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Abstract: The paper presents a simulation study of the usefulness of a number of meta-heuristics
used as optimisation methods for TSP problems. The five considered approaches are outlined: Genetic
Algorithm, Simulated Annealing, Ant Colony System, Tabu Search and Hopfield Neural Network.
Using a purpose-developed computer program, efficiency of the meta-heuritics has been studied and
compared. Results obtained from about 40000 simulation runs are briefly presented and discussed.
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1. Introduction

Combinatorial optimisation is an example of a difficult optimisation problem.
Numerous approaches have been proposed for such problems, some of which imitate
natural processes, e.g. biological evolution or ant colonies. Most of them are still in
their development phase, and it is difficult to assess which method is appropriate
for a particular problem. The paper presents simulation studies of the efficiency of
selected methods inspired by nature on the basis of the Travelling Salesman Problem
(TSP). TSP was selected because it is one of the most studied NP-hard problems. In
TSP, we have a set of N cities C = {C1,C2, .. .,CN} and a set, E, of routes connecting
the cities with one another. In other words, we have a full connected graph G(C,E),
where C is a set of nodes and E= {Eij}, i=1,2,. . .,N , j=1,2, .. . ,N , i 6= j, is a set of
edges. Each edge Eij (connecting nodes Ci and Cj) has a measure dij – the distance
between cities Ci and Cj . The task is to find the shortest route between all the cities,
assuming that each city has to be visited exactly once. In mathematical terms, TSP is
defined as a problem of finding the minimal-length Hamiltonian circuit on the graph
G(C,E) – a closed tour between all N nodes. The length of a Hamiltonian circuit is
the sum of distances di,j of all edges Ei,j belonging to the tour. In our experiments,
cities are given by their co-ordinates (xi,yi) and distance dij is the Euclidean distance
between cities Ci and Cj , so that we have a symmetric Travelling Salesman Problem:
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the tours C1→C3→C5→C2→C4→C1 and C1→C4→C2→C5→C3→C1 are the
same.

A number of meta-heuristics can be found for such a problem. In the paper, we
consider some of them, namely Genetic Algorithm (GA), Simulated Annealing (SA),
Ant Colony System (ACS), Tabu Search (TS) and a simple Hopfield Neural Network
(NN).

The paper is organised as follows. The first five sections present very briefly the
meta-heuristics used in our simulation studies. Section 2 describes Genetic Algorithm
with special operators adjusted to the problem being solved. The technique called
Simulated Annealing is presented in Section 3. Section 4 introduces the Ant Colony
System. Section 5 is dedicated to the Tabu Search method. Section 6 contains a short
presentation of Hopfield Neural Networks. Section 7 provides an overview of the
obtained results. Discussion of the main characteristics of the considered methods
on the basis of our simulation study is presented in the concluding section.

2. Genetic Algorithm in the TSP problem

Genetic Algorithm (GA) is a technique from the broadly-understood area
of artificial intelligence, based on the natural process of biological evolution [1–4].
The main differences between conventional optimization methods and the Genetic
Algorithm are:

• GA works with coded parameters in the form of chromosomes. Usually chro-
mosomes are strings of bits. One chromosome (individual) codes a single point
in the solutions space.
• GA searches solutions working simultaneously with a population of individuals.
• GA does not use derivatives or any other information about the function being
optimized.
• GA uses probabilistic rules in the search process, exploiting areas with high
fitness.

Genetic Algorithms use a vocabulary borrowed from genetics and imitate
biological evolution according to the Neo-Darwinian paradigm. It assumes, that four
statistical processes operating within populations and species can explain the history
of life: reproduction, mutation, competition and selection (