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neural netwoks is discussed in the paper. Dynamical systems theory is used to describe the learning
precess of networks consisting of linear, weakly nonlinear and nonlinear neurons. Conjugacy between
a gradient dynamical system with a constant time step and a cascade generated by its Euler method
theorem is applied as well.
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1. Introduction

In recent years, artificial neural networks (ANNs) have been studied very in-
tensively. There are many papers describing applications of ANNs to solve problems
in control theory (see [1] Section 6.3, [2] Section 7.5, [3] Section 4.4, [4] Chapter 5,
[5] Section 8.3), robotics ([5] Section 8.4), speech recognition ([1] Section 6.3, [6] Sec-
tion 10.1), pattern recognition ([1] Section 6.3, [3] Section 4.1, [5] Section 8.2), data
compression ([1] Section 6.3, [3] Section 4.2), expert systems ([5] Section 8.3) and
many others. Since problems with neural nets learning processes emerged, their math-
ematical models have also been created. Graphs and matrices are used for modeling
the architecture of ANNs (see, for instance, [7, 5]), whereas dynamical systems the-
ory is used to analyse the behaviour of recurrent networks ([1] Section 2.2), and it
seems to be a suitable tool for investigating learning processes in layer neural net-
works ([8] and [6] Chapter 9). But, though there are numerous mathematical results
concerning both acting and learning processes of ANNs, these results are rather isol-
ated facts. It seems that a coherent mathematical theory concerning ANNs has not
been developed so far. This paper aims at filling this gap. Thus, a mathematical
model of both the architecture and the learning process of artificial neural networks
is discussed below. We focus on multilayer ANNs, but the model can be extended
to recurrent ANNs as well.
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Several papers have recently been devoted to the study of the qualitative
properties of discrete-time dynamical systems obtained via discretization methods.
The basic question is whether the qualitative properties of continuous-time systems
are preserved under discretization. Various concepts of differentiable dynamics were
investigated. Results on stability and attraction properties [9], the saddle-point
structure about equilibria [10, 11], invariant manifolds [12, 13], averagings [14] and
algebraic-topological invariants [15, 16] can be mentioned as examples. Numerical
applications are studied as well [17]. The investigations are concerned with both local
(see, for instance, [18, 19]) and global conjugacy [20–23]. Some of these results are
used in this paper.

This paper discusses the mathematical model of both the architecture and the
learning process of artificial neural networks. Dynamical systems theory is used to
describe and analyse the learning process of networks consisting of linear, weakly
nonlinear and nonlinear neurons. The theorems about conjugacy between a gradient
dynamical system with a constant time step and a cascade generated by its Euler
method [20, 18] are applied as well.

This paper is divided into four logical parts. First (Section 2 and Subsection 3.1)
it is shown that the known results (see, for instance [1, 6, 24]), are simple theorems
based on this model. In the second part (Subsections 3.2), theorems are presented
which are slight generalizations of the known ones. In the third part (Subsection 3.3)
a definition of a weakly nonlinear neuron is introduced, and its properties are analysed.
Finally (Subsection 3.4), the properties of a nonlinear neuron are analysed. It seems
that results presented in Subsections 3.3 and 3.4 are new (they have been presented
in [25, 26] in a shortened form), though the problem of a neural network stability
has been considered by other authors [27–31]. Furthermore, some of the problems
considered in this paper have been analyzed in [32–34].

2. Mathematical model of an artificial neural network

and its learning process

2.1. Model of a neuron

An artificial neuron is a unit having several weighted inputs and one output.
Thus, we can say that a neuron is a function of two vector variables.

Definition 2.1.1 A neuron with k inputs transforming a set X ⊂ IRk of input signals
(a k-neuron on X) is a function

F : IRk×X 3 (~w,~x) 7−→F (~w,~x)= f(〈~w,~x〉)∈ IR,

where ~w is a weights vector, 〈·,·〉 is a real scalar product, and f : IR−→ IR is called
an activation function of the neuron. If f is a linear operator, then the neuron is called

linear. A function

F ∗ :=F (~w,·) :X 3 ~x 7−→F ∗(~x)∈ IR,

is said to be a trained k-neuron on X.
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Remarks

1. In applications, a standard real scalar product is used:

〈~w,~x〉=
k∑

k′=1

wk′ ·xk′ := ~w◦~x.

2. Without losing generality, an identity can be used as an activation function of
a linear neuron (see Proposition 2.2.11).

3. Bounded functions are most often used as activation functions of nonlinear
neurons.

4. Definition 2.1.1 implies that a neuron is a function of two vector variables,
whereas, in a trained neuron, a weights vector is fit. Thus, a trained neuron is
a mapping of only one vector variable.

5. The most classical approach to multilayer ANNs is analyzed in this paper, so
we have restricted our considerations to the composition of a scalar product
and a real function as an activation function of a neuron. However, it should
be stressed that it is not the only possibility (see [35]).

An artificial neural network is a system of neurons which are connected in such
a way that the output signal of a neuron is given to the input of another neuron.
Multilayer networks are considered in this paper.

2.2. Mathematical model of a multilayer ANN

The proposed model is based on graph theory. Let us recall its basic definitions.

Definition 2.2.1 An ordered pair (A,E ), where A is a finite set of nodes and

E ⊂A×A is a set of oriented edges, is said to be an oriented graph (orgraph).

Set that (ai,aj)∈E is the edge directed from the node ai to the node aj .

Definition 2.2.2 The nodes set power of a graph G is said to be the degree of the

graph G and will be denoted by δG.

Definition 2.2.3 Let a graph G = (A,E ) be given. The power of the set {aj :
(aj ,ai) ∈ E } is said to be an input semidegree of the node ai and is denoted by

δ+ai , whereas the power of the set {aj : (ai,aj)∈E } is called an output semidegree of

the node ai and is denoted by δ
−
ai
.

Orgraphs are often used in the definition of an ANN (see, for instance, [36, 37]).
The orgraph nodes are identified with neurons of an ANN, whereas directed edges
determine inputs where the output signal from a given neuron is sent.

