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Abstract: The objective of this paper is to employ the Dempster-Shafer theory (DST) as a vehicle

supporting the generation of fuzzy decision rules. The concept of fuzzy granulation realized via fuzzy

clustering is aimed at the discretization of continuous attributes. Next we use Genetic for tuning

fuzzy decision rules. Detailed experimental studies are presented concerning well-known medical data

sets available on the Web.
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1. Introduction

Genetic Algorithms (GA) are problem solving methods, based upon an abstrac-

tion of the process of Natural Selection. If Darwinian theory is to be believed, living

creatures have come about through the actions of evolution. The simplicity of GA

makes them a powerfull tool. The randomly assigned initial pool is usually pretty

poor. However, successive generations improve via Selection and Mutation mechan-

isms. In each generation the parents are selected to produce new children. The se-

lection of parents is biased by fitness, so that well fit parents produce more children,

while very unfit solutions produce no children. Thus, the genes of good solutions begin

to proliferate through the population. Small changes (mutations) are made to at least

some of the newly born children. Some of these mutations may be harmful. However,

this is not significant, because bad mutations will be soon purged by selection. On

the other hand, the good mutations will succeed, causing further increases in fitness.

In this study, we discuss the use of Dempster-Shafer theory as a well-rounded

algorithmic vehicle in the construction of fuzzy decision rules. The concept of

fuzzy granulation realized via fuzzy clustering is aimed at the discretization of

continuous attributes. Detailed experimental studies are presented concerning well-

known medical data sets available on the Web. Next we use GA to find the best

points of division for discretization of continuous attributes. The rules, generated using

Fuzzy Dempster-Shafer model (FDSM), were verified by the GA methods. The natural
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crossover improved by random changes (mutation and selection) can help us to find

the best set of rules. Fuzzy modeling is regarded to be one of the possible classification

architectures of machine learning and data mining. There is a significant number of

studies devoted to generating fuzzy decision rules from sample cases or examples.

These include attempts to extend many classical machine learning methods to learn

fuzzy rules.

The objective of this paper is to employ the Dempster-Shafer theory as a vehicle

supporting the generation of fuzzy decision rules. More specifically, we concentrate

on the role of fuzzy operators, and on the problem of discretization of continuous

attributes. We show how they can be effectively used in the quantization of attributes

for the generation of fuzzy rules.

The material is arranged in the following way. First, we summarize the un-

derlying concepts of the Dempster-Shafer theory and briefly discuss the nature of

the underlying construction. By doing so, the intention is to make the paper self-

contained and help to identify some outstanding design problems emerging therein.

Next we explain essential features of our model. Finally, we report exhaustive ex-

perimental studies. This paper is a continuation of our earlier works [1, 2]. Here we

apply the theoretical vehicle, introduced in previous research, to new input data in

order to find possible area of applications. Our important objective here is to reveal

a way in which this approach becomes essential to a more comprehensive treatment

of continuous attributes.

2. Fuzzy Dempster-Shafer model

In FDSM [3] we consider rules Rr as:

If (X1 is Ar,1,j1). .. and . . .(Xn is Ar,n,jn) then (D ismr),

where X and D stand for input and output, recpectively, and mr is a fuzzy belief

structure, that is a standard belief structure with focal elements Sr,p as fuzzy subset

of frame of discernment Θ with basic probability assignment mr(Sr,p), and mr(Sr,p)

is the belief, that the conclusion should be represented as class Sr,p.

2.1. Learning – rules construction

In antecedent construction, let us assume that we have n features (attributes)

in antecedents of testing example. We consider a collection of m generic linguistic

terms, characterized by membership functions defined in a universe of discourse being

a domain of each attribute.

For each element of data t we build a collection:

A1,1,t A2,1,t .. . An,1,t
A1,2,t A2,2,t .. . An,2,t
...

...
. . .

...
A1,m,t A2,m,t .. . An,m,t

, (1)

where Ai,j,t are the values of jth membership function for ith feature and for tth

element of data.

Example
We demonstrate the calculations on the set of synthetic data presented in Table 1.
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Table 1. Sample data set

L1 1.0 1.0 1.0 1.0 1

L2 9.0 8.0 8.0 9.0 2

L3 1.0 1.0 3.0 4.0 1

L4 2.0 1.0 2.0 2.0 1

L5 2.0 2.0 2.0 2.0 2

L6 5.0 6.0 7.0 8.0 2

T1 3.0 3.0 3.0 2.0 1

T2 1.0 2.0 2.0 1.0 1

T3 4.0 7.0 7.0 9.0 2

T4 2.0 8.0 7.0 8.0 2

The first six rows (L1–L6) will constitute learning data, while the remaining ones (T1–T4)

will form testing data. All the features are numbers from the 〈0;9〉 interval. The last column represents

the decision class equal to 1 or 2. We will consider four membership quadratic functions uniformly

distributed along the space of all attributes. Other membership functions will be discussed in the

next section.

