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Abstract: A common task in speech processing for which neural networks are widely employed is

text-to-phoneme conversion. In this paper we propose a novel solution to this problem by combining

a multilayer neural network and a modular hybrid system that uses basic rules to subdivide the

original problem into easier tasks which are then solved by dedicated neural networks. A hybrid

solution can be more rapidly constructed than a single net solution, and is easily extendable. Input

data representation is also discussed. A voting committee concept is used to enhance generalization

abilities of the system. Efficiency of the proposed systems is compared.
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1. Introduction

Artificial neural networks (ANN) are widely recognised as tools for solving tasks

which can pose problems for rule-based systems. This is especially true when there

is not enough knowledge available to design an algorithm but there are examples of

correct performance. One of such tasks is phonematic transformation.

Phonematic transformation is a basic tool for any system of speech synthesis

and can be described as translation of a written text into a string of phonematic

characters defining the way in which it should be pronounced. One of the first systems

for phonematic translation was DECtalk [1], which consisted of a vast number of

translation rules including irregularities. Similarly, MITalk [2] remembered a large

number of very common and irregular words and applied many rules to other words.

Another system [3] was designed for translation of Polish texts. Basing on phonological

knowledge, words were divided into several subgroups in a tree-like fashion, with

each subgroup again divided according to pre-established patterns in the words.

A number of rules were designed for the translation of each subgroup. The design

of the system required a vast amount of phonological knowledge and could be applied

to one language only.

Quite early in the development of neural networks, Sejnowski et al. [4] designed

and implemented a neural network system for the translation of English texts using
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a multilayer feed-forward network in order to show that neural networks are able to

perform tasks which are highly context-sensitive.

In this paper we present some approaches to Polish language phonematic

translation with the use of ANNs. These include different feed-forward network

architectures, with the stress on input data representation, and a hybrid network

approach, where additional available knowledge about the problem is used in order to

subdivide the problem into parts and use a specialised network for each of the parts.

The results of the latter have been partially presented in [5, 6].

2. Phonematic translation

Phonematic transformation is a highly context sensitive task. The Polish

language seems to be much simpler than English to specify all transformation rules.

Bolc and Maksymienko have implemented a system basing on this approach and

obtained good results [3].

A phoneme is the smallest element of a language which differentiates meaning

but has no meaning itself. For instance, two Polish words:

tam [tam] (there) and

sam [sam] (alone)

differ only by the elements [t] and [s]. Therefore [t] and [s] are phonemes according

to the definition given above. We have defined a phoneme by its functional role in

a word, but another definition can be used as well: a phoneme is a set of features which

distinguish the given phoneme from another one. Such features are called distinctive.

In this way the phoneme is defined by its structure, i.e. the way it is pronounced. Let

us present another Polish example:

dam [dam] (I will give),

tam [tam] (there).

The phoneme [d] is voiced, dental, stop, buccal, hard, whereas [t] is unvoiced,

dental, stop, buccal, hard. It has been shown that voice is a distinctive feature.

We used the Jakobson theory [7] of phoneme description, according to which all

phonologic features are binary, therefore each phoneme is represented by a vector

with binary ingredients. Fourteen distinctive features (binary ingredients) are needed

to unambiguously describe all Polish phonemes (see Tables 1, 2 and 3).

Table 1. Distinctive features of vocal phonemes

feature u O i E a 1

velar + + − − − −

high-pitched + − + − − +

low − − − − + −

centralised − − − − − +

Automatic transformation from spelling into a phonematic transcription causes

a number of problems.