Assume that the following objects are given:

G := (A,E ) – an orgraph of a degree δG such that {a∈A : δ+a =0} 6= ∅;
γ :A3 a 7−→ γ(a)∈{1, .. .,δG} – a bijection mapping;
F – the set of all neurons;
α : A 3 a 7−→ α(a) ∈ F ; if δ+a = 0 then α(a) is a k-neuron, otherwise α(a) is
a δ+a -neuron;
W – a set indexing all inputs of neurons in the ANN;
β :E −→W – a bijection mapping.
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Definition 2.2.4 A quintuple

Ak := (G,γ,α,W,β)

is called a k-ANN architecture. If F is the set of all trained neurons, then the

five-tuple is said to be a trained k-ANN architecture.

Remarks

1. By the condition {a∈A : δ+a =0} 6= ∅ there exist input neurons in an ANN. But
the definition does not imply the existence of output neurons, as sometimes,
recurrent networks are considedred in which such neurons do not exist. Then,
the dynamical excititions of neurons in general and asymptotic equilibrium in
particular are the response to the input signal.

2. The mapping γ assigns natural numbers to graph nodes.
3. The mapping α assigns neurons to graph nodes in such a way, that a k-neuron
(if a network is a k-ANN) is assigned to a node in which input semidegree
is equal to zero, whereas a δ+a neuron is assigned to a node with an input
semidegree δ+a .

4. According to the indexing convention, W can be a subset of natural numbers –
in this case it will be denoted by W1, a set of ordered pairs of natural numbers
(in which case the first one is the neuron number and the second one – a number
of the neuron input), denoted by W2, or, mainly in multilayer networks, a set
of three-tuples of natural numbers (the first one is the number of a layer, the
second one – the number of a neuron in the layer, and the third one – the
number of an input of the neuron), denoted by W3.

5. The mapping β determines to which input of a neuron the signal from other
neuron or the ANN input signal is given. Since every input of a neuron is
weighted and β is a bijection, every weight in noninput neurons of the ANN
can be identified with an edge of the graph describing the ANN architecture.

6. Usually, all neurons in an ANN have the same activation function. Sometimes,
however, neurons in differet layers of multilayer ANNs (see Definitions 2.2.5
and 2.2.6) have different activation functions.

7. Matrices can also be used to define neural networks (see, for instance, [5]). Such
approach is equivalent.

In this paper, we consider multilayer ANNs. We shall now define this kind of
ANNs.

Definition 2.2.5 Let

Ak := (G=(A,E),γ,α,W,β)

be an architecture of an k-ANN, trained or not. If the set A of nodes of the

corresponding orgraph G can be decomposed into a finite family of disjoint sets

A1,. . .,AR in such a way, that each graph edge (ai,aj) satisfies the condition ai ∈Ar,
and aj ∈ Ar+1, where r ∈ {1,. .. ,R−1}, then such an architecture is said to be an
architecture of R-layer k-ANN. If, furthermore, for every pair ai,aj of nodes such

that ai ∈Ar and aj ∈Ar+1 the ordered pair (ai,aj) is an edge of the graph, then the
multilayer ANN is said to be complete.
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Definition 2.2.6 Let

Ak := (G=(A,E),γ,α,W,β)

be an architecture of an R-layer k-ANN, trained or not. Let also be given two sets

X ⊂ IRk and Y ⊂ IRm, where m is the number of the output layer neurons. The
three-tuple

S k(X,Y ) := (X,Ak,Y )

is said to be an R-layer k-ANN on X.

Remarks

1. The set X is a set of input signals, whereas the set Y is a set of output signals.
2. A recurrent ANN can be defined in a similar way. The set Y would be a set of
dynamic excitations of neurons or of equilibrium states attained in response to
input signals.

Define
S := {(~x,~y (~x)) : ~x∈X,~y(~x)∈Y },

where ~y (~x) is an output signal of the network S k(X,Y ) if the vector ~x is given to
the ANN’s input. In this way we have constructed a function

S :X 3 ~x 7−→S (~x)= ~y (~x)∈Y,

corresponding to the multilayer network S k(X,Y ). This construction implies the
following corollaries.

Corollary 2.2.7 An ANN consisting of a single linear M -neuron on X ⊂ IRM

generates a linear function S :X −→ IR.

Proof

The corollary is simply implied by the construction of the function S and
properties of the scalar product. ut

Corollary 2.2.8 Let a one layer k-ANN consisting of T neurons

F1, . .. ,FT :Ft : IR
k ⊃X −→Y ⊂ IR,t∈{1,. . .,T}

be given. Then the mapping S corresponding to the ANN is of the form

S :X 3 ~x 7−→S (~x)= (F1(~x), .. . ,FT (~x))⊂Y T .

Assume that two trained k-ANNs are given: (X,Ak,Y ) and (X,A
∗
k,Y ), with

corresponding functions S :X −→Y and S
∗ : X −→Y , respectively.

Definition 2.2.9 If functions S and S
∗ are identically equal then the networks

(X,Ak,Y ) and (X,A
∗
k,Y ) are said to be equivalent.

The next corollary follows directly from Definition 2.2.9.

Corollary 2.2.10 Let two trained R-layer k-ANNs be given: (X,Ak,Y ) and
(X,A∗

k,Y ), and let only the second one be complete. Let

Ak := (G=(A,E ),γ,α,W,β)

be the architecture of the first one, and let the architecture of the second one,

A
∗
k := (G

∗=(A∗,E ∗),γ∗,α∗,W ∗,β∗),

satisfy the condition A∗ = A, E ⊂ E
∗. If weights of the network (X,A∗

k,Y ),
corresponding to edges which do not exist in (X,Ak,Y ) are all equal to zero, and the
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remaining weights of (X,A∗
k,Y ) are equal to the corresponding weights of (X,Ak,Y ),

then the networks are equivalent.

Remark

Since, by Corollary 2.2.10, every incomplete ANN is equivalent to a complete
ANN, it is sufficient, without losing the generality, to consider only complete ANNs.

Proposition 2.2.11 Every trained ANN consisting of one linear M -neuron is equi-

valent to a trained ANN consisting of one linear M -neuron having the identity as its

activation function.

Proof

The considered M -neuron F is linear, so its activation function f : IR−→ IR is
of the form f(~x)= a ·~x,a∈ IR. AnM -neuron defined as F ∗1 (~x)= 〈~x,a · ~w〉 is equivalent
to the considered neuron, because

F ∗(~x)= f(〈~x, ~w〉)= a · 〈~x, ~w〉= 〈~x,a · ~w〉=F ∗1 (~x).
ut

By the following theorem, it is sufficient to consider only one-layer linear ANNs.