According to (1) for row T1 we have:

1.0 1.0 0.0625 0.0156

0 0 0.9375 0.9844

0 0 0 0

0 0 0 0

On the base of (1), for a given data point t we can calculate vectors:

Aµ,t : A1,max1,t A2,max2,t · · · An,maxn,t

and

Ic,t : I1,max1,t I2,max2,t ·· · In,maxn,t,

called index of membership functions. Here Ai,maxi,t is a maximum value of all the

membership functions designed for the feature i, and Ii,maxi,t is the number of the

best membership function for feature i.

Then we have the following candidate for a rule:

Rt : I1,max1,t I2,max2,t · ·· In,maxn,t.

The firing level of the rule is calculated according to the following formula

τt=
n

φ
i=1

(Ai,maxi,t),

where φ means the operator of fuzzy matching (see Section 5.2). The rule candidate

is added to rules set if φ [τr,mr]≥ Th (where Th threshold value, and φ matching

operator). This can help to eliminate the worst rule from the final rule set.

More than one rule can have the same antecedent part and it is also possible that

the conclusion of these rules are different. Then we have to use appropriate counters

ct,1,. .. ,ct,|S|, where |S| denotes the power of decision class set. These counters can

show us how many data, according to rule pattern, vote for each decision class.

Example
In our sample (T1) the vectors are:

Aµ,1: 1.0000, 1.0000, 0.9375, 0.9844

Ic,1: 1, 1, 2, 2 with counters vector 1, 0
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In our sample matching value equals to 0.9229, where multiplication was used as the matching

operator (1.0000·1.0000·0.9375·0.9844=0.9229). For the threshold set on 0.75, we obtain a new rule.

The product is a new belief structure on X:

m̂r = τr
∧

mr.

Focal elements are fuzzy subsets given as:

Fr,p(x)= τr
∧

Sr,p(x)

and appropriate distributions of new focal elements are defined as:

m̂r(Fr,p)=mr(Sr,p).

So we can build an aggregate:

m=
R
⋃

r=1

m̂r.

Than for each collection:

J=
{

{

Fr1,p1 ,Fr2,p2 ,. .. ,FrR,pR
}

}

,

where Frt,pt are focal elements of m̂r, we have focal element E of m described as:

E=
R
⋃

t=1

Frt,pt

with appropriate probability distribution:

m(E)=
R
∏

t=1

m(Frt,pt).

At this point, the rule generalization process is complete.

Example
Our sample data produce the following rule set.

I1max I2max I3max I4max C1 C2 m

R1: 1 1 2 2 1 0 2.5000

R2: 1 1 1 1 2 1 2.0833

R3: 4 4 4 4 0 1 1.2500

R4: 2 3 3 4 0 1 1.2500

The first four elements are numbers of the best membership function for proper features,

the next two are counters for decision classes and the last one is a probability distribution. Let us

observe that rule R2 covers the data L1, L 4 and L5. L1 and L4 produce decision class C1 but L5

decision class C2.

Now we can move to the testing of new rules.

2.2. Test

In testing we ignore the value from the last column in Table 1, that is decission

class number, because our goal is to calculate it.

To compute the firing level of rule k for a given data

Xk : X1,k X2,k ·· · Xn,k Dk,

where Xi,k is the feature’s value, and Dk is the conclusion decision class that we have

to compare with the result of inference, we build a rule matrix µk,t=
n

φ
i=1

(Ai,l,k (Xi,t)),
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l = Ii,max,k. We are interested only in active rules i.e. rows with matching value

µk,t> 0.

Example
In the test we will demonstrate calculations on

L5 2 2 2 2

T1 3 3 3 2

For sample data L5 we have two active rules:

R1: 1 1 2 2 1 0 0.859375 0.859375 0.609375 0.609375 0.274242

R2: 1 1 1 1 2 1 0.859375 0.859375 0.859375 0.859375 0.54542

The first four elements are the rule pattern, the next two are the counters for decision classes.

The next four numbers are the values of appropriate membership function. The number 0.859375

is the value of the first membership function, according to the first number in the rule, on the first

feature. The next three numbers are calculated in a similar way. The last numbers in the above rows

is the matching value for the rule. It has been calculated by matching operator for the values of

membership function.

We focused only on the rows with matching value grater than zero. For sample data T1 we

have:
R1: 1 1 2 2 1 0 0.4375 0.4375 0.9375 0.6094 0.1093

R2: 1 1 1 1 2 0 0.4375 0.4375 0.4375 0.8594 0.0720

For each collection of Frt,pt focal elements m̂r we define an aggregate:

E=
R
⋃

t=1

Frt,pt

with basic probability assignment:

m(E)=
R
∏

t=1

m(Frt,pt).