First of all, spelling differs from a phonematic transcription — the transforma-

tion of a single letter into a phoneme is usually ambiguous. In most cases it depends

on the context in which the letter appears — letters (or, generally, characters) both
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Table 2. Distinctive features of consonantal phonemes

feature ñ m n w N j l r

velar − − − + + − − −

nasal + + + − + − − −

palatal + − − − − + − −

labial − + − − − − − −

lateral − − − − − − + −

dental − − + − − − − −

Table 3. Distinctive features of other consonantal phonemes

feature B F b p x g k ù ý ç é dzj c’ z s Z S d t dz ţ Ù tC

velar − − − − + + + − − − − − − − − − − − − − − − −

palatal − − − − − − − + + + + + + + − − − − − − − − −

labial + + + + − − − − − − − − + + + + − − − − − − −

fricative + + − − + − − + + + − − − − + + + + − − − − −

dental − − − − − − − − − − − − − − + + − − + + + + −

explosive − − + + − + + + − − + + − − − − − − + + − − −

voiced + − + − − + − − + − + − + − + − + − + − + − +

before and after the letter in question. For example, the letter sequence dzi gives in

effect a single phoneme [dzj] and using the rules of Polish language, letter d is trans-

formed into [dzj] and both z and i into empty phonemes. Thus, the transformation

of d in this sequence depends upon the two letters following it, the transformation

of z – upon both the letter before it and the one after, and that of i – upon the

two preceding letters. Some letters are independent of the context (like a, j, l, ł, ń, o,

and ó), some are dependent on only the neighbouring letters, and others – on two or

three letters. Apart from this, inter-word and mid-word assimilations exist in Polish,

for instance:

kosz truskawek [kOS truskavEk] (a basket of strawberries) and

kosz gruszek [kOZ gruSEk] (a basket of pears).

Another example of difficulties arising, are the possibilities of transformation

of Polish nasals (ą, ę):

ręka [reNka] (a hand): ę 7→ [eN]

dębu [d >Embu] (oak – a genitive form): ę 7→ [ >Em]

Kęty [k>Enty] (a town in Poland): ę 7→ [>En]

kręcił [krEñtCiw] (he turned round): ę 7→ [Eñ]

Additional difficulties appear in rare and unorthodox events (for instance, in

almost all cases, the digraph rz is pronounced in Polish as [Z], but in a word zamarzać,

to freeze, it is pronounced as two phonemes [rz]). Transformations of which only few

examples exist also pose many problems (for instance: ź 7→ empty phoneme, d 7→

[ţ] in Polish). Furthermore, there are no rules for a few borrowings and specialist

terms (see [8]). Moreover, a given text can be correctly pronounced in different ways.

There is not only the classical and common Polish, but the Warsaw and Cracow

pronunciations as well. We trained the implemented neural network according to the

classical Cracow pronunciation basing on [9]. The possibilities of spelling-phonologic

transformations used are presented in Table 4.
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Table 4. Possibilities of phonematic transformations in Polish language

letter possible phonemes

a a

ą O >Om >On >Oñ >ON

b b p

c dz Ù ^ ţ c’ tC

ć dzj ć

d dz dzj Ù ţ c’ tC d t

e e

ę e >em >en >eñ >eN

f F B

g g ç k

h x

i ^ i j

j j

k g k é

l l

ł w

m m

n n ñ

ń ñ

o O

ó u

p b p

r r S Z

s s ý S z Z

ś ý ù

t d t

u u w

w F B

y j 1

z ^ s z ù

ź ^ ý ù

ż ^ S Z

A set of transformations given above allows us to correctly translate all Polish

words save for a few borrowings, for instance cyjanek (cyanide) or foreign names that

often appear in Polish, for instance the surname Katz.

The nature of the text-to-phoneme transformation problem calls for a solution

involving a neural network system, as in a classic algorithmic approach one would

need a set of all relevant transformation rules. Finding a proper set of rules for

a given language is usually connected with many difficulties, and sometimes it is

virtually impossible [3]. Even if a suitable set is available, it is always huge and

therefore arduous to implement in an algorithmic way. At the same time, phonematic

transformation of a given word is well known, if the type of pronunciation is given

(e.g. literary or cockney for English). When using a neural network we only need

to provide a set of examples, so it seems to be a convenient method to solve

the problem.