Theorem 2.2.12 Every linear multilayer M -ANN is equivalent to a one-layer

M -ANN.

Proof

Since every multilayer network consists of a finite number of layers it is sufficient
to prove the theorem for a two-layer network. By Proposition 2.2.11, we can consider
neurons in which the activation function is an identity function.

Consider a neuron of the output layer. Its output signal is given by

y2,t= 〈~ywe, ~w2,t〉,

where ~ywe is its input signal with components being output signals of the input layer
neurons. The vector ~w2,t is the weights vector of the tth neuron of the output layer.
The vector ~ywe in an orthonormal base is of the form:

~ywe=
M2∑

m=1

~ywem êm=
M2∑

m=1

〈~x, ~w1,m〉êm,

where ~x is the network input signal. By scalar product properties we have:

y2,t=
M2∑

m=1

〈〈~x, ~w1,m〉êm, ~w2,t〉=
M2∑

m=1

〈~x, ~w1,m〉〈êm, ~w2,t〉.

By the orthonormality of the base:

y2,t=
M2∑

m=1

〈~x, ~w1,m〉 ·w2,t,m=
M2∑

m=1

〈~x,w2,t,m · ~w1,m〉.

The last equation means that, for the same input signal, the output signals of
the considered two-layer network and a one-layer network with proper weights are
identical. This means that these networks are equivalent. ut

Propositions 2.2.8 and 2.2.7 and Lemma 2.2.12 imply the following corollary.

Corollary 2.2.13 The function S generated by a trained M -ANN over a set X is

a linear operator on X.
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Assume that a R1-layer k-ANN (X,Ak,Y ), Y ⊂ IR
m, with the corresponding

function S :X −→Y , and anm-ANN R2-layer ANN, with the function S
∗ :Y −→Z,

are given. Let, furthermore, output signals of (X,S k,Y ) be put to the input of
(Y,S ∗

,Z). In this way, a R1+R2-layer network is obtained. This can be defined
formally as follows.

Definition 2.2.14 Let architectures Ak and A
∗
m of the networks (X,Ak,Y ), Y ⊂

IRm and (Y,A∗
,Z) specified above be of the following form:

Ak := (G=(A,E ),γ,α,W,β),

A
∗
m := (G

∗=(A∗,E ∗),γ∗,α∗,W ∗,β∗).

Construct the new k-ANN (X,Ãk,Z) in such a way that its architecture

Ãk := (G̃=(Ã,Ẽ ), γ̃,α̃,W̃ ,β̃)

is defined as follows:

Ã :=A∪A∗,
Ẽ :=E ∪E

∗∪{(ai,aj) : ai ∈A,δ−ai =0,aj ∈A
∗,δ+aj =0},

γ̃ : Ã3 a 7−→ γ̃(a)∈{1, .. .,δG̃} – a bijection mapping,
α̃ : Ã3 a 7−→ α̃(a)∈F is a mapping which satisfies the conditions α̃|A≡α and
α̃|A∗≡α∗,

β̃ : Ẽ −→ W̃ is a bijection mapping, whereas W̃ is a set of indices (see

Definition 2.2.4).

Such operation is said to be a superposition of networks Ak and A
∗
m.

The definitions of multilayer networks and network superposition imply the
following two corollaries.

Corollary 2.2.15 A multilayer ANN is a superposition of one-layer networks of

which it consists.

Corollary 2.2.16 Let a multilayer ANN (X,Ãk,Z) with the corresponding function
S̃ :X −→ Z be a superposition of (X,Ak,Y ) and (Y,A

∗
m,Z), with corresponding

functions S :X −→Y and S
∗ :Y −→Z, respectively. Then:

S̃ =S
∗ ◦S .

Mulitilayer ANNs should act correctly. This means that in response to a given
input signal the output signal should be equal to the desired value. If some of these
desired output values are known, the training sequence, used in the sequel in the
training process, can be defined.

Definition 2.2.17 A finite sequence of pairs
(
(~x (1),~z (1)), .. . ,(~x (N),~z (N))

)
,

where ~x (i) are input signals of a k-ANN on X and ~z (i) is a required output signal, is

called a training sequence of the multilayer k-ANN on X.

An adjustment of weights in such a way that differences between real and
desired outputs in response to a given input signal are as small as possible is
called the training process of an ANN. This problem can be reduced to finding
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a minimum of a certain function. Assume that a multilayer ANN and a training
sequence

(
(~x (1),~z (1)), .. .,(~x (N),~z (N)

)
are given.

Definition 2.2.18 A mapping

E : IRs1 3w 7−→E(w)∈ [0,∞)

is said to be the error function if E(w) is of the form:

U
(
~y (1)(w), . .. ,~y (N)(w)

)
,

where

U :
(
IRMR

)N
−→ [0,∞) and ~y (n) : IRs1 −→ IRMR .

The number of inputs in an output layer neuron is equal to s1 whereas MR is the

number of neurons in the output layer. Furthermore, it is required that satisfying the

following equalities

~y (1)(w)=~z (1),. .. ,~y (N)(w)=~z (N)

for every training sequence
(
(~x (1),~z (1)),. . .,(~x (N),~z (N))

)
,

is a necessary and sufficient condition of zeroing the function E at the point w.

Remarks

1. The vector of all weights in an ANN is denoted by w. Components of this vector
are indexed by the set W1.

2. Vectors ~y (n)(w) ∈ Y are network output signals which are responses to the
input signals ~x (n) being elements of a training set.

3. In most cases, it is additionaly assumed that an error function is at least of
class C1.

4. In most cases, it is impossible to find the global minimum of the deviation
function. Therefore, numerical methods which allow to find its local minimum
are used.

There are several methods of artificial neural networks training. Most of them
are iterative processes. Below, we shall consider the gradient descent method, which
is one of the most common ways of training multilayer ANNs.

Let a training sequence
(
~x (n),~z (n)

)
n=1,2,...,N

and a multilayer ANN S k(X,Y )
with differentiable activation functions of all neurons be given. If the descent gradient
method is used in ANN training, then the iteration rule of weights modification is of
the form (cf. [2] Section.2.4.1, [3] Section.2.5.2):

w (p+1)ι =w (p)ι −η ·
∂E(w(p))
∂wι

, (1)

where the superscript index (p) is the number of an iteration and w= {wι}ι∈W1 is
a vector of all weights in the ANN. Formula (1) is the Euler method for the gradient
differential equation:

dwι

dt
=−grad E(w). (2)

Thus, an error function plays the role of the potential E in the gradient of Equa-
tion (2). Since, for a sufficiently small η, Equation (1) generates a discrete dynamical
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system (a cascade), whereas Equation (2) generates a continuous dynamical system
(a flow), dynamical systems theory can be used to analyse the training process.