The results of classification are D is m, with focal elements Ek(k = 1, .. . ,R
|S|) and

distribution m(Ek). Those results are calculated using focal elements and appropriate

counters ct,1, .. .,ct,|S|.

Example
For sample point L5 and T1 the counters are 3, 1, and 3, 0, respectively.

Then we perform defuzzification according to COA method [4]:

ȳ=
R|S|
∑

k=1

ȳkm(Ek),

where ȳk are defuzzified values for focal element Ek defined as:

ȳk =

∑

1≤t≤nxtµk,t(xt)
∑

1≤t≤nµk,t(xt)
.

In the next step, the rules structure is simplified to:

If antecedentr then (D is Hr),

where Hr =
{

{

1

γr

}

}

is a singleton fuzzy set for factor γr =
∑|S|
p=1 ȳpmr(Sr,p).

Example
For both L5 and T1 we calculate decision class 1. It is correct for T1, but wrong for L5. The

values of Hr are 0.4283 and 0.4800, respectively.

TQ406K-I/635 10X2003 BOP s.c., http://www.bop.com.pl



636 J. S. Walijewski and Z. A. Sosnowski

3. Empirical learning for FDS model

In this section we compare and analyze the performance of several membership

functions and matching operators. We start from a standard solution used in the

introduction to fuzzy modelling, then we consider more complicated models. We

compute results for the following membership functions: Linear, Quadratic, Gaussian,

and Fuzzy c–Means (FCM). We concentrate on Minimum, Multiply and Implication

as matching operators. The most valuable is comparing the results of all calculations.

In the end of this section we show some results of experimental research.

Figure 1. Linear function

Figure 2. Quadratic function

3.1. Membership functions

The membership function makes possible the division of data into n intervals.

It is a way of discretization of the input data. Hence, we get the best result for

continuous data or for data with several discrete (nominal) values. If we have single

discrete or binary data, then results of the proposed model are not good enough.

The choice of membership function has great influence on the quality of rules

being received. Although the quantity of rules is different, the quality of classification

is comparable.
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Figure 3. Gaussian function

The most interesting membership function was generated by FCM) algorithm.

The main idea of FCM is described in [4]. Figures 1, 2 and 3 show the universe of

discourse divided into six intervals (x0–x5) – as in our experiment. The results of

experimental research with membership functions have been summarized in Table 2.

Table 2. Membership function

Function Formula Features

1 Linear

Triangle

(see Figure 1)

F1: Y =(X−xi+1)/(xi−xi+1)

F2: Y =(X−xi)/(xi+1−xi)

The simplest one.

The result are not so good.

2 Quadratic

(see Figure 2)

Y =1−(X−xi)
2/(xi+1−xi)

2 Also calculated in a simple way.

The result are better than in the case

of Linear function.

3 Gaussian

(see Figure 3)

y= e
−
(

X−xi
xi+1−xi

)2

Exponential function.

The usage of it leads, in general, to proper

conclusions, especially in learning sample.

3.2. Matching operators

It was shown in our experiments that a matching operator applied to data

sample with existing rules plays a very important role in the accuracy of diagnoses.

It occurred as early as the rules were generated. A matching operator influences the

quality of the generated rules. Of course, this quality has secondary means, but in

general, the more rules the better accuracy.

From the analysis of the results of experiments shown in Table 4 (see Section 5),

we can infer that the most powerful operator is Implication. This not all true, because

Table 4 shows the results only for one fixed threshold value. It is not optimal in all

instances, especially for Multiply operator. The change of the threshold value (e.g. to

0.25) gives almost the same results as for Implication operator. Anyway, the choice

of the threshold value is of minor importance here, but it can have influence on the

result of the receiving of rules. Of course, we can not analyze the threshold value

without keeping in mind the features of the membership function and the number of

intervals. The choice of the threshold value will be subject of future works.
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The results of the investigation of various matching operators are collected in

Table 3.

Table 3. Matching operators

Name Formula Features

1 Minimum max(0,min(x,y)) The simplest case.

In many experiments the results are good.

2 Multiply max(0,x ·y) It is a special case of Implication,

with α=−1.

The results are better than in the case

of Minimum operator.

The setting of threshold value is important.

3 Implication max(0,(α+1) ·(x+y−1)−α ·x ·y) Function seems to be complex.

The best results can be obtained.

Setting of constant α – to be investigated

in future.

4. Genetic tuning of the given rules

In the previous section we divided the space of all possible values of each feature.

We assume that all intervals are equal. But, in general, it is not a good decision. To

find the points of the division we should consider the decision class for the point of

data. But how we can we find a decision class before running the application? Of

course it is not possible to say anything about the worth of the rule set before testing.

