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Abstract: The paper presents a new method of crisp and fuzzy interval comparison (ordering). The
method is based on the probabilistic approach and the representation of fuzzy numbers as ordered
α-level sets. It allows all the cases of interval location and overlapping to be taken into account,
including the ordering of intervals and real numbers. Additionally, the method implicitly allows
the widths of intervals to be used in ordering procedures. It should be noted that the probabilistic
approach was employed only to infer the set of formulas needed to estimate quantitatively the degree
to which one interval is less than or equal to another interval. However, the measure of this value
may be treated as probability. Some simple examples are also presented to illustrate the technique’s
practical efficiency.
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1. Introduction

The problem of crisp and fuzzy interval (number) ordering is of perennial
interest, because of its direct relevance in practical modeling and optimization of
real world processes.

Theoretically, fuzzy numbers can only be partially ordered and hence cannot be
compared. However, when fuzzy numbers are used in practical applications or when
a decision has to be made among alternatives, a comparison of fuzzy numbers becomes
necessary.

There are numerous definitions of the ordering relation between fuzzy quantities
(as well as crisp intervals) [1–13]. In most cases, the authors use quantitative indices.
The values of such indices represent the degree to which one interval (fuzzy or
crisp) is larger/smaller than another interval. In some cases, even several indices
are used simultaneously, for example, in [7] four indices of inequality and three
of equality are proposed. Reviews of the best known approaches [12, 13] note
that although some of these methods have shown more consistency and better
performance in difficult cases, no single method of fuzzy interval comparison may
be put forward as the best. The existing approaches to fuzzy interval comparison may
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be divided into three groups. There are qualitative methods [2–5] and quantitative
methods, which use indices obtained from the base definitions of the fuzzy set
theory [1, 6, 7] in the ordering procedure. There is also a third group of methods,
based on the representation of fuzzy numbers as α-level sets [8–11]. It should be
noted that the last group of methods is especially advantageous. Moreover, they can
be used with all types of membership functions, with no restrictions. This feature
is of great practical importance, especially in the case of numerical computation.
Additionally, because α-levels are in essence a set of regular crisp intervals, the
powerful tools of interval arithmetic can be employed to solve the problem of fuzzy
interval ordering.

The widest review of the problem of fuzzy quantities ordering based on more
than 35 literature indices has been performed in [14], where the a new, interesting
classification of methods and reasonable properties was proposed for fuzzy values
ordering.

In this article, we present a further development of such methods. The approach
proposed is based on α-level representation of fuzzy intervals and the probability
estimation of the fact that a certain interval is larger than/equal to another interval. It
should be noted that the probabilistic approach was used only to infer a set of formulas
needed for the deterministic quantitative estimation of the inequality/equality of
intervals. This value may be formally treated as probability, since it is in accordance
with main rules of the theory of probability. The method allows intervals and real
numbers to be compared and takes into account (implicitly) the widths of ordered
intervals.

2. Crisp interval relation expressions

Since the proposed method is based on the representation of fuzzy numbers as
α-level sets, the main problem is to compare crisp intervals. Let A= [a1,a2] and B=
[b1,b2] be independent crisp intervals, and a∈ [a1,a2], b∈ [b1,b2] – independent random
variables allocated on these intervals. Since we are dealing with crisp (non-fuzzy)
intervals, it is natural to assume that the values of the random variables a and b are
uniformly distributed. In the case of overlapping intervals, there are some subintervals
which play an important role in our analysis. For example (see Figure 1), the fall of
random variables a∈ [a1,a2], b∈ [b1,b2] in the subintervals [a1,b1], [b1,a2], [a2,b2] may
be treated as a set of independent random events.

Figure 1. Example of overlapping intervals
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Let us define the events Hk : a∈Ai,b∈Bj , for k=1 to n, where Ai and Bj are
certain subintervals of intervals A and B in accordance with A=

⋃
i

Ai, B=
⋃
j

Bj . In

the case considered in Figure 1, n=4. It is easy to see that events Hk form an entire
group of events, describing all the cases of variables a and b in the various subintervals
Ai and Bj , respectively.

