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Abstract: The paper describes the implementation of a modified state equation for perfect gas
and Tammann equation into a 3D rans solver FlowER. In the modification the specific heats are
assumed as linear functions of temperature. A 5-stage LP (low pressure) steam turbine is calculated,
and the comparison of results for constant and variable specific heats is illustrated. The modification
significantly improves the correctness of determination of thermodynamic parameters in the entire
flow region, especially in the exit stage.
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1. Introduction

Navier-Stokes solvers with turbomachinery applications usually operate on the
thermal and caloric equation of perfect gas. This approach is relatively well-grounded
for one-component one-phase throughflow, which in steam turbines is believed to
take place in high and intermediate pressure turbine stages where the steam is
superheated. The approach requires determination of an individual gas constant and
setting appropriate values of specific heats, or specific heat ratio. Unless the range
of variation of flow parameters is too wide, the scheme will converge and a solution
will be obtained. The perfect gas equations can not be accepted for solving the flow
in low pressure turbines, both in the region where the steam is still superheated
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and, especially, for the exit stages of large power turbines where the steam expands
across the saturation line, changing dramatically its properties. For long, a common
practice of CFD research engineers was to perform calculations of low pressure
turbines individually for each stage, using the perfect gas equation and changing
the constant values of individual gas constant and specific heat ratio from stage
to stage.

The ideal solution to the above problem would be to use steam tables to generate
correct values of thermodynamic parameters of steam. However, it involves increased
computational costs, possibly even as large as two orders of magnitude. Therefore, in
their code, Chmielniak et al. [1], Wróblewski [2] propose to use the virial equation of
Vukalovich and Rivkin [3] for superheated and subcooled steam, whereas Dykas [4]
proposes the application of some kind of virial equation, that is a so-called local real
gas equation of state. In general, the virial equation reads as pv/RT = z(T,p) or
pv/RT = z(T,v−1), where the function z is a polynomial with respect to pressure or
inverse specific volume, and the polynomial coefficients are functions of temperature
only and can be found from approximation of thermodynamic properties of water
and steam IAPWS’97, see Wagner et al. [5]. The computational costs of flow solver
using a virial equation are increased by a factor of 3–8 times over the solver with the
perfect gas equation [4]. The authors [1, 2, 4] use a 3D Euler solver with additional
conservation equations for the liquid phase, drawing also on the classical nucleation
theory for the formation of the liquid phase.

The concept proposed in this paper is still a simpler modification of the per-
fect gas equation and the Tammann equation, which makes the specific heats vari-
able as a linear function of temperature, while keeping the individual gas constant
unchanged. The effect of the introduced modification on the distribution of ther-
modynamic parameters is illustrated using a computational example of a 5-stage
LP steam turbine.

2. RANS equations

In the code FlowER developed by Yershov and Rusanov [6], 3D viscous
compressible flow through a turbine/compressor stage can be described by a set of
unsteady Reynolds-averaged Navier-Stokes equations written in a curvilinear body-
fitted coordinate system (ξ, η, ζ), rotating with an angular speed $:
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h= ε+ u
2
+ν2+w2−$2r2

2
+const.; q=−λ∇T ;

τij = τmij +τtij ; τmij =2µm(Sij−Snnδij/3); τtij =2µt(Sij−Snnδij/3)−2ρkδij/3.
The symbols ε, p, ρ, u, v, w denote the internal energy, pressure, density and

components of the velocity, T – temperature, τmij , τtij , τij are the molecular, turbulent
and total viscous stress, Sij – mean strain-rate tensor, µ = (µm+µt) – effective
(molecular + turbulent) viscosity, q – heat flux, λ=(λm+λt)= cp(µm/Prm+µt/Prt)
– effective (molecular + turbulent) heat conductivity, Prm, Prt – molecular and
turbulent Prandtl numbers.

The governing equations are supplemented with two eddy-viscosity models – the
algebraic model of Baldwin-Lomax [7] and the two-equation Menter SST model [8]. In
the former, the boundary layer is divided into two domains – an inner and outer layer.
The turbulent viscosity in the inner region is calculated from the Prandtl concept of
mixing length, whereas in the outer region of the boundary layer is defined by the
modified Clauser formula:

µt= ρl2Ω or µt=αCCPρFWKFK , (2)

where Ω is the vorticity (absolute value), l – mixing length, α and CCP are constants,
FWK is the wake function, FK is the Klebanoff intermittency factor. The flow is
assumed turbulent if at some point of the boundary layer profile the eddy viscosity
calculated as prescribed above is 14 time larger than the molecular viscosity of
undisturbed flow. Otherwise, the boundary layer is thought to be laminar at this
section.