Remark

The square deviation function is used most often. It is of the form:

E(w)=
N∑

n=1

TR∑

t=1

[
y
(n)
R,t −z

(n)
t

]2
, (3)

where y (n)R,t = fR,t
(
~wR,t ◦~x

(n)
)
, fR,t is an activation function of the tth neuron in the

Rth layer, and ~wR,t= [wR,t,1,. . .,wR,t,m]. Thus, the indexing convention is as follows:

n= 1, .. . ,N – the number of a vector in the training set – the superscript in
brackets,
r=1, . .. ,R – the number of an ANN layer,
t=1, . .. ,Tr – the number of a neuron in the rth layer,
m=1,. .. ,Mr – the neuron input number in the rth layer.

Derivatives of hidden layer neurons in Equations (1) and (2) are calculated
using the back-propagation method.

3. Learning process analysis

3.1. Linear ANNs

In most cases, the least-squares method is used for analysis of the learning
process of a linear ANN [38].

The properties of Gram matrices will be used to analyse linear training
processes of ANNs analysis. Let us recall their definition.

Definition 3.1.1 A real matrix G of a dimension n×n is said to be a Gram matrix

of a vector family ~v1, .. . ,~vn if gij = 〈~vi, ~vj〉, where 〈~vi, ~vj〉 denotes a real scalar product
of vectors ~vi and ~vj . The Gram matrix will be denoted by G(~v1,. .. ,~vn).

Consider an ANN consisting of a single linearM -neuron. By Proposition 2.2.11,
it is sufficient to consider a neuron whose activation function is identity. In such a case,
the square deviation function is given by:

E(w1, .. .,wM )=
N∑

n=1

[
y(w1,. . .,wM )(n)−z (n)

]2
,

where

y(w1,. .. ,wM )(n)=
M∑

m=1

x(n)m wm.

Calculate a value of the right side of the equation describing the learning process:

∂E(w1,. .. ,wM )
∂wm′

=
∂

∂wm′

N∑

n=1

[
M∑

m=1

x(n)m wm−z
(n)

]2
.

Setting

H (n) :=
M∑

m=1

x(n)m wm−z
(n),
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we obtain

∂E(w1, .. . ,wM )
∂wm′

=
N∑

n=1

2 ·H (n) ·
∂(y (n)−z (n))

∂wm′
=2 ·

N∑

n=1

H (n) ·
∂y (n)

∂wm′
=

=2 ·
N∑

n=1

H (n) ·
∂(
∑M
m=1x

(n)
m wm)

∂wm′
=2 ·

N∑

n=1

H (n) ·x
(n)
m′ =

=2 ·
N∑

n=1

x
(n)
m′ ·

[(
M∑

m=1

x(n)m wm

)
−z (n)

]
.

We have seen that the equation describing the training process of a linear neuron is
a homogeneous linear differential equation which can be written as follows:

d~w

dt
=−2 ·(A · ~w−B),

where A is a Gram matrix
A=G(x1,. . .,xM ).

The signals on the ith neuron input are components of the N -dimensional vector xm,
m=1, .. . ,M .

Thus if a neuron has M inputs and a training sequence consists of N vectors
~x (n), then the matrix A=G(x1, . .. ,xM ) and

aij =xi ◦xj .

The components of the M -dimensional vector B are of the form:

bm=xm ◦~z, where ~z=(z (1), .. .,z (N)).

Remark

A linear one-layer ANN learning process is described by the system of T
differential equations which are independent of each other. Each of them models the
learning process of a single neuron. Indeed:

∂E

∂wt′,m′
=

∂

∂wt′,m′

N∑

n=1

T∑

t=1

[(
M∑

m=1

x(n)m wt,m

)
−z
(n)
t

]2
=

=
∂

∂wt′,m′





N∑

n=1





T∑

t=1,t6=t′

[(
M∑

m=1

x(n)m wt,m

)
−z
(n)
t

]2
+

+
∂

∂wt′,m′

N∑

n=1

[(
M∑

m=1

x(n)m wt′,m

)
−z
(n)
t

]2
.

Since the first component does not depend on wt′,m′ , it is equal to zero. Thus:

∂E

∂wt′,m′
=

∂

∂wt′,m′

N∑

n=1

[(
M∑

m=1

x(n)m wt′,m

)
−z
(n)
t

]2
=

=2 ·
N∑

n=1

x
(n)
m′

[(
M∑

m=1

x(n)m wt′,m

)
−z
(n)
t′

]
.

We have developed a system of equations indexed by t′ ∈ {1, . .. ,T}. It can be
recapitulated in the following way.
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Proposition 3.1.2 A learning process of a linear M -ANN consisting of T neurons

is modelled by the system of equations:

d ~wt

dt
=−2 ·(A · ~wt−Bt), t∈{1, .. . ,T}, (4)

where A = G(x1,. .. ,xM ) is the matrix from the equation describing the learning
process of a single neuron and, for a given t = t′, Bt is a vector with components
being given by formulae

bm,t′ =xm ◦ ~zt′ , ~zt′ =(z
(1)
t′ , .. .,z

(N)
t′ ).

Remarks

1. By Lemma 2.2.12 each multilayer linear ANN is equivalent to a one-layer linear
ANN (see, for instance, [6]). Therefore Equation (4) describes the learning
process of a linear ANN in the most general terms.

2. The found system of equations can be written in the following way:
dW

dt
=−2 ·(A ·W−B),

whereW is the matrix with the tth column being a vector ~wt, whereas B is the
matrix consisting of elements bm,t=xm ◦ ~zt.