There are some disadvantages though. No artificial neural network can assure

100% accuracy. There can be problems with finding a set of training examples that
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would be statistically suitable and small enough for the training part to end fast

enough. Additionally, to find a proper network architecture is not an easy task and,

usually, a number of trials are needed. A number of neural systems with architectures

different from the one we have implemented are described in detail in Sections 4 and 5.

3. A feed-forward neural network

The problem of phonematic translation in this paper is dealt with a feed-

forward ANN architecture. It consists of a number of neurons organised into layers.

Neurons in subsequent layers (generally, though shortcut connections between neurons

in non-subsequent layers are also possible) are connected with weighted synapses. Only

neurons in different layers may be connected, with connections in one direction only,

so that there can be no cycles. The input to each neuron is a weighted sum of previous

layer neuron outputs, and its output is computed with an activation function.

The feed-forward network is usually trained with back-propagation which is

a kind of a gradient algorithm. As the knowledge gathered by a network during

learning is saved in the network’s parameters, that is the synaptic weights, back-

propagation repeatedly presents the network with successive examples consisting of

tuples (xi,di), where xi is the network input vector and di – the desired answer. After

the network computes its answer y, the instantaneous sum of squared errors at time

step t

E(t)=
1

2

∑

j

(dj−yj)
2, (1)

over all output neurons j is computed. In order to subsequently decrease the error

signal, adjustments are applied to modify weights in the direction opposite to that of

the gradient vector. The activation function φ(·) has to be smooth, i.e. differentiable

everywhere, in order to use a gradient descent learning algorithm, therefore a type of

sigmoidal nonlinearity is used, most frequently a logistic function:

φ(v)=
1

1+exp(−v)
. (2)

A number of other similar functions can be used [10].

To perform the appropriate weight modification the instantaneous error func-

tion gradient
∂E

∂wkj
=
∂E

∂ek

∂ek

∂yk

∂yk

∂vk

∂vk

∂wkj
(3)

(with e=E(t)) needs to be computed for each weight. If the local gradient of a neuron

indexed with i is defined as:

δi=
∂E

∂ek

∂ek

∂yk

∂yk

∂vk
(4)

for neuron k, the weight upgrade may be given as:

∆wkj = ηδjyj , (5)

where yj is the activation of the neuron i connected with the neuron k with a synapse

with the weight wkj , and η is the learning parameter. Local gradients can be computed

starting from the last (output) layer, where the error signal is available explicitly, and

propagated back, hence the name of the whole algorithm.

TQ107H-G/119 10X2003 BOP s.c., http://www.bop.com.pl



120 I. T. Podolak and A. Bielecki

The back-propagation algorithm has many modifications, designed to accelerate

it. One of the simplest, yet very effective, is back-propagation with the momentum

term:

∆wkj(t)=α∆wkj(t−1)+ηδjyj , (6)

where the weight is partially modified in the direction computed at the previous step

t−1. This has the beneficial effect of accelerating the weight modifications if weight

updates, computed at each successive step, have the same sign, and stabilizing the

upgrade if they have an opposite sign. Most other convergence acceleration methods

pursue the same idea, but weight updates are computed in more detail.

4. A simple feed-forward ANN approach

Our first approach was to define a feed-forward ANN, where a letter to be

translated, together with its left and right contexts (of three letters each) would be

presented as input, and the network would be expected to produce the feature vector

of the correct phoneme. Using a window sliding over the characters, the whole input

could be translated.

The output representation was fixed for all the architectures tested: it consisted

of the 14 important features plus 3 elements (neurons) needed for the representation

of punctuation marks; a 17 element binary vector in all. At the same time, the

representation of inputs varied.

4.1. Input data representation

Apart from the choice of a correct architecture for a given task, the input data

should be appropriately presented. This problem is often overlooked, however, the

actual representation can be of great influence on the way the network behaves: the

quality of its answers, the training time, the amount of memory needed to simulate it.

Data can be generally divided into two types: real valued and symbolic valued.

