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Abstract: The paper presents a new modeling method of boundary geometry in boundary value-

problems by ν-spline curves. To define a smooth boundary geometry both Bézier and B-spline curves

are applied. At the segment join points Bézier curves ensure continuity C1, and B-spline curves allow

us to maintain C2 continuity. However, the curves hinder boundary modeling with corner points. In

order to weaken the continuity at segment join points ν-spline curves are proposed. These curves are

combined analytically with the Green formula, thus yielding the Parametric Integral Equation System

(PIES). To solve the PIES a pseudospectral method is used. The results obtained for the domains

with singular corner points are compared with the corresponding non-singular ones as defined by the

ν-spline curves.

Keywords: parametric integral equation system, boundary integral equation, potential problem,

ν-spline

1. Introduction

The solution of boundary value problems is reduced to searching for functions

that meet the criteria of integral and differential equations in a given domain and

under the assigned boundary conditions. Mathematical formalism of integral and

differential equations does not take into account the domain geometry, therefore, its

consideration while solving the equation is the greatest problem. Due to the above,

the Finite Element Method (FEM) [1] and Boundary Element Methods (BEM) [2]

are frequently applied to solve complicated boundary value problems. These methods

allow modeling of any domain in the discrete manner only.

In our papers [3–5] we searched for such an integral equation that would take

into account the domain geometry in its mathematical formalism. As a result of the

modification of the classical boundary integral equations by Fourier’s transformation
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a new Parametric Integral Equation Systems (PIES) was obtained. In contrast to

the classical Boundary Integral Equations (BIE) the above system takes into account

the boundary geometry in the kernels obtained from the PIES. To define a boundary

geometry in the boundary value problems linear segments [3], Bézier as well as B-

spline curves [5] were applied. These curves provide a continuity of C1 and C2 classes

at the segment join points. Hence, the application of these curves is very useful only

in the case of a smooth boundary geometry.

In many practical boundary value problems the boundary geometry may have

corner points where the required class of continuity is not maintained. Such points

are singular because they have unequivocal normal vectors at the points and they are

troublesome as regards the possibility of applying classical BIE. Instead one should use

the modified curves, called ν-spline curves [6], since they enable boundary modeling

with singular points, maintaining at the same time the unequivocal nature of normal

vector at these points. ν-spline curves are more general as compared with traditional

B-spline and Bézier curves. They provide a more effective modeling of boundary

geometry with or without singular points.

The aim of this paper is the application of ν-spline curves for the modeling of

boundary geometry in the classical BIE. As a result of the combination of ν-spline

curves and BIE a new PIES was obtained, which may be used to solve the boundary

value problems with corner points. A pseudospectral method was proposed to solve

the PIES numerically. A possible application of ν-spline curves is illustrated by the

example presented in this paper.

2. Modeling of singular boundary geometry

with ν-spline curves

The curve interpolating the boundary geometry composed of cubic segments

Pi(s), i=1,2, .. .,n may be created under the assumption that there are points on the

boundary Pi (i= 0,1, .. . ,n), through which the interpolating curve must pass, and

also that there exist vectors of the derivatives P ′i which are tangential to the curve at

these points. The segments defined by two points and vectors tangential to them are

called Hermite segments [6]. If the distance between points Pi (i=0,1, .. . ,n) given on

the boundary differs considerably, then the easiest way is to apply parameterization

by chord di = |Pi−Pi−1|, i = 1, .. . ,n where the distance between the given points

corresponds to the increments of parameter s. Particular boundary segments Pi(s)

may be presented in a vector form by formula [6]:

Pi(s)=h00(s
∗)Pi−1+h01(s

∗)Pi+h10(s
∗)diP

′

i−1+h11(s
∗)diP

′

i , (1)

where s∗=(s−si−1)/di, 0.0≤ s
∗≤ 1.0, si−1≤ s≤ si, s0=0.0, si= si−1+di.