Example. Consider the learning process of a single linear neuron having two
inputs. Let a learning sequence consists of three components.

dw1

dt
=−2

3∑

n=1

x
(n)
1 · [(x

(n)
1 w1+x

(n)
2 w2)−z (n)] =

−2 ·(x(1)1 x
(1)
1 w1+x

(1)
1 x

(1)
2 w2−x

(1)
1 z (1)+x(2)1 x

(2)
1 w1+x

(2)
1 x

(2)
2 w2−x

(2)
1 z (2)+

+x(3)1 x
(3)
1 w1+x

(3)
1 x

(3)
2 w2−x

(3)
1 z (3))=

=−2 · [(x(1)1 x
(1)
1 +x

(2)
1 x

(2)
1 +x

(3)
1 x

(3)
1 )w1++(x

(1)
1 x

(1)
2 +x

(2)
1 x

(2)
2 +x

(3)
1 x

(3)
2 )w2−

−x
(1)
1 z (1)−x

(2)
1 z (2)−x

(3)
1 z (3)] =

=−2 · [(x1 ◦x1) ·w1+(x1 ◦x2) ·w2−(x1 ◦~z )]

The derivative
dw2

dt
can be calculated in the same way. Thus, we have procured that:

dw1

dt
=−2 · [(x1 ◦x1) ·w1+(x1 ◦x2) ·w2−(x1 ◦~z )],

dw2

dt
=−2 · [(x2 ◦x1) ·w1+(x2 ◦x2) ·w2−(x2 ◦~z )],

which can be written as:
d~w

dt
=−2 ·(A · ~w−B),

where

A=
(
x1 ◦x1 x1 ◦x2
x2 ◦x1 x2 ◦x2

)
and B=

(
x1 ◦~z
x2 ◦~z

)
.

3.2. Stability of the learning process of a linear ANN

The definitions of stability and asymptotical stability of a dynamical system
can be found in [39], Chapters 2.1 and 2.6, and in [40], Chapter 1.1. Furthermore, the
following theorem is satisfied for linear flows (see [39], page 95).
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Theorem 3.2.1 A flow generated by a linear differential equation is asymptotically

stable if and only if every orbit converges to zero.

Thus, a linear flow is asymptotically stable if and only if it is globally asymp-
totically stable.

In order to show asymptotical stability of a neural network learning process we
will use the Hurwitz criterion ([39], page 116).

Theorem 3.2.2 Let
d~x

dt
=A~x

be a linear equation in IRn, where A is a given real matrix. The flow generated by the
equation is asymptotically stable if and only if the following conditions are satisfied:

∆1=−A1> 0,

∆2=−A1A2+A3> 0,

∆3=(−1)3A3∆2> 0,
...

∆n=(−1)nAn∆n−1> 0,

where Ak is the sum of all principal minors of the matrix A.

The matrix A is a Gram matrix in the equation describing a learning process
of a linear neuron. Let us recall the basic properties of Gram matrices.

Theorem 3.2.3 If vectors v1, .. . ,vk are linearly independent, then detG(v1, .. .,vk)>0;
otherwise detG(v1, . .. ,vk)= 0.

Theorem 3.2.4 The inequality

det G(v1, . .. ,vm,vm+1, .. . ,vk)≤det G(v1,. . .,vm) ·det G(vm+1, .. . ,vk).

is satisfied for every finite family {vk}
K
k=1 of vectors.

Proofs of these theorems can be found in [41], pages 335, 337 and 338.

Considering the learning process of a linear artificial neural network we can
restrict our considerations, without losing generality, to the case of only one neuron
(see Subsection 3.1). Let us consider a dynamical system modelling such a case.

Theorem 3.2.5 The flow generated by equation

d~w

dt
=−2 ·(G(x1, .. .,xM ) · ~w−B) (6)

is asymtotically stable if and only if vectors {x1,. . .,xM} are linearly independent.

Proof

It is sufficient to prove asymptotical stability of the equation

d~w

dt
=−2 ·G(x1, .. .,xM ) · ~w.

(see [39], page 91, Corollary 2).
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It is easy to show that the assumptions of the Hurvitz criterion are satisfied.
Indeed:

∆1=−A1=−(−2) ·Tr G(x1, . .. ,xM )= 2 ·
M∑

m=1

xm ◦xm> 0,

∆2=−A1 ·A2+A3> 0.

This can be written as:

A3>A1 ·A2, thus (−2)3 ·G3> (−2)3 ·G1 ·G2,

where Gk is the sum of all principal minors of the rank k of the matrix G.
We have obtained that:

G3<G1 ·G2. (7)

On the left side of the inequality, we have the sum of all principal minors of rank
3. It is easy to show that for every left side component there exists a component on
the right side such that Theorem 3.2.4 can be applied. Furthermore, on the right side
there exist additional positive components (their positivness is implied by the linear
independence of the vectors of the matrix G). Thus inequality (7) is satisfied.

The remaining assumptions of the Hurvitz criterion:

∆n=(−1)n ·An ·∆n−1> 0,

where An = (−2)n ·Gn, are satisfied if and only if the vectors x1,. . .,xM are linearly
independent (see Theorem 3.2.3). ut

We have proved that the dynamics generated by the equation

d~w

dt
=−2 ·A · ~w−B,

which models the artificial neural network learning process, is asymptotically stable,
thus, it is globally asymptotically stable (see Theorem 3.2.1) if only vectors x1,. . .,xM
are linearly independent. By Theorem 3.2.1, if the matrix G is nonsingular, then the
flow generated by the differential Equation (6) has only one hyperbolic stable point,
which is globally attracting.

Consider topological conjugacy between the cascade obtained via discretization
of the flow (φh,IR

n) which describes the learning process and the cascade (ψh,IR
n),

generated by the Euler method for a sufficiently small h. By the Grobman-Hartman
Theorem (see [42], page 60, Theorem 4.1), in a neighbourhood U of the hyperbolic
fixed point of the flow φ, the cascades φh and ψh are locally topologically conjugate.
Assuming that a homeomorphism H is conjugating, it can be shown that the mapping
F : IRn−→ IRn defined by:

F (x)=ψnh(H(φ
n
h(x))),

is a globally conjugating homeomorphism (n is the smallest natural number such that
φ(x,nh) ∈ U). The existence of global conjugacy implies that the dynamics of the
model of the learning process and the Euler method implemented on a computer are
the same.

It has been proven that the learning process of a linear ANN is globally
asymptotically stable if vectors x1, .. . ,xM are linearly independent. It is easy to show
that the linear independence is a generic property. Let us recall the definition (see [39],
page 107).
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Definition 3.2.6 Let X be a topological space. A property is said to be generic if

the set having this property is open and dense in X.