Real valued data is mainly represented using the following methods:

– with 1 neuron, where single real value is presented to the network „as is”, or

scaled to a given interval, e.g.

sc : [a,b]3x 7→
x−a

b−a
∈ [0,1] (7)

if most of the values are known to be inside [a,b]; the input vector is very

compact, but such representation usually requires a large number of hidden

neurons and long training times;

– binary, where each real value is translated into a short n-element binary vector,

i.e. the input scope [a,b] is divided into n intervals and only one selected with

rb : [a,b]3x 7→

⌊

(n−1)
x−a

b−a

⌋

+1∈ [1,n] (8)

is activated; the precision of value representation is therefore set prior to

learning;

– fuzzy, which is a variant of binary representation: a real value is represented

with an n-element vector with one neuron set to 1 as in binary, and the neurons

on both sides of it set to intermediate vales, e.g. 0.5; this method makes the

representation more foolproof;
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– the thermometer method, where again an n-element vector is used and all

neurons to the left and including the neuron selected with the function rb(·)

are set to 1;

– distributed, where a real value from [a,b] is represented with a distributed

binary vector and a combination of different neuron activations; this type of

representation is very foolproof and makes it possible to vary its size according

to the variable’s importance, but is the most difficult one to design.

The problem in phonematic transformation is of another nature: the input data

are not numbers but symbols, which have to be represented with number vectors, i.e.

we have to find a mapping:

rep :D→ IRk, (9)

where D is an n-element data set which has to be presented with k-element real valued

vectors. With no relation between elements of the data set known, there is no order

in the data set defined. However, order and relations among data set elements may

be present, but are known only implicitly through the definition of the task a neural

network is to solve.

Actually, the ANN is to find these relations and order. However, depending

on the approach to the problem, a satisfactory solution may be found easily or not

found at all. If some prior knowledge about the problem is available, it should be

included not only in the design of network architecture, but in the creation of input

data representation. Several methods are available to achieve this.

4.1.1. Unary representation

In NETtalk [4], each character was represented with a binary vector of 34

neurons, each fired for each letter or punctuation mark used. It is a straightforward

representation, the main advantage of which is that all vectors are orthogonal.

This usually leads to quicker learning and the representation does not need any

preprocessing.

The design of a distributed representation of symbolic values is not so straight-

forward. Haphazard assignment of distributed codes to individual symbols can lead

to unwanted effects. For example, some relations between different symbols, which

have nothing to do with the problem at hand, can appear implicitly. Therefore, the

process of distributed representation design should proceed in a systematic way.

On the other hand, the resulting nets have a large number of synapses and

weights, which frequently hinders the generalization abilities. Vapnik and Chervon-

enkis [11] have shown that the probability of generalization error πf , i.e. probability

of correct classification of an example not included in the data set, does not differ by

more than ε from the empirical (training) error νf is:

Pr [sup|νf −πf |<ε]≤ 4Φ(2N)exp

(

−
ε2N

8

)

, (10)

where N is the number of examples and Φ(2N) is the number of binary functions

definable over 2N examples. Φ(2N) is bounded by Nd, where d is the Vapnik-

Chervonenkis (VC) dimension of the net. For a class of functions to be learnable,
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the VC-dimension must be kept finite and low. It can be proven [12] that for feed-

forward networks the VC-dimension is bounded by:

2

⌊

Nhid

2

⌋

Nin ≤V Cdim≤Nweight log(eNall), (11)

where Nin, Nhid, Nall are the numbers of input, hidden and all neurons, and

Nweight is the total number of weights. Unary representation introduces a high

number of weights and, therefore, needs a high number of learning examples to

achieve good generalization. This, however can be changed by introducing distributed

representations generated through vector dissimilarity measures maximization.

4.1.2. Hamming distance maximization

There are some methods for decreasing the number of parameters, i.e. weights,

in a neural network. On of the most popular is pruning, that is the removal of

unneeded weights. Another approach could be through such preprocessing and design

of a representation, that each symbol (a letter in our example) would be presented

with a smaller number of neurons, resulting in a smaller number of weights. On the

other hand, an orthogonal representation usually leads to faster learning and needs

as many neurons as there are symbols used.