In the Menter shear stress transport model, the standard k-ω model is activated
in the near wall region, and then switched to the k-ε model in the wake region
of the boundary layer and free shear layers. In order to more adequately predict
strong adverse pressure gradient flows, the eddy viscosity is redefined so as to
guarantee the proportional relationship between the principal turbulent shear stress
and the turbulent kinetic energy in the boundary layer. A number of test cases
given by Menter [8], including Driver’s adverse pressure gradient flow, backward-
facing step, NACA airfoil and transonic bump flows, show that the SST model yields
a substantially better agreement with the experimental data, compared to those of
other turbulence models. The Menter SST turbulence model in k-ω formulation can
be written as:

∂U
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where, in turn, k is the turbulent kinetic energy, ω = ε/kβ∗ – specific dissipation
rate, µt – turbulent viscosity. Blending functions F1 (assuring smooth transition from
the k-ω to the k-ε, and assuming one in the sublayer and logarithmic region and
gradually switching to zero in the wake region of the boundary layer) and F2 (assuring
the proportional relationship between the principal turbulent shear stress and the
turbulent kinetic energy in the boundary layer, and assuming one in the boundary
layers and switching to zero in free shear layers) are:

F1=tanh
{
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.

A vector of constants φ= [σk,σω,β,γ] in the SST model can be written: φ=F1φ1+
(1−F1)φ2, where φ1 is this vector in the k-ω model, and φ2 in the k-ε model written
in k-ω formulation. The constants of the model are: a1 =0.31 (Bradshaw constant),
σk1 = 0.85, σk2 = 1.0, σω1 = 0.5, σω2 = 0.856, β∗ = 0.09, β1 = 0.075, β2 = 0.0828,
γ1=0.553, γ2=0.44.

The boundary conditions for the set of Equations (1) are: at the walls – no-slip
and no heat flux; at the inlet – span-wise distribution of the total pressure, total
temperature and flow angles at the inlet to the stage; at the exit – static pressure
(either its span-wise distribution or a value at the mid-span with the radial equilibrium
equation assumed). For the set of Equations (3), the boundary conditions are: at the
walls – k=0; ω=60µw/ρwβy2; at the inlet – k=1.5(TuU∞)2; ω= [max(SΩ,Ω2)]0.5,
where S = (SijSij/2)0.5, Tu – inlet free-stream turbulence, Ω – vorticity (absolute
value), and the subscript w denotes values at the wall; at the outlet – values of k and
ω are extrapolated from the preceding cell centres. The computations for this paper
are carried out in one blade-to-blade passage of each blade row, with the condition of
spatial periodicity and mixing plane approach assumed.

3. State equations

Four cases are considered here:

1. thermally and calorically perfect gas

p=RρT ; i=
γ

γ−1
p

ρ
+const.; cp,cv,R,γ= const.; (4)

2. thermally perfect, but calorically imperfect gas with variable specific heats

p=RρT ; i=
γ

γ−1
p

ρ
+const.; R= const.; cp,cv,γ 6= const.;

cv = cv0+ctv(T −T0), cp= cp0+ctp(T −T0); cv0,ctv,cp0,ctp= const., ctv = ctp 6=0;
(5)

3. Tammann equation with constant specific heats

p+p0=RρT ; i=
γ

γ−1
p+p0
ρ
+const.; R,cp,cv,γ= const.; (6)
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4. Tammann equation with variable specific heats

p+p0=RρT ; i=
γ

γ−1
p+p0
ρ
+const.; R= const.; cp,cv,γ 6= const.;

cv = cv0+ctv(T −T0), cp= cp0+ctp(T −T0); cv0,ctv,cp0,ctp= const., ctv = ctp 6=0.
(7)

In Equations (4)–(7) symbols p, ρ , T , i denote pressure, density, temperature
and enthalpy; p0, T0 are reference pressure and temperature; cp, cv – specific heats
at constant pressure and volume, respectively; R= cp−cv – individual gas constant;
γ= cp/cv – specific heat ratio.

The above four cases are implemented in the code FlowER. The numerical
scheme is based on cell-centred finite-volume discretisation, Godunov-type upwind
differencing, high resolution ENO scheme defined in characteristic variables, and
δ implicit operator, see Yershov [9], also Yershov et al. [10].