But if we have the results of the rules then we can use these results to tuning the

rule set. The points of division are of particular interest. In general it is difficult to

find the direction of points’ changes. Almost all of them seem to be the same. We can

move them randomly, but every time we have to exam the given rules. If we find the

rule set that can produce more accurate conclusion, then we can use these rules in

the future. In the opposite case we reject the rules.

This algorithm is a simplification of Genetic Algorithms (GA). The natural way

is to use the GA theory to find the best division points.

First we start from the basic FDSM. Initially, all the division intervals of the

data features are equal. Although not optimal, it is a quite good choice. Next we

generate new division points at random, and then we can test them. We generate

rules by FDSM algorithm using the new division points. The accuracy of the rules is

a survival function. We use it to test the data set. We generate the next generation of

population using the GA methods. Of course instead of only one, we can generate more

random divisions, and crossover them. In the next point we use previous population to

produce a new one. We observed, that after a few generations the quality of calculated

rules does not change any more. Thus, the cost of rule generation is only a few times

higher than using basic FDSM. When we analyze the results of the classification using

the rules set. Let us illustrate it on a sample Dermatology data set [5]. Data contain

366 records, 244 of them we use to learn, 122 for test. There is no floating data, but

33 discrete and only 1 binary. The rules generated by FDSM have the best accuracy

51.64% for Gaussian function and Multiply operator. After 10 generations of GA, the
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conclusion was good almost in 100% of cases of testing data. For Gaussian function

and Implication operator the accuracy indicator achieved 100%.

5. Experimental studies

In this section we compare and analyze the performance of several membership

functions and matching operators. We start from a standard solution used in intro-

duction to fuzzy modeling then we consider more complicated models. We compute

results for the following membership function: Linear, Quadratic and Gaussian. We

concentrate on Minimum, Multiply and Implication as matching operators.

Some results of experimental research are shown in Table 4. We fixed here count

of membership functions on 6 and threshold value on 0.75. The features of all data

are described in Table 5. All data sets have been divided into two parts: learning

(training) data (about 2/3 of the entire data set) and testing data (remaining 1/3).

Table 4. Experimental result for GA

Linear Quadratic Gaussian Decision Trees

Test GA Test GA Test GA Test

Minimum

Iris 93.33 93.33 96.67 96.67 93.33 93.33 91.30

Ulcers 9.52 16.67 28.57 59.52 52.38 59.52 —

Diabetes 0.00 2.70 37.84 62.16 56.76 82.22 —

Derm. 0.00 5.55 66.39 66.39 50.82 94.26 87.50

EKG 5.56 5.56 38.89 66.67 66.67 99.44 59.00

Multiply

Iris 0.00 0.00 96.67 96.67 93.33 93.33

Ulcers 0.00 4.76 2.38 61.90 2.38 59.52

α=−1 Diabetes 0.00 0.00 29.73 64.86 54.05 67.67

Derm. 0.00 5.55 66.67 77.87 51.64 88.52

EKG 5.56 5.56 5.56 72.22 11.11 100.00

Implication

Iris 83.33 83.33 96.67 96.67 96.67 96.67

Ulcers 9.52 9.52 28.57 57.14 52.38 64.28

α=−20 Diabetes 0.00 2.70 37.84 67.57 56.76 96.30

Derm. 0.00 5.55 86.89 86.89 50.82 100.00

EKG 0.00 5.56 38.89 77.78 66.67 88.89

Table 5. Features of data

Iris Ulcers Diabetes Breast Cancer Dermatology Echocardiogram
Wisconsin

Data 150 122 107 683 366 62
Learn 120 80 70 466 244 44
Test 30 42 37 217 122 18
Decision class 3 5 2 2 6 2
Total Features 6 11 8 9 34 11

Continuous 1 5 1 0 0 8
Discrete 5 5 2 9 33 0
Binary 0 1 5 0 1 3
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The learning data have been used to generate the rule set. Testing data have been

applied to test the produced rule set. To obtain reliable results, we carried out the

experiment several times.

The most valuable is comparing the results of all calculations. In the end of

this section we show some results of experimental research. To apply GA methods we

use standard procedures from package SUGAL [6] written by Andrew Hunter from

the University of Sunderland (UK). Some results of experimental research have been

shown in Table 4. We compare the results of our research with standard decision trees

algorithm [7–9]. For all data sets, we get better results using Gaussian function, and

in a few points of Quadratic function we obtained also better accuracy.

6. Conclusions

The study has focused on the use of Fuzzy Dempster-Shafer model for generat-

ing fuzzy decision rules. Fuzzy sets are useful in discretization of continuous attributes.

The approach is discussed in the concrete applications of two real medical data sets

(especially to problems of identification of diseases) and several well-known data sets

available on the Web. The results are used to classify objects. The vehicle of Genetic

Algorithms, as additional approach for generation of the rules give us better indicator

of accuracy. It can be used in the case of features with many possible values.
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