In a distributed representation we may try to maximize the measure of

orthogonality, e.g. the Hamming distance between two n-dimensional vectors x and y:

H(x,y)=
n
∑

i=1

|xi−yi|. (12)

We have proposed the so called cubic representation

Definition 1 A cubic representation of n symbols di is such a set of n k-dimensional

binary vectors that the expected value E[H(x,y)] of Hamming distances between all

vector pairs is maximised with variance var[H(x,y)] kept below a set ε.

In such a representation, symbols are represented with maximally equidistant

vectors, there are no relations among symbols that are not in the actual problem

definition (or they would be minimised), and the network size is minimised.

To test this representation we have generated sets of vectors of a given

dimensionality and selected equidistant subsets of vectors of a given size. Afterwards,

the vectors were arbitrarily assigned to symbols used in the problem.

4.1.3. Correlation minimization

Another proposed approach is through minimization of correlation among

vectors representing symbols.

Definition 2 A representation minimizing the correlation of n symbols di is such

a set of n k-dimensional vectors that the expected value of correlation between all

vector pairs is minimised with variance var[xT y] smaller then a set ε.

The virtues of this approach are similar to Hamming distance maximization.

There are two possible procedures to find such representations: sequential, with

generation of all possible vectors followed by selection of those with the lowest

correlations, or using a purpose-designed neural network.

Such a network performs the task of auto-association: the input and output

layers have the same number of neurons as the number of symbols, while the
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single hidden layer has the number of neurons equal to the size of the designed

representation. The network is trained using a modified cost function (with example-

by-example weight adaptation):

E(w(t))=Ea(w(t))+Eb(w(t))+Ec(w(t)), (13)

Ea(w(t))=
1

2

n
∑

k=1

(dk(t)−y
out
k (t))

2, (14)

Eb(w(t))=
1

2

(

l
∑

j=1

yhidj (t)y
hid
j (t−1)

)2

, (15)

Ec(w(t))=
1

2

(

l−
l
∑

j=1

yhidj (t)y
hid
j (t)

)2

, (16)

that is Ea(w(t)) is the standard sum of squared errors, Eb(w(t)) is the correlation of

hidden layer activations generated for two successive input activations, and Ec(w(t))

is needed for the representations of all symbols have similar weights. A modification of

the back-propagation learning algorithm, provided that learning rate is kept low, gives

a simple method of training. The training set consists of n (same as the number of

symbols) binary vectors, just as in unary representation, both as input and as output.

After training the hidden layer, activations are used as the resulting representation.

This method is naturally much faster than the sequential methods and makes it

possible to find representations for greater numbers of symbols. One of the authors

has presented the details in [13, 14].

Arbitrary assignment of vectors to symbols was employed in all the proposed

methods. However, one should point out that some symbols used in the problem are

interrelated, e.g. their occurrence leads to similar answers. Neural networks should

uncover these relations, however this information can be found earlier and included

in symbol representation as prior knowledge.

This can easily be achieved with a small modification of the dedicated neural

network approach: instead of auto-association of n-element vectors, a small subset of

the training set can be used in the following way (here described for the phonological

transformation problem):

as input the middle letter with a small context (one letter on each side, widely

proved to be satisfactory),

as output the expected phonological transformation.

This approach proved to yield satisfactory results. For symbols with different roles

in the problem, different (i.e. uncorrelated) representations were found, whereas

for symbols with similar roles, similar (i.e. more correlated) representations were

assigned. Thus, training is done in two parts: first through representation design

using a small subset of the original examples, then training with this representation

the actual network, using the whole training set.

In Figure 1, a Kohonen map shows the clustering of vectors obtained with

correlation minimization using a small subset of the actual data set. The obtained

vectors were used as a training set for this Self Organizing Map (SOM), and similar

vectors are known to activate SOMs of nearby neurons. In the figure, letters are
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Figure 1. A Kohonen map representing a grouping of representation vectors obtained with data

subset information. Letters in circles correspond to functional group names given in [8].