4. LP turbine – geometry and operating conditions

A 5-stage LP turbine (part of a 360MW steam turbine) is studied in order
to evaluate the effect of constant/variable specific heats on computed flow patterns.
This drum-type reaction turbine has a radial inlet equipped with guide vanes and
a radial outlet to the exhaust hood. Stators 2–5 and rotors 1–4 are shrouded and have
typical labyrinth seals. Rotor 5 has unshrouded blades. Two regenerative extraction
points are located downstream of stage 3 and 4. A schematic diagram of the tested
turbine in meridional view is presented in Figure 1. The LP turbine was experimentally
investigated for some range of load by Marcinkowski et al. [11]. These investigations
are used here to define inlet/exit boundary conditions for the nominal load as:

• at the inlet: total temperature T0T =538K, total pressure P0T =5.166 ·105Pa,
radial inflow;
• at the exit: static temperature T2=317K, static pressure P2=0.089 ·105Pa.

Figure 1. A 5-stage LP turbine in meridional view. Velocity vectors at mid
blade-to-blade distance
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Note here that the exit temperature is not a boundary condition for the solver
but a value to receive a proper linear relationship for variation of the specific heats.
The experimental investigations are also used in this paper to validate the obtained
computational results behind the stage 3, 4 and 5 of the investigated turbine.

The computational domain extends on the region over unshrouded blade tips,
which enables direct computation of leakage over this type of blades. The labyrinth
seal regions of shrouded blades and windage passages are not in the computational
domain, but a source/sink approach is used to enable injection or extraction of leakage
streams to or from the main-flow passage, see Lampart et al. [12]. In this approach, the
boundary conditions are mass flow rate, direction (two angles) and total temperature
of streams injected into the blade-to-blade passage, and mass flow rates of extracted
streams. This approach is also applicable to technological mass extractions. Figure 1
gives an indication of places at the endwalls referring to regenerative extractions and
injection or extraction of leakage flows where source/sink-type boundary conditions
are imposed. The needed mass flow rates and total temperatures of leakage flows
and extractions are found from a 1D code, Gardzilewicz [13], and are collected for
subsequent slots in Table 1 (due to lack of further information source stream angles
are assumed to give the direction of the leakage jet re-entry normal to the endwalls).

Table 1. Source/sink parameters

Slot No. 1–2 3–4 5–6 7–8 9–10 11 12–13 14–15 16 17–18

Location R 1 S 2 R 2 S 3 R 3 Extr. S 4 R 4 Extr. S 5

G [kg/s] ±2.00 ±1.90 ±1.40 ±1.21 ±1.10 −5.50 ±0.54 ±1.10 −5.00 ±0.36
T0T [K] 537.8 487.8 487.8 437.8 437.8 — 387.8 387.8 — 337.8

5. Computational results – comparison with
available experimental data

Calculations of the 5-stage LP turbine were performed on a structured H-type
grid of 1200000 cells in total refined near the endwalls, blade walls, trailing and
leading edges. Two computational variants will be presented here. First, based on the
thermally and calorically perfect gas with constant specific heats – in this case values
of individual gas constant and specific heat ratio were assumed as from the inlet
to the turbine that is in the region of superheated steam R= 450kJ/kgK, γ = 1.31.
Second, based on the thermally perfect and calorically imperfect gas with variable
specific heats changing linearly as a function of temperature, with the specific heat
ratio changing through the LP part from γ=1.31 to 1.05.

The already presented Figure 1 gives also a plot of velocity vectors through the
meridional section of the turbine at the mid blade-to-blade distance, computed for the
case of constant specific heats cp, cv = const. The similar plot for the case of variable
specific heats will not exhibit considerable differences at this magnification, so will not
be shown here. However, the differences in velocity fields can be quite important, which
gives rise to differences in determination of mass flow rates in subsequent blade rows.
Table 2 shows the comparison of computed (with constant and variable specific heats)
mass flow rate in subsequent rows, as well as mass averaged pressure and temperature
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downstream of subsequent stages. The computed pressures and temperatures are also
compared with available experimental data downstream of stage 3, 4 and 5. The mass
flow rates calculated with variable specific heats are consistently lower by 1–1.2 kg/s,
that is by about 1%. Values of mass flow rate in subsequent rows can also be considered
here a test for the correctness of the sink/source procedure. Mass flow rates of most
leakage flows are determined correctly, which can be proved by subtracting respective
numbers from Table 2 and comparing them with Table 1. The balance of mass flow
rates at the inlet and exit shows that the solver slightly overestimates the amount of
extracted steam: 103.9–92.4 (Table 2) = 11.5> 10.5=5.5+5.0 (Table 1).