Proposition 3.2.7 Let X be a family of all sets {YM} such that each of them

consists of M vectors in IRN and let M ≤N . The linear independence of elements of
a set {YM} is a generic property in X.

Proof

Assume that a family consisting of M vectors from N -dimensional space is
given. Let an N×M matrix be generated by the family in such a way that its columns
are vectors from the family. The vectors are linearly independent if and only if each
square submatrix is nonsingular. Thus, the proposition is implied by a well known
fact that the set of all nonsingular L×L real matrices is open and dense in the set
of all L×L real matrices. ut

Thus, the linear independence of training sequence vectors x1, .. .,xM is a gen-
eric property. This means that the set of learning sequences consisting of linearly
independent vectors is open and dense in the set of all learning sequences. Therefore
the possibility of accidental generation of a learning sequence consisting of linearly
dependent vectors can be neglected.

3.3. Weakly nonlinear neural networks

Dynamics of linear dynamical systems is a well investigated problem. We can
take as an example the theorem about global topological conjugacy between cascades
generated by a linear flow. In such problems, theorems describing properties of linear
systems are also frequently true for weakly distorted linear systems. Thus, for instance,
according to the Hartman theorem (see [43], page 114, Theorem 5.15), cascades
generated by weakly distorted operators in a Banach space are globally conjugate,
whereas the conjugacy of weakly distorted linear flows is the subject of the Grobman
Theorem (see [43], page 117, Theorem 5.25). In the Fečkan Theorem [18], the relation
between a discretization of a weakly perturbed linear flow and its Euler method is
considered. Let us recall this result.

Theorem 3.3.1

Let (φ,IRm) be the flow generated by the equation:

ẋ=Ax+g(x), (8)

where A ∈ L (IRm) has no eigenvalues on the imaginary axis, g ∈ C1(IRm,IRm),
g(0) = 0, and let for each x∈ IRn and a sufficiently small b the following inequalities
hold:

sup|g(x)|<∞ and |Dg(x)| ≤ b.

Then, for a compact set K ⊂ IRm there exists a number ho> 0 and a Co-mapping

Hh : IR
n−→ IRn, h∈ (0,ho),

such that on the set K the following equality holds:

φ(·,h)◦Hh(·)=Hh(·)◦ψh(·),

where ψh is the map given by the Euler method:

ψh(x)=x+h ·Ax+h ·g(x).
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The set K can be considered to be a ball Bq := {x,|x| ≤ q} (see [18], page 124).
We use the Grobman-Hartman and the Fečkan Theorems to analyse the

iterative process which is used to train the so-called weakly nonlinear neurons. Let us
introduce the following definition.

Definition 3.3.2 A neuron is called weakly nonlinear if its activation function is of

the form:

f : IR3β 7−→ f(β)=β+u(β),

where u is limited, and u ∈ C2(IR), and, furthermore, for each β ∈ IR we have
|u′(β)|<c1, |u′′(β)|<c2, |β ·u′(β)|<c3 and |β ·u′′(β)|<c4, where constants c1, c2, c3
and c4 are sufficiently small.

It seems that, weakly nonlinear neurons have been considered so far only by
Bielecki [26, 36].

Theorem 3.3.4, the main theorem of this subsection, implies that the learning
process of a weakly nonlinear neuron has the same dynamics as that of a linear
dynamical system. The following theorem demonstrates this.

Theorem 3.3.3 The process generated by the descent gradient learning method of

a weakly nonlinear neuron is modelled by a differential equation of a type (8) which

satisfies assumptions of Theorem 3.3.1.

Proof

Let a neuron having M -componental input and an N -componental training
sequence ((~x (1),z (1)), . .. ,(~x (N),z (N))) be given. Then a total excitation of a neuron
in the nth step of a learning process is given by the formula:

β (n)=
M∑

m=1

x(n)m w (n)m .

Assuming that the considered neuron is weakly nonlinear, its activation function is of
the form:

f(β (n))=β (n)+u(β (n)),

whereas the square deviation function is given as follows:

E(w1,. . .,wM )=
1
2

N∑

n=1

[
β (n)+u(β (n))−z (n)

]2
.

Let us compute the kth component of the deviation function gradient:

∂E

∂wk
=
N∑

n=1

{[
β (n)+u(β (n))−z (n)

]
·
[
x
(n)
k +u

′(β (n)) ·x(n)k
]}
=

=
N∑

n=1

x
(n)
k β (n)−

N∑

n=1

x
(n)
k ·z

(n)+
N∑

n=1

x
(n)
k ·

[
u(β (n))+u′(β (n)) ·f(β (n))−z (n) ·u′(β (n))

]
.

Thus, the gradient differential equation modelling the learning process

~̇w=−grad E(~w)

can be written in the following form:

~̇w=−(A~w+B+ g̃(~w)).
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Let us assume that the neuron input is M -componental and the learning sequence
consists of N elements. The matrix A is given as follows:

A=



x1 ◦x1 . . . x1 ◦xM
...

...
xM ◦x1 . . . xM ◦xM


, (9)

where xm is an N -componental vector. Signals given on the mth input of the neuron
are its components and m=1, .. . ,M . Thus, the matrix A is a Gram matrix generated
by the vectors of the training set:

A :=G(x1, .. .,xM ).

The matrix B is of the form:

B=




∑N
n=1x

(n)
1 ·z

(n)

...∑N
n=1x

(n)
M ·z

(n)


. (10)

If the matrix G(x1, .. . ,xM ) is nonsingular, then the flows generated by equations
~̇w = −A~w+B and ~̇w = −A~w are conjugate. As it was mentioned at the previous
subsection, linear independence of vectors x1, .. .,xM is a generic property. Since linear
independence implies nonsingularity, the topological conjugacy of the flows is generic
as well. Conjugacy is transitive, thus it is sufficient to consider the equation:

~̇w=−(A~w+ g̃(~w)).

The kth component of vector g̃(~w) has the form:

g̃(~w)k =
N∑

n=1

x
(n)
k ·

[
u(β (n))+u′(β (n)) ·β+u′(β (n)) ·u(β (n))−z (n) ·u′(β (n))

]
.

The derivative matrix of g̃(~w) can be written as follows:

∂g̃(~w)k
∂ws

=
N∑

n=1

x
(n)
k ·x

(n)
s · [u

′(β (n))+u′′(β (n)) ·β+

+u′′(β (n)) ·u(β (n))+u′(β (n)) ·(1+u′(β (n)))−z (n) ·u′′(β (n))].