The coefficients h00(s), h01(s), h10(s), h11(s) with parameter s defined for

0 ≤ s ≤ 1.0 are Hermite [5, 6] parametric basis functions. In practice, the vectors

of derivatives at given points are frequently unknown. These vectors are determined

on the basis of the known points and additional conditions.

The ν-spline curves are obtained as a result of satisfying the condition of C2

continuity at the segment join points. Since the geometric properties of the curve are

essential, the continuity condition may be weakened in such a way that the curve be
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of C2 class in the vicinity of the join points, and that it should have the continuity of

a curve vector at those points. The C2 continuity condition of the curve at the join

points of the two segments has the following form [6]:

P ′′i+1(si)=β
2
1P
′′

i (si)+β2P
′

i (si), P ′i+1(si)=β1P
′

i (si); β1> 0.0. (2)

Additionally, if we assume that the curve also has the continuity of the derivative

vector (β1=1.0), then we have only one coefficient ν=β2. This coefficient may have

different values at different join points. The interpolating curves composed of such

segments are called ν-spline curves. If the coefficient νi=0 for i=0, .. .,n−1 then it

follows from Equation (2) that the resulting curves is a traditional spline curve. If,

however vi→∞ for i= 0,. . .,n−1, then the curve tends to assume a broken form

connecting the points given. For value νi> 0 we obtain curves of intermediate forms

between broken and spline curves. The examples of curves for various coefficients νi
are shown in Figure 1.

(a) (b) (c)

Figure 1. Closed ν-spline curves for various values of coefficients νi:

(a) for coefficients ν=0 curve without corner points,

(b) effect of different coefficient values ν on curve form,

(c) broken curve with corner points but without singular points

The ν-spline curves may be determined using Equation (1) after previous

determination of the tangential vectors P ′i . We determine these vectors on the basis

of continuity condition (2). After taking second derivatives into account, we obtain

the following relationship:

di+1P
′

i−1+{2(di+di+1)+0.5νididi+1}P
′

i +diP
′

i+1=Fi, (3)

2P ′0(d1+dn)+P
′

1dn+P
′

n−1di=F0,

where

F0=
{

3
[

d2n(P1−P0)+d
2
1(P0−Pn−1)

]}

/d1dn,

Fi=3di+1(Pi−Pi−1)/di+3di(Pi+1−Pi)/di+1, i=1, .. . ,n−1.

Expression (3) is a system of algebraic equations in respect of the first derivative

vectors. Generally, this system may be represented in the following form:

[A]{P ′i}= {Fi}, i=0,. . .,n−1. (4)

It is an equation system with a cyclic matrix that is strongly and diagonally

dominating and having a single solution. To solve it, we may use the Gauss’ elimination

method.
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To define boundary geometry by means of segments (1) the solution of algebraic

equation system is required (4). After solving the above system we obtain the

indispensable vectors (first derivatives) at segment join points.

3. Analytical compilation of the Green formula

and ν-spline curves

The boundary integral identity may be presented by means of a general formula

(Green’s formula) in the following form [3–5]:

ū(x )=

∫

Γ

U∗(x ,y)p(y)dΓ(y)−

∫

Γ

P ∗(x ,y)u(y)dΓ(y), (5)

where ū(x )=







u(x ) x ∈Ω
0.5u(x ) for x ∈Γ
0 x 6∈ Ω̄

, p(y)≡ ∂u(y)
∂n(y) and P

∗(x ,y)≡ ∂U
∗(x ,y)
∂n(y) .

If x ∈Γ then the Green’s formula (5) is the boundary integral equation (BIE). In

the identity (5), an integrand U∗(x ,y) is the classical fundamental solution, whereas

P ∗(x ,y) is the classical singular solution.