Table 2. Comparison of experimental and computed mass flow rate, pressure and temperature
downstream of subsequent rows/stages

Mass flow rate Static pressure Static temperature
in row [kg/s] behind stage [bar] behind stage [K]

Stage Row cp,cv const. cp,cv var. cp,cv const. cp,cv var. exp. cp,cv const. cp,cv var. exp.

1 105 103.9

1 2 105 103.9 3.0 3.05 — 479.2 482.0 —

3 103 101.9

4 103 102
2 1.74 1.82 — 427.7 435.5 —

5 103.5 102.4

6 103.7 102.5
3 0.724 0.785 0.799 355.8 382.5 371.2

7 103.7 102.5

8 98.5 97.3
4 0.315 0.348 0.349 299.8 350.2 346.4

9 98.0 96.8

10 93.2 92
5 0.0835 0.0825 0.083 229.0 312 314.8

11 93.6* 92.4*

* Mass flow rate of tip leakage over shrouded rotor blades included

The two methods of calculation yield different pressure drops across each stage.
For first four stages the method of constant specific heats gives slightly higher pressure
drops. For the exit stage the pressure drop is considerably larger for the case of variable
specific heats. The comparison with experimental data reveals that only the case of
variable specific heats yields good pressure predictions downstream of stage 3, 4 and 5.
A similar situation is for temperature. The comparison of static temperature contours
in meridional view at mid blade-to-blade distance in computations with constant and
variable specific heats is shown in Figure 2. The application of constant specific heats
can lead to unphysical results, such as 229K downstream of stage 5. Certainly, the
observed differences in determination of temperature and pressure fields in the two
methods of calculation lead to differences in determination of enthalpies, power and
efficiency of subsequent stages, especially of the exit stage.

Another possibility for computations with constant specific heats that can be
discussed here is to assume values of individual gas constant and specific heat ratio as
an average value from the inlet and exit. This method is however not recommended
for a 5-stage LP turbine as it does not solve the flow properly neither in the region
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Figure 2. Comparison of static temperature contours in meridional view at mid blade-to-blade
distance for cp,cv = const. (top) and cp,cv = var. (bottom)

of superheated nor in the region of wet steam. Still preserving the specific heats
constant, an alternative is to perform calculations of each turbine stage individually,
changing the specific heat ratio from stage to stage. This approach, however, disposes
of the main advantage of multi-stage computations over single-cascade or single-
stage computations, that is the possibility to pass flow parameters between the
stages and allow the mixing processes generated in one stage to be completed or
continued in the next stage (stages). Also single-stage computations would require
boundary conditions for each stage which have to be provided from a 1D solver or
from pressure/temperature measurements in stage-to-stage gaps. Then, most likely,
another possibility is lost that the computations can be verified by the experimental
investigations in the stage-to-stage gaps. This is usually due to a simple fact that
there are no other sections available that were measured and not assumed as sections
where computational boundary conditions are imposed.
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In view of that fact, multi-stage computations with variable specific heats enable
true comparison of numerical and experimental results. This comparison for span-
wise pitch-average distribution of total and static pressure as well as meridional and
swirl angle behind the stage 3, 4 and 5 is presented in Figure 3. The figure exhibits
a relatively good agreement between the computed and measured results for all tested
flow parameters. The comparison of measured and computed swirl angle is especially
convincing.

Figure 3. Comparison of experimental and computational (cp,cv = var.) total and static
pressure (left), meridional and swirl angle (right), downstream of stage 3 (top),

4 (centre), 5 (bottom)

6. Conclusions

A modified perfect gas equation and Tammann equation with variable specific
heats changing as linear functions of temperature are implemented in a 3D rans solver
FlowER for turbomachinery applications. A 5-stage LP turbine is calculated using
a multi-stage approach and two variants of state equations – thermally and calorically
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perfect gas with constant specific heats, and thermally perfect but calorically imper-
fect gas with variable specific heats. It is shown that only the latter variant provides
correct determination of thermodynamic parameters. The distributions of pressures
and flow angles in stage-to-stage gaps of a 5-stage LP steam turbine computed for the
case of variable specific heats seem to reproduce the measured data relatively well.
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