Let P (Hk) be the probability of event Hk, and P (B>A/Hk) be the conditional
probability of B >A given Hk. Hence, the composite probability may be expressed
as follows:

P (A>B)=
n∑

k

P (Hk)P (B>A/Hk). (1)

Since we are dealing with uniform distributions of the random variables a and b in
the given subintervals, the probabilities P (Hk) can be easily obtained geometrically.

To illustrate the procedure of inferring the resulting formulas, let us consider
the case presented in Figure 1. There is a set of four events:

H1:a∈ [a1,b1]∧b∈ [b1,a2],

H2:a∈ [a1,b1]∧b∈ [a2,b2], (2)

H3:a∈ [b1,a2]∧b∈ [b1,a2],

H4:a∈ [b1,a2]∧b∈ [a2,b2].

Since events a ∈ [a1,b1], b ∈ [b1,a2], . .. are independent, we obtain the following
probabilities:

P (H1)=
b1−a1
a2−a1

a2−b1
b2−b1

,

P (H2)=
b1−a1
a2−a1

b2−a2
b2−b1

, (3)

P (H3)=
a2−b1
a2−a1

a2−b1
b2−b1

,

P (H4)=
a2−b1
a2−a1

b2−a2
b2−b1

.

It is easy to notice from Figure 1 and Equations (2) that the conditional probabilities
equal:

P (B>A/H1)=1,

P (B>A/H2)=1, (4)

P (B>A/H3)=
1
2
,

P (B>A/H4)=1.

Some comments about event H3 may help to explain the obtained results. From
Equations (2) we see that event H3 is simultaneously evidence of events a ∈ [b1,a2]
and b ∈ [b1,a2]. Hence P (B > A/H3) = P (A > B/H3) = 0.5. Substituting Equa-
tions (2)–(4) to Equation (1) we have:

P (B>A)= 1−
1
2

(a2−b1)2

(a2−a1)(b2−b1)
.

The probabilities P (B >A) for all possible cases of interval overlapping, as well as
comparison of intervals and real numbers, have been inferred similarly. To complete
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the set of expressions for interval relations, formulas for the probabilities of intervals
equality P (A = B) have been obtained. The results are shown in Table 1, where
obvious cases (without overlapping) are omitted.

The approach described above can be treated as a framework for elaboration
of constructive methods of interval comparison in various special situations. Some
aspects of the interval comparison and ordering group of intervals, based on this
approach, is presented e.g. in [15].

We have to make some additional remarks to clarify the results. Of course, if A
is an interval [a1,a2], where a1<a2, and b is a real number, then equality expression
A= b is nonsensical, because of the impossibility of simultaneously performing the
conditions a1= b and a2= b. Thus, in such cases, we have P (A= b)= 0. On the other
hand, the inequality expression A< b may be used in analyses, since in the case, for
example, a2<b, there is no doubt that P (A<b)= 1. It is clear that the case a1≤ b≤ a2
is reasonable, too, and probability P (A< b) may be easily calculated (see Table 1).
There is an interesting situation in the case of estimation of P (A=B), where A and
B are intervals. The simplest way is to state a “strong” rule such as “A=B only if
a1= b1 and a2= b2”. However, when dealing with optimization problems, we often use
equality-type restrictions. Of course, interval or fuzzy extension of such tasks leads
inevitably to the extension of the corresponding equality-type restrictions. It is clear
that the satisfaction of the “strong” equality rules, especially when using numerical
optimization methods, is rather impossible in practice. Nevertheless, in the framework
of the proposed probabilistic approach, “weak” equality rules have been elaborated.
So, if a1≈ b1 and a2≈ b2, then P (A=B) 6=0.

It is easy to see that in all cases we have P (B > A)+P (A > B) = 1 and
P (B=A)+P (A 6=B)= 1.

It should be noted that values P (B >A) are formally in interval [0,1], but in
practice it is better to use the interval [0.5,1]. For example, in case 5 in Table 1, we
obtain P (B >A) = 1 if b1 = a2 and P (B >A) = 0.5 if b1 = a1, b2 = a2, which means
that B =A. In the latter case, the value 0.5 is the direct consequence of the nature
of probability. Thus, if the probability P (B >A)< 0.5, the opposite event A>B is
more probable, since P (B>A)+P (A>B)= 1.