In order to modify the Green’s formula the Fourier transform is applied and

after its application to Equation (5) we obtain the following transform [3–5]:

ˆ̄u(ξ)=∆−1(ξ){p̃(ξ)+ i[ξ1ũñ1(ξ)+ξ2ũñ2(ξ)]}, ξ≡ (ξ1,ξ2), (6)

where ∆−1(ξ)= [ξ21+ξ
2
2 ]
−1.

In formula (6) the boundary is defined by means of the following boundary

integrals:

p̃(ξ)=

∫

Γ

e−i(ξ1y1+ξ2y2)p(y)dΓ(y), (7)

ũñm(ξ)=

∫

Γ

e−i(ξ1y1+ξ2y2)nm(y)u(y)dΓ(y), m=1,2 y ∈Γ, (8)

where nm is a directional cosine of the normal vector to the boundary Γ.

We use integral (8) to define the function transform ũñm(ξ) on the boundary

Γ. The unknown integrand u(y) in Equation (8) may be defined by means of the

following Fourier formula:

u(y)=
1

4π2

∫

R2

ei(ω1y1+ω2y2)û(ω)dω, ω≡ (ω1,ω2), (9)

where the integrand û(ω) is given by:

û(ω)= 2∆−1(ω){p̃(ω)+ i[ω1ũñ1(ω)+ω2ũñ2(ω)]}. (10)

Formula (10) is a particular case of transform (6).
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3.1. Transform of the integral equation system

After substituting formula (10) into Equation (9), and next the resulting

expression into Equation (8) we get the convolution integral equation in the domain

of Fourier transforms:

ũñm(ξ)=

∫

R2

K̃m(γ1,γ2)∆
−1(ω){p̃(ω)+ i[ω1ũñ1(ω)+ω2ũñ2(ω)]}dω, (11)

where the kernel is

K̃m(γ1,γ2)=
1

2π2

∫

Γ

ei(γ1y1+γ2y2)nm(y)dΓ(y), γi≡ωi−ξ. (12)

In our further consideration we divide the boundary Γ into n non-linear segments.

After taking the segment representation of the boundary into account, Equation (11)

has the following form:

ũlñ
(l)
m (ξ)=

∫

R2

¯̃Km(γ1,γ2)
n
∑

j=1

∆−1(ω)
{

p̃j(ω)+ i
[

ω1ũj ñ
(j)
1 (ω)+ω2ũj ñ

(j)
2 (ω)

]}

dω

(13)

where

¯̃Km(γ1,γ2)=
1

2π2

∫

Γl

ei(γ1y1+γ2y2)n(l)m (y)dΓ(y), l=1,2, .. . ,n, (14)

ũpñ
(p)
m (ω)=

∫

Γp

e−i(ω1y1+ω2y2)n(p)m (y)up(y)dΓ(y), ω= ξ, p= l,j, (15)

p̃j(ω)=

∫

Γj

e−i(ω1y1+ω2y2)pj(y)dΓ(y). (16)

We define the segments (Γp ≡ Pp) in formulas (14)–(16) by ν-spline curves as in

formula (1). These formulas for segments represented by such curves have the following

form

¯̃Km(γ1,γ2)=
1

2π2

sl
∫

sl−1

ei[γ1P
(1)

l
(s)+γ2P

(2)

l
(s)]Jl(s)nm(s)ds, sj−1≤ s≤ sl, (17)

ũpñ
(p)
m (ω)=

sp
∫

sp−1

e−i[ω1P
(1)
p (s)+ω2P

(2)
p (s)]up(s)n

(p)
m (s)Jp(s)ds, ω= ξ, p= l,j, (18)

p̃j(ω)=

sj
∫

sj−1

e−i[ω1P
(1)
j
(s)+ω2P

(2)
j
(s)]pj(s)Jj(s)ds, (19)

where Jl(s) = [(∂y1/∂s)
2+((∂y2/∂s))

2]
1
2 , y1 = P

(1)
l (s), y2 = P

(2)
l (s). Segments Pp(s)

are described by the ν-spline curves as in expression (1).
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3.2. Parametric Integral Equation System for ν-spline curves

After applying the inverse of the Fourier transform to the expression obtained by

substituting Equations (17)–(19) in Equation (13) a new parametric integral equation

system (PIES) is obtained [3]:

0.5ul(s1)=
n
∑

j=1

sj
∫

sj−1

{

Ū∗lj(s1,s)pj(s)− P̄
∗

lj(s1,s)uj(s)
}

Jj(s)ds, sj−1<s1,s< sj .