Two T groups visible constitute a single Kohonen map cluster

grouped in a way which corresponds to groups of letters defined in the rule-based

system described in [8]. As the symbols are grouped just as in the rule system, it can

clearly be inferred that the representation reflects the problem.

The search for symbol representation with the use of dedicated neural networks,

as described, may yield activation vectors which are not binary, as in the previous

methods. This extends the input space used, although in our experiments, for most

problems (not only text-to-phoneme conversion), hidden neurons have usually became

saturated and activation vectors have actually been (almost) binary. In some cases,

when the hidden layer was large, some neurons were found to be unimportant and

not needed to distinguish between different inputs, which could be inferred from their

activation being constant. In such cases, these neurons were not used.

4.1.4. Average disorder maximization

In decision tree learning methods, examples are divided in such a way that

resulting subsets are maximally homogeneous, which is achieved through minimizing

the average disorder AD:

AD=
∑

b

(nb

n

)

(

∑

c

−

(

nbc

nb

)

log
2

(

nbc

nc

)

)

, (17)

where n is the overall number of examples, nb – the number of examples in branch b,

nbc – the number of these in branch b which belong to class c [15]. A neural network,

on the other hand, uses all features (that is, all input neuron activations) at the same
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time, so all should be equally important and the test of each would divide the possible

inputs into equal parts. This can be achieved by disorder maximization.

Definition 3 A representation maximizing the average disorder of n symbols di is

such a set of n k-dimensional binary vectors represented with a matrix M which

maximizes disorder ent(M):

ent(M)=vent(M)×hent(M), (18)

vent(M)=
1

k

k
∑

i=1

(

−
l0i
n
log
2

l0i
n
−
l1i
n
log
2

l1i
n

)

, (19)

hent(M)=
1

n

n
∑

j=1

(

−
m0i
k
log
2

m0i
k
−
m1i
k
log
2

m1i
k

)

, (20)

where l1i is the number of 1’s in column i, l
0

i is the number of 0’s in column i, m
1

i is

the number of 1’s in row i, and l0i is the number of 0’s in row i.

The representation is found with a probabilistic algorithm choosing a set of

random vectors, computing their average disorder measure, and replacing it afterwards

with a better one [13]. A genetic algorithm can also be used for this purpose.

4.1.5. “Mixed” representation

If some information about the problem, apart from the example input-output

pairs, is known in the form of additional features, it should be used. This gives rise

to a mixed representation.

Definition 4 A mixed representation of n symbols is a set of n k-dimensional vectors

constructed of p known features of each symbol and (k−p)-dimensional distributed

vectors.

In the phonological transformation problem, a set of features were known to

be important, namely: whether a letter is nasal, whether soft, whether a sonorant,

whether it can appear in a digraph (e.g. letters c, d , r , s, z , ź , ż ), or it is softened in

certain situations. Each of these features was represented with a single neuron.

As the distributed part of the representation, any of previously defined methods

can be used.

4.2. Results

Several tests were performed using the representations described, with results

given in Table 5. For the sake of comparison binary representation results are also

included. This is the most condensed method where each symbol is represented as

a binary number converted to a vector, therefore there is a need for 6 neurons to

represent 34 characters used in the phonological transformation problem (letters plus

punctuation marks). In so compressed a representation, the problem becomes very

difficult and results are far from satisfactory.

The test set included 9922 examples, all of which were not included in the train

set. Each network was trained for 5000 epochs.