Thus, if the mapping u satisfies the assumptions specified in Definition 3.3.2, then the
mapping g̃ satisfies the assumptions of Theorem 3.3.1. This completes the proof. ut

The map

u(β)=
c ·β

β2+1
,

where the constant c is sufficiently small, can be put as an example of a function
satisfying assumptions concerning the perturbing map g in the definition of the weakly
nonlinear neuron.

The properties of the function u specified in Definition 3.3.2 imply that
assumptions of the Grobman-Hartman Theorem are satisfied as well. This means
that the following theorem holds.
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Theorem 3.3.4 The flow generated by the equation:

~̇w=−(A~w+ g̃(~w)) (11)

is globally topologically conjugate to the flow ganerated by its linear part:

~̇w=−A~w.

Furthermore, the cascade generated by the time-h-map discretization of the flow

generated by the Equation (11) is, on a large ball, conjugate to the cascade generated

by the Euler method of this equation.

Let us remark that the range of number values which can be represented in
a computer is limited. Furthermore, in a biological neural cell, neurotransmitters are
liberated in tiny amounts from vesicles – about 10−17 mol acetylcholin per impulse
(see [44], page 5, [45], page 39). The input impulse cannot be too large or a cell will
be destroyed. Thus, both in biological and artificial neural networks, absolute values
of vectors ~w and ~x are bounded and, therefore, modelling numerically both biological
and artificial neurons we can considered only bounded vectors ~w and ~x. Therefore,
considering topological conjugacy on a sufficiently large ball is adequate for training
process analysis.

The learning process is implemented on a computer according to the Euler
method. Theorem 3.3.4 ensures that its dynamics is the same as the dynamics of
a linear cascade if only the matrix A has no eigenvalues on the imaginary axis. It
implies, inter alia, asymptotical stability of a learning process. Furthermore, the
cascade generated by the discretization of the Equation (11) is, on a sufficiently
large ball, topologically conjugate to the cascade generated by the Euler method (for
a sufficiently small time step). The conjugacy on a large ball is sufficient for analysis
of neural networks, as norms of weights vectors and vectors of training sequence are
limited. However, it is necessary to estimate the value of ho (see Theorem 3.3.1) in
order to apply the results of our analysis to network implementations. This estimation
has the following form (see [46]).

Theorem 3.3.5 Let 0 < h < ‖A‖−1 be fixed. Under the notations of the Fečkan

Theorem, if the following inequalities are true:

h ·b< (1−M) ·‖Ah‖−1,

h ·b ·(‖A‖+b)< (1−M) ·(‖A−1h ‖·‖e
A·h‖),

(12)

where Ah := id+h ·A and M := max{‖(Au)−1‖,‖As‖}, then the conclusion of the
Fečkan Theorem holds.

As the matrix A has no imaginary eigenvalues, the linear operator A is
hyperbolic, which means that there exists an invariant splitting IRn = Es ⊕Eu

in which ‖As‖ ≤ a < 1, ‖(Au)−1‖ ≤ a < 1, where ‖As‖ = A|Es : Es −→ Es and
‖Au‖=A|Eh :Eu−→Eu.

3.4. Nonlinear neural networks

In this subsection, we apply the fact that, on a two-dimensional sphere S2,
a gradient dynamical system is, under some natural assumptions, correctly reproduced
by its Euler method for a sufficiently small time step. This means that the time-h-map
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of the induced dynamical system is globally topologically conjugate to the discrete
dynamical system obtained using the Euler method. It can be expressed as follows.

Theorem 3.4.1 Let S2 be the two-dimensional sphere in IR3 and let

φ :S2× IR−→S2

be the dynamical system generated by a differential equation

ẋ=−grad E(x), (13)

where E ∈C2(S2,IR) has a finite number of singularities, all of them hyperbolic. Let,
furthermore, the dynamical system φ have no saddle-saddle connections. Moreover, let

us assume that φh :S2−→S2 is a discretization of the system φ, i.e. φh(x) :=φ(x,h),
whereas ψh :S2−→S2 is a mapping generated by the Euler method for Equation (13).

Then, for a sufficiently small h> 0, there exists a homeomorphism α=αh :S2−→S2

globally conjugating cascades generated by φh i ψh, i.e. the following formula holds:

φh ◦α=α◦ψh. (14)

The proof of the theorem is presented in [36] and [20]. In this paper we focus
on the application of the presented result to the analysis of training process dynamics
of a nonlinear neuron.

Remarks

1. As it is known, Axiom A and the strong transversality condition are equivalent
to the structural stability of a dynamical system (see [42], page 171 and [47]).
At the same time, for gradient dynamical systems, Axiom A implies that
the system has only a finite number of singularities, all of them hyperbolic,
whereas the strong transversality condition implies that the gradient system
has no saddle-saddle connections. Thus, structural stability of the considered
dynamical system (S2,φ) implies assumptions of Theorem 3.4.1. Moreover, the
set of structurally stable systems is open and dense in the space of gradient
dynamical systems (see [42], page 116).

2. A dynamical system generated by Equation (13), having only a finite number
of singularities, all of them hyperbolic, without saddle-saddle connections, is
called a gradient Morse-Smale system.

Let us consider a one-layer artificial neural network consisting of nonlinear
neurons. Let us also assume that an input of each neuron has two components.
Furthermore, let us declare an activation function of each neuron to be a limited
mapping of a class C2(IR,IR), with the first and second derivatives bounded as well.
Most types of activative functions used in practice (for instance bipolar and unipolar
functions – see [3], page 38, most radial functions – see [3], page 168) satisfy the
specified assumptions. Since neurons are trained independently in a one-layer net, we
can consider the learning process only for a single neuron. Under such assumptions,
Theorem 3.4.1 implies asymptotical stability of the learning process using the descent
gradient method.

Theorem 3.4.1 has been proved for a sphere S2, which can be identified, via
homeographic projection, with the compactified plane IR2. This theorem can be used

TQ107G-G/110 10X2003 BOP s.c., http://www.bop.com.pl



Mathematical Model of Architecture and Learning Processes. . . 111

to analyse the training process of a nonlinear neuron having two-componental input
provided the potential E in gradient Equation (13) can become completed in the
north pole of the sphere in such a way, that it remains a function of a class C2(S2,IR)
and no nonhyperbolic fixed point shall appear. The error function plays the role of
potential. The most commonly used square criterial function is, for a single neuron,
given by the formula:

E(~w)=
N∑

n=1

[
f(β (n))−z (n)

]2
, β (n) :=x(n)1 ·w1+x

(n)
2 ·w2, (15)

where ~x (n)= [x(n)1 ,x
(n)
2 ] is an input vector, z

(n) is a desired response of the neuron if
a vector ~x (n) is given to the input, and N is the number of input vectors used in the
learning process.