(20)

The kernels in the PIES are functions Ū∗lj(s1,s) and P̄
∗

lj(s1,s) given by the following

integral expression:

Ū∗lj(s1,s)=
1

4π2

∫

R2

ei(ω1η1+ω2η2)∆−1(ω)dω, (21)

P̄ ∗lj(s1,s)=
−i

4π2

∫

R2

ei(ω1η1+ω2η2)∆−1(ω)
[

ω1n
(j)
1 (s)+ω2n

(j)
2 (s)

]

dω. (22)

After calculating relatively complex integrals (21) and (22) we obtain the final

expressions in the following form:

Ū∗lj(s1,s)=
1

2π
ln

1

[η21+η
2
2 ]
0.5
, P̄ ∗lj(s1,s)=

1

2π

η1n
(j)
1 (s)+η2n

(j)
2 (s)

η21+η
2
2

, (23)

where η1=P
(1)
l (s1)−P

(1)
j (s) and η2=P

(2)
l (s1)−P

(2)
j (s).

Expression (23) is an adequately modified fundamental and singular solution

for the Laplace equation with the boundary geometry defined by the ν-spline curves.

4. Numerical solution of the PIES

In PIES, i.e. in Equation (20), the boundary functions are: pj(s) or uj(s). To

be able to solve the PIES only one of these two functions may be unknown while the

other must be given. Which of these will be known or unknown depends upon the

type of boundary conditions. To approximate both of these functions, the following

approximating series are applied:

pj(s)=
M
∑

k=0

p
(k)
j T

(k)
j (s), uj(s)=

M
∑

k=0

u
(k)
j T

(k)
j (s), (24)

where u
(k)
j , p

(k)
j are unknown coefficients on segments j, k – number of coefficients,

whereas T kj (s) are the global basis functions on individual segments. In the pseudo-

spectral method (PM) any orthogonal polynomials me be used as functions [3, 4]. In

our considerations we apply the Chebyshev polynomials.

Inserting Equations (24) into integral equations systems (20) we obtain the

following form:

1

2
ul(s1)=

n
∑

j=1

M
∑

k=0











p
(k)
j

sj
∫

sj−1

Ū∗lj(s1,s)T
(k)
j (s)Jj(s)−u

(k)
j

sj
∫

sj−1

P̄ ∗lj(s1,s)T
(k)
j (s)Jj(s)











ds (25)
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Equation (25) written at collocation points n×M reduces itself to a system of

algebraic equations:

Hu=Gp, (26)

where the column matrices u and p contain the approximating coefficients of the

boundary functions (24). After considering the boundary conditions and performing

necessary transformations, Equation (26) takes the form of a linear system of algebraic

equations with non symmetrical coefficient matrix:

AX =F, (27)

vector X contains the unknown boundary coefficients of the approximating func-

tions (24), vector F depends upon the given boundary conditions.

After solving Equation (27) we obtain coefficients p
(k)
j and u

(k)
j for the ap-

proximating expressions. Substituting the coefficients to the first or the second ap-

proximating series (24) we obtain a solution that meets the boundary conditions and

integral equation system (20). The expressions thus obtained are smooth functions on

individual segments.

4.1. Testing example

A computer program in C++ was created basing on the algorithm presented

earlier in [7]. To carry out a simulation of the effect of various values of coefficients νi
on boundary geometry, we used the example of stationary heat flow in the L-shaped

living room from literature [7, 8], (Figure 2).