The representations, basing on generalization results, can clearly be divided

into groups: binary, unary, equal distance methods, where after finding representation

vectors they were arbitrarily assigned to symbols (cubic, correlation minimization,

disorder maximization), methods which, when designed, used some information about
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Table 5. Generalization results for different representations and number of hidden neurons

representation

type

representation

length

hidden

neurons

% wrong

binary 6 20 11.89

6 30 11.66

6 40 11.34

cubic 10 25 8.29

15 25 5.48

20 25 5.72

correlation 10 25 9.82

minimization 15 25 5.98

20 25 5.53

25 25 4.78

34 25 4.43

average 10 25 9.68

disorder 15 25 6.35

maximization 20 25 5.06

25 25 6.35

correlation 10 25 6.27

minimization 15 25 4.78

trained on 20 25 5.08

data subset 25 25 4.25

34 25 3.73

mixed 15 25 4.63

20 25 4.43

25 25 3.79

34 25 3.60

unary 34 25 3.94

the actual problem (correlation minimization, but trained on an actual data subset,

and the mixed representation composed of a number of symbol features known from

an expert, with a cubic distributed representation). Methods based on arbitrary vector

assignment achieve good results, but are less efficient than methods which utilise some

priorly available knowledge of the problem.

5. A hybrid system

It is possible to find better approximations through the modularization of

problem solution. A modular architecture captures the problem at two levels: first

at a global level, finding its global structure, then at a local level (the committee

machine is an example of such approach [16]). Modules can also be defined using the

prior knowledge available.

Neural network systems are mainly used for problems defined only through

a number of examples. On the other hand, there is usually some prior knowledge

which could, and should be included in the problem’s solution. This proves to be

complicated in most cases. Neural networks can be used in hybrid systems that use

rules for introductory division of the problem into subtasks, which afterwards either

give an outright answer or can be solved with other methods, for example other neural

networks.
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Neural hybrid systems can be divided into different categories: unified, with

all processing elements implemented by neural networks, transformational, where

symbolic and neural representations are transformed to and fro, and modular, which

comprise of cooperating symbolic and neural modules [17].

In the text-to-speech transformation problem there are many rules which decide

on the transformation. A rule-based system [8] for the Polish language consists of over

700 highly complicated rules which are hard to modify. On the other hand, a small

subset of these rules can divide the whole problem into subtasks. Pronounciation

of some of the letters is invariable and independent of the context, e.g. a or j , or

invariable provided they occur in a given context, e.g. c followed by h is translated

into a null phoneme, as is z preceded by s.

There are other situations where it is only needed to find a single feature of

a letter, e.g. if b is voiced, then it is pronounced as [b], if unvoiced then as [p]. There

are some variations when a single feature needs to be checked and the letter has to

occur in a given context, e.g. if letter d is followed by z and d is voiced, then it is

pronounced with phoneme [dz]. This predicate can be checked with a specially trained

neural network. Since its input space is much smaller and the problem better defined,

we can predict that its accuracy should be much higher than that of a conventional

neural network.

There are other rules which recognize more complicated situations and utilize

a neural network. This results in a highly coupled modular hybrid system with 83 rules

organised in a tree, of which 23 give direct answers and 61 use one of the networks.

5 networks were trained to respond to the following situations:

ann1 whether a letter should be pronounced as voiced,

ann2 whether a letter pair rz should be pronounced as [rz], [Z], or [S],

ann3 recognizes velarity, lowedness, nasality, palatality and labiality in the pronoun-

ciation of ą and ę,

ann4 finds the proper phoneme for u, i and y, which are pronounced similarly,

ann5 recognizes how an n should be pronounced.

Training data is divided into small subsets appropriate to the task learned.

Since the nets solve easier tasks now, they have simpler architectures, with a smaller

number of output neurons (not all features of the output phoneme are required) and

some require smaller context, i.e. with less input neurons. Correct architectures with

optimal number of hidden neurons are therefore simpler to find, even though there

are more of them now. At the same time, with smaller networks there are less free

parameters, what results in better generalization.

The modular architecture is also much easier to manage, as it allows re-

learning of individual small networks. This is in contrast to a single network, which

requires much processing to retrain, while feedforward networks trained with a back-

propagation type of algorithm cannot learn incrementally.

To enhance the system’s precision, we have used voting committees of networks

by training a pool of 3 differently initialised networks to solve each part of the

problem and then choosing the answer returned by most. Using k classifiers, the

probability that the test error is no more than ε greater than the validation error is
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at least 1−2ke−
1

2
εD, where D is the minimum of the number of validation and test

examples [18].