The deviation function given by Equation (15) has various limits if an inverse
image π−1(~w) of a vector ~w (where π is the stereographic projection) converges to
the north pole, i.e. |~w| converges to infinity. It follows from the fact that we can
converge to infinity in such a way, that the scalar product ~x◦ ~w remains an arbitrary
constant. However, it is possible to modify the criterial function so that, on a cartain
ball B((0,0),r), the potential will not be modified and it will be possible to complete
it in the proper way. Furthemore, radius r can be as large as we need.

As it was mentioned in the preceding subsection, both in biological and in
artificial neural networks, absolute values of vectors ~w and ~x are limited and, therefore,
while mathematically modelling both biological and artificial neurons we can consider
only bounded vectors ~w and ~v.

Let us choose a sufficiently large radius a of the circle on which a training
process is modelled. We can modify potential E using the function defined as follows:

g(~w) :=
{
e(r−a)

n

for r≥ a,
1 for r∈ [0,a),

(16)

where r := |~w|2=w21+w
2
2 and a natural number n is selected depending on potential

E and radius a in the way specified below. The function g is of a class C2(IR2,IR).
Define the following mapping:

E∗(~w) := g(~w) ·E(~w). (17)

Solutions of the equation
~̇w=−grad E∗(~w) (18)

cut the circle K((0,0),2a) transversally entering its interior, that is to say the scalar
product −grad E∗(~w)◦ ~w has negative values for |~w|2=2a. Indeed, we have:

−grad E∗(~w)◦ ~w=
2∑

i=1

[
E(~w) ·

∂g(~w)
∂wi

+g(~w) ·
N∑

n=1

[
x
(n)
i ·

df

dβ (n)
·
(
f(β (n))−z (n)

)]]
·wi.

Because
∂g(~w)
∂wi

:=
{
2 ·wi ·n ·(r−a)n−1 ·e(r−a)

n

for r >a,
0 for r∈ [0,a],

(19)

thus for r=2a, we obtain

−gradE∗(~w)◦ ~w=−ea
n
2∑

i=1

·

[
n ·an−1 ·w2i ·E(~w)+

N∑

n=1

[
x
(n)
i ·

df

dβ(n)
·
(
f(β(n)

)
−z(n))

]
·wi

]
.
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Since the problem is considered on a closed ball, all variables and functions are
bounded. The potential E is nonnegative, thus, for a large a, the first term in the sum
asymptotically equals an−1, whereas the second one can be negative but is limited.
Thus, as a is large, the number n can be chosen to be so large that the value of the
first term is greater than the absolute value of the second component of the sum.

In order to properly complete the potential in the north pole, let us assume that,
in a certain neighbourhood of the north pole, the potential is of the form V (~w)=−s2,
where s is the distance from the north pole. On the plain IR2 this neighbourhood is
equivalent, via homeographic projection, to values of |~w|2 greater than, for instance,
3a. Thus, it has its maximum in the north pole. Then, the dynamical system generated
by the differential equation

~̇w=−grad V (~w),

considered on the abovementioned neighbourhood, has a repelling, hyperbolic fixed
point in the north pole. The completed potential Ẽ ∈C(S2,IR) can be of the form:

Ẽ(~w)=
{
E∗(~w) for |~w|2≤ 2a,
V (~w) for |~w|2≥ 3a.

Since trajectories enter the interior of the circle K((0,0),r = 2a), the closed ball
B((0,0),r ≤ 2a) is an invariant set of the system. Therefore, though the potential
is modifed, the dynamics in the domain of interest for us remains unchanged. Thus, if
only a dynamical system generated by Equation (13) has finite number of singularities
in the ballB((0,0),r≤ a), all of them hyperbolic, then the dynamical system generated
by Equation (18) satisfies the assumptions of Theorem 3.4.1.

Possible applications of Theorem 3.4.1 are limited to systems with finite
numbers of singularities, all hyperbolic. It is important in these applications that the
set of structurally stable systems is open and dense in the set of gradient dynamical
systems (see [42], page 116) and that structural stability implies the assumptions
of Theorem 3.4.1. This ensures that the properties specified in assumptions of
Theorem 3.4.1 are generic (see remarks in Section 1).

The dynamics of gradient systems is very regular. Particularly, this dynamics
can not be chaotic and there are no periodic orbits. These properties are preserved
under discretization and, thanks to the global topological conjugacy, when the Euler
method is applied. This implies asymptotical stability of the learning proccess of the
layer artificial neural networks which are modelled by the cascade generated by the
Euler method.

4. Concluding remarks

The presented mathematical analysis allows us to create a model describing
trained multilayer ANNs and the dynamics of their learning process. The introduced
mathematical model has the following structure: first, an untrained and a trained
neuron are defined as real functions of two or one vector variable, respectively; then,
using a description based on graph theory, a multilayer ANN is said to be a map
S : IRk −→ IRm. This function is used in the definition of a cost function assuming
that a training sequence is given. Subsequently, since a training process simply aims
at finding a cost function minimum, we can analyse the induced numerical process
using dynamical systems theory.
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It has been shown that by considering a linear network we can, without losing
generality, study dynamics of only a single neuron with an activation function equal
to identity. Asymptotical stability of a training process of such a network is a generic
property.

Theorems describing properties of weakly perturbated linear systems, especially
the Grobman-Hartman Theorem and the Fečkan Theorem, imply the properties of the
so-called weakly nonlinear neuron, as introduced by Bielecki. Topological conjugacy
of its learning process dynamics to the dynamics of a linear system has been proven.
Estimations (12) of the constants in the Fečkan Theorem will allow us to implement
this sort of a neuron.

The theorem about topological conjugacy of gradient cascades on a two-dimen-
sional sphere allows us to study the dynamics of a learning process of a nonlinear
neuron having a two-component input. Generalization of this theorem to higher di-
mensions will enable us to consider more complicated cases of nonlinear ANNs.
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