side 6Å,
grid 45×45×45

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

8.0 8.0 8.0 8.0 8.17 8.02 8.17 8.02 8.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

0.02 0.02 0.05 0.05 1.42 0.2 1.42 0.2 0.0 0.0

Table 4. The total charge and dipole moment for C6H6; the cubic supercell side 10Å,
grid 60×60×60

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

30.0 30.0 30.0 30.0 30.99 30.15 30.99 30.15 30.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

0.0 0.0 0.01 0.0 0.06 0.02 0.06 0.02 0.0 0.0

Table 5. The total charge and dipole moment for C10H8; the cubic supercell side 10Å,
grid 60×60×60

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

48.0 48.0 48.0 48.0 50.16 48.34 50.16 48.34 48.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

0.12 0.12 0.15 0.14 0.11 0.02 0.11 0.02 0.0 0.0

Table 6. The total charge and dipole moment for H2O; the cubic supercell side 10Å,
grid 60×60×60

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

8.0 8.0 8.0 8.0 9.07 8.16 9.07 8.16 8.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

1.81 1.81 1.81 1.81 2.07 1.84 2.07 1.84 1.15 1.85

Table 7. The total charge and dipole moment for NH3; the cubic supercell side 10Å,
grid 60×60×60

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

8.0 8.0 8.0 8.0 8.59 8.09 8.59 8.09 8.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

1.58 1.85 1.58 1.58 2.18 1.66 2.18 1.66 0.63 1.47
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Table 8. The total charge and dipole moment for CO; the cubic supercell side 7Å,
grid 40×40×40

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

10.0 10.0 10.0 10.0 10.97 10.14 10.97 10.14 10.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

0.23 0.25 0.24 0.24 0.65 0.09 0.65 0.09 — 0.1

Table 9. The total charge and dipole moment for HF; the cubic supercell side 7Å,
grid 48×48×48

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

8.0 8.0 8.0 8.0 8.28 8.05 8.28 8.05 8.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

1.85 1.85 1.85 1.85 0.77 1.67 0.77 1.67 1.18 1.91

The first conclusion coming from these tables is trivial. If one likes to calculate
the dipole moment one needs to have as accurate data on electron density as possible,
which means that a large supercell is required and a fine grid should be used
(cf. Tables 1 and 2). The comparison of the results shows that both the Taylor
expansion method and the 3D cubic interpolation may modify the charge, so that
it differs from the realistic one. The convergence to the realistic value requires a large
number of terms in the expansion. The differences in the dipole moments calculated
using various methods come from the fact that the electron density as a function of
space is interpolatedted in different ways. For molecules with a small dipole moment
the direct method and the integration by parts method as well as the Gasteiger
procedure [7] give quite accurate results, whereas the Taylor expansion method and
the 3D cubic interpolation are less accurate. However, for more interesting molecules
with a large dipole moment, the last two methods seem to give more accurate results.

Using the techniques described above we may calculate the dipole moment of
a hydrogen over TiH2 (100) surface. We have considered an atom of H 1.768Å over
the top atom of titanium. Tables 10 and 11 show the charge and the dipole moment
for a supercell with and without an extra atom.

As one can see the dispersion of results is large. The big difference between
values obtained by methods 1–3 and 3D cubic interpolation arise from the fact that
the electron density on the surface is a function which rapidly changes in space. If we
subtract the results obtained using the same method, we can see that the presence of

Table 10. The total charge and dipole moment for cell TiH2; the tetragonal supercell dimensions
5.46×5.46×20Å, grid 32×32×120

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

32.0 32.0 32.0 32.0 — — 32.89 32.13 32.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

19.27 19.26 18.82 18.82 — — 0.99 0.31 — 0.0
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Table 11. The total charge and dipole moment for H adsorbed on (100) TiH2 1.768Å
(top position); the tetragonal supercell dimensions 5.46×5.46×20Å, grid 32×32×120

ρD ρI ρT,1 ρT,4 ρCI,1 ρCI,7 ρCII,1 ρCII,7 ρExp

33.0 33.0 33.0 33.0 – – 34.15 33.17 33.0

µD µI µT,1 µT,4 µCI,1 µCI,7 µCII,1 µCII,7 µGast µExp

20.86 20.84 19.46 19.94 — — 7.46 1.75 — —

a single hydrogen atom changes the dipole moment by ∼ 1 debye, however expected
errors are much larger than this value.

4. The final remarks

Summarising, we would like to point out that although the DFT techniques are
not most suitable for calculations of the electron density in the case of small molecules,
nevertheless they may be directly used to estimate the dipole moment. We have
found that custom written procedures, which interpolate the electron density data
are usually more accurate than the Gasteiger’s procedure supplied with the Castep
program. However, in a more interesting case of an atom adsorbed on a metallic
surface, such procedures are still not accurate enough to give a dipole moment of the
adsorbed atom. In order to do it one needs to know the functional form of electron
density in the whole system.
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