All the available 41982 examples were first divided into subsets appropriate

for each of the networks, then divided into training, validation, and test sets. The

number of examples in each are given in Table 6. As the number of examples was

much smaller, because of direct translation of some letters, as well as architectures,

the time needed to train the whole system was much shorter than when a single

network was used. The validation sets were used to prevent overtraining; training was

stopped when the validation error began to rise. The test sets were used to select the

committee members.

Table 6. Number of examples for all the module networks. Since some of the data was converted

directly by rules, the numbers do not add up to the total number of available examples

ann1 ann2 ann3 ann4 ann5

training 6047 146 487 2538 907

validation 2740 88 210 1281 488

test 2676 94 189 1284 517

The results, including the learning results of individual small problem nets,

then the overall rate for the hybrid system without voting, are shown in Table 7.

Results of each third best subnet were used to compute the overall error. Comparisons

with the single net approach for different representation lengths are also included

for each character. Results were computed over the same test set. For each small

network, several architectures were tested and the three with best results over the

test set selected. Therefore, the results are fine-tuned for the test set with an error

decrasing to 0.35%. All characters were represented with the cubic method described

in Section 4.1.2, but of a different length.

To give actual insight into the system’s performance, it was tested on a sep-

arate test set of 6322 examples, results of which are given in Table 8. The use of

voting committees adds a small increase in performance, but even the simple hybrid

system, i.e. one using only one small net for each of the subtasks, gives much better

results than the single net approach. All single nets had 50 hidden neurons, therefore

the generalization rates are better than those in Table 5, where all nets had only 25

hidden neurons.

The results clearly show that implementation of a hybrid system gives signi-

ficantly better generalization rates. It is therefore worth building such a system if it

is possible, i.e. when some prior knowledge is available, quite apart from the much

better manageability of such systems.

6. Conclusions

The described experiments show that phonematic transformation of Polish

texts is a task which can be solved effectively using ANNs. Classical multilayer

nets performed the task with above 95% efficiency, the best one even over 98%. On

the other hand, it proves to be difficult to select the optimal network architecture.

Therefore a priori knowledge of the problem should be used whenever available. If

the knowledge is incomplete, it can be used in a hybrid rule-network system, which

TQ107H-G/128 10X2003 BOP s.c., http://www.bop.com.pl



A Neural System of Phonematic Transformation 129

Table 7. Best subtask networks (ann1–ann5) and single net (big10–big34) performances

length
of representation

number
of hidden neurons

mean square
test error

badly
recognised

wrong

ann1 34 18 0.00558 22 0.82%

34 15 0.00666 24 0.90%

34 21 0.00673 21 0.78%

ann2 25 4 0.00376 0 0.00%

25 6 0.00539 0 0.00%

25 10 0.00548 0 0.00%

ann3 10 10 0.01402 1 0.53%

25 8 0.01576 1 0.53%

25 10 0.01584 2 1.06%

ann4 34 18 0.00722 6 0.47%

25 21 0.00782 6 0.47%

34 12 0.00789 5 0.39%

ann5 34 15 0.01248 3 0.58%

25 21 0.01276 3 0.58%

10 12 0.01294 4 0.77%

hybrid system 36 0.35%

big10 10 50 0.04212 381 3.66%

big15 15 50 0.01396 132 1.27%

big20 20 50 0.01387 132 1.27%

big25 25 50 0.01640 159 1.53%

big34 34 50 0.03251 241 2.31%

Table 8. Generalization results for hybrid systems and for single nets with different representations

badly
recognised
examples

wrong

voting committee hybrid 50 0.79%

simple hybrid system 57 0.90%

big10 (10 neurons per letter) 226 3.57%

big15 (15 neurons per letter) 84 1.33%

big20 (20 neurons per letter) 80 1.27%

big25 (25 neurons per letter) 97 1.53%

big34 (34 neurons per letter) 136 2.15%

is believed to be more effective than a single ANN. The experiments performed have

confirmed this opinion (see Tables 7 and 8).
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