The living room has 6 singular corner points. Applying the proposed PIES with

the ν-spline curves the same area may be defined by the curves using different values

of curvature coefficients νi in the corner points. Their value has significant influence

on approximating accuracy of the boundary geometry. Using various curvature

coefficients νi, it is possible to describe the given boundary with different accuracy

eliminating, at the same time, the singularities which occur in the corner points.

Figure 2 illustrates a comparison of the boundary geometry of the living room

defined by linear segments and 4 instances of ν-spline segments for different curvature

coefficients (νi = 5, 50, 500, 5000). It is easy to notice that only for coefficient

νi = 5 the boundary geometry is noticeably different from the boundary defined

by linear segments with singular corner points. The differences are insignificant

in other cases.

Applying the same boundary conditions on respective segments, calculations

were performed for all boundary geometries in question. Table 1 shows the results

for all the instances mentioned above. Due to the convergence of the solutions in the

living room interior the results are presented at some selected points on the diagonal

only. They are shown in Table 1.

Figure 3 below presents relative errors of the solutions in the area for different

curvature coefficients.

Comparing the particular solutions we can see that the greater geometric

similarity of the domains, the lesser the differences between solutions. It is particularly

evident on the graphs of the relative errors of the solutions for different values of the

coefficient of ν-spline segments in respect of the solutions of linear segments (Figure 3).
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Figure 2. Living room defined by linear segments and ν-spline curves

for different curvature coefficients

Table 1. Solutions for different curvature coefficients

x y linear ν=5 ν=50 ν=500 ν=5000

0.4 7.6 46.985 46.0921 46.8059 46.8643 46.8576

0.8 7.2 43.9592 43.0986 43.8056 43.9004 43.9059

1.2 6.8 40.9909 40.2381 40.8538 40.9387 40.9444

2.8 5.2 30.0274 29.7201 29.961 29.9802 29.9783

3.2 4.8 27.4154 27.1634 27.3632 27.376 27.3738

3.6 4.4 24.6291 24.3415 24.5762 24.592 24.5897

4.4 3.6 17.3833 17.0004 17.2915 17.3235 17.323

4.8 3.2 15.8591 15.5339 15.7931 15.8188 15.8179

5.2 2.8 14.7804 14.497 14.721 14.7393 14.7372

6.8 1.2 12.5753 12.402 12.5183 12.5116 12.5049

7.2 0.8 12.4392 12.2855 12.382 12.3676 12.3588

7.6 0.4 12.4083 12.2697 12.3466 12.3181 12.3035

For the highest values of the curvature coefficient ν (the greatest geometric

similarity) the solutions practically, do not differ. However, in the vicinity of the

corners i.e. singular points, the differences are somewhat greater.
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Figure 3. Relative errors for different curvature coefficients

in respect of the solutions for linear segments

5. Conclusions

The paper presented an original PIES for solving potential boundary value

problems with geometric singularities. For modeling singular corner points of bound-

ary geometry ν-spline curves were used. As a result of their analytical compilation

with a traditional boundary integral equation a PIES was obtained which is defined on

the straight line in a parametric system of reference. The length of this line depends

on the periphery of boundary geometry.

Taking into consideration the fact that the PIES in its mathematical formalism

takes into account boundary geometry and is not directly defined on its boundary,

the numeric solution of the PIES does not require boundary discretization contrary

to the classical BIE.

This property is very important in terms of the effectiveness of the numeric

solutions of the PIES.

The application of ν-spline curves makes it possible to define boundary geo-

metry with geometric singularities. Practically, it enables modeling of the corner

points as non-singular points.

The research work that has been conducted on the subject so far shows that

the greater the geometric similarity of the domains, the lesser differences occur

between the solutions in the domain. However, the research does not allow to draw

unambiguous conclusions concerning the influence of singularities of the corner points

on the accuracy of the solution in their nearest surroundings. The problem requires

further investigations.
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