3. Fuzzy interval ordering

Let A and B be fuzzy intervals (numbers), and Aα = {x/µA(x) ≥ α} and
Bα = {y/µB(y)≥ α} be α-level sets of A and B, respectively. Since Aα and Bα are
crisp intervals, probability Pα(Bα >Aα) for each pair Aα and Bα can be calculated
in the way described in the previous section. The set of probabilities Pα(α ∈ (0,1])
may be treated as the support of the fuzzy subset:

P (A>B)= {α/Pα(Bα>Aα)}; (5)

where the values of α may be considered as grades of membership of the fuzzy interval
P (B>A). In this way, the fuzzy subset P (B=A) may also be easily created.

As it can be seen in Figure 2, we have Pα(Bα >Aα) = 1 for all α> 0.9, since
there is no overlapping of Bα and Aα. The broad case studies which we have carried
out, allow us to think that, in the case of triangular or trapezoidal fuzzy number
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Table 1. Typical cases of crisp interval comparison

Cases P (B>A) P (A=B)

1. a1>b1∧a1<b2∧a1= a2

b2−a1
b2−b1

0

2. b1>a1∧b1<a2∧b1= b2

b1−a1
a2−a1

0

3. b1≥ a1∧b2≤ a2

b1−a1
a2−a1

+
1
2
a2−a1
b2−b1

b2−b1
a2−a1

4. a1≥ b1∧a2≤ b2

b2−a2
b2−b1

+
1
2
a2−a1
b2−b1

a2−a1
b2−b1

5. b1≥ a1∧b2≥ a2∧b1≤ a2

1−
1
2

(a2−b1)2

(a2−a1)(b2−b1)
(a2−b1)2

(a2−a1)(b2−b1)

6. a1≥ b1∧a2≥ b2∧a1≤ b2

1
2

(b2−a1)2

(a2−a1)(b2−b1)
(b2−a1)2

(a2−a1)(b2−b1)

Figure 2. Typical cases of fuzzy interval comparison (I)

(interval) comparison, the results obtained may be interpreted as a fuzzy number
(interval). Typical examples are presented in Figures 2–4. Moreover, as the result of
comparison of fuzzy and real numbers, we also have a fuzzy number (see Figure 5).
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Figure 3. Typical cases of fuzzy interval comparison (II)

Figure 4. Typical cases of fuzzy interval comparison (III)

The result obtained is simple enough and reflects in a sense the nature of fuzzy
arithmetic. The resulting “fuzzy probabilities” can be used directly. For instance, let
A, B, C be fuzzy intervals and P (A>B), P (A> C) be fuzzy intervals expressing
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Figure 5. Comparison of a fuzzy interval and a real number

the probabilities A>B and A>C, respectively. Hence the probability P (P (A>B)>
P (A>C)) has the meaning of probability comparison and is expressed in the form of
a fuzzy interval as well. Such fuzzy calculations may be useful at intermediate stages of
analyses, since they preserve the fuzzy information available. Indeed, it can be shown
that in any case P (A>B)+P (B>A)=“near 1”, and P (A=B)+P (A 6=B)=“near
1”, where “near 1” is a symmetrical relative to 1 fuzzy number. It is worth noting here
that the main properties of probability are conserved in the introduced operations,
though in a fuzzy sense. However, a detailed discussion of these questions is outside
the scope of this article. Nevertheless, in practice, real number indices are needed
for fuzzy interval ordering. For this purpose, some characteristic numbers of a fuzzy
set [14] could be used. But it seems more natural to use defuzzification, which takes
the following form for a discrete set of α-levels:

P (A>B)=
∑

α

αPα(Bα>Aα)/
∑

α

α. (6)

Equation (6) emphasizes that the contribution of the α-level to the overall probability
estimation is increasing with an increase in its number. Of course, as proposed
in [11], the set of complementary parameterized functions of α can be applied in
Equation (6) instead of α. But for simplicity, only expression (6) was used to obtain
the results presented below. Some typical cases of fuzzy interval comparison are shown
in Figures 2–4.

It is easy to see that the resulting quantitative estimations are in accordance
with our intuition.
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4. Illustrative examples

To illustrate our approach to crisp and fuzzy interval comparison, two examples
are considered in this section. In both cases, we use the simple Rosenbrock’s function

f = c(x2−x21)
2+(1−x1)2 (7)

as the base for interval and fuzzy interval extensions, since it is the most commonly
used test for numerical methods of optimization. In practical optimization, we often
deal with an interval or fuzzy interval target function. It must be emphasized that
these functions have non-interval (real number) arguments. In such cases, the problem
is to find the minimum/maximum of the interval (fuzzy interval) function. So if
F (−→x ) = [F (−→x ),F (−→x )] is an interval function, the aim is to find the real vector −→x
directly delivering an extreme of the interval function [F (−→x ),F (−→x )]. To avoid the
problems of interval and, especially, fuzzy function derivation, the interval and fuzzy
generalizations of one of the direct search methods [16] had been elaborated. To
obtain the test interval function, the initial Rosenbrock’s function (7) was extended
and expressed in the following interval form:

F (x1,x2)= [F (x1,x2),F (x1,x2)]=

= [c−cα,c+cα](x2−x21)
2+(1−x1)2, (8)

where α is a real number parameter determining the width of an interval. The curves
of equal values of Equation (8) are represented in Figure 6.

Figure 6. Interval extension of Rosenbrock’s function (8) for c=100, α=0.05

The results of the tests are summarized in Table 2. It is interesting to note
that the same level of accuracy as in the case of a real number function was achieved
using the same number of steps of our algorithm (3900 in our case). It is easy to see
that the level of accuracy does not depend on the width of interval representing the
minimized function.
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Table 2. Results of tests (interval function (8) with c=100)

α

0.005 0.01 0.05

Initial (starting) point:
xin
1
=−0.5, xin

2
=−0.5

[F ,F ]in [58.2,58.8] [57.9,59.0] [55.7, 61.3]

[F +F ]in/2 58.5 58.5 58.5

[F −F ]in 0.563 1.125 5.625

The point of minimum

[F ,F ]min [5.43,5.44] ·10−3 [4.67,4.72] ·0−3 [3.31,3.46] ·10−3

[F +F ]min/2 5.44 ·10−3 4.69 ·10−3 3.39 ·10−3

[F −F ]min 0.01 ·10−3 0.05 ·10−3 0.15 ·10−3

xmin
1

1.022 1.015 0.986

xmin
2

1.044 1.029 0.971

The next example is a minimization of a fuzzy interval function. For simplicity,
the case of a trapezoidal fuzzy function is considered. Let us represent our base
function (7) in a fuzzy, extended form:

F (x1,x2)= [F1(x1,x2),F2(x1,x2),F3(x1,x2),F4(x1,x2)]=

= [c−cα,c−cα/2,c+cα/2,c+cα](x2−x21)
2+(1−x1)2, (9)

where F1, F2, F3, F4 are the left support, left core, right core, right support of
a trapezoidal fuzzy interval (number), respectively, and α is the real parameter
determining the form of a fuzzy interval.

Fuzzy generalization of the direct search method was used to minimize function
(9). The same values of parameter α and the initial point as in the case of interval
function (8) were used. After the same number of steps of the algorithm as in the last
case (3900), the results represented in Table 3 were obtained.

Table 3. Results of tests (fuzzy function (9) with c=100)

α

0.005 0.01 0.05

xmin
1

0.992 0.989 0.997

xmin
2

0.982 0.977 0.992

It can be seen that the results are also good in the fuzzy case. These simple
examples prove the practical validity of the presented crisp and fuzzy interval ordering
method and its ability to generate effective numerical realizations.

5. Conclusions

In this article, only some of the theoretical results have been presented. Our
experience has shown that a highly useful feature of the method is the possibility of
a flexible approach to restrictions in optimization tasks. In practice, some restrictions
can require a high level of accuracy. In these cases, we require the execution of the
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corresponding interval relations with the probability of 0.95–0.99. For other, not so
rigid (important) restrictions, the probabilities of only slightly more than 0.5 may
be applied. It must be emphasized that in order to apply the proposed method,
software based on C++ was elaborated and successfully used for optimization of
power units [17], in simulation [18] and logistics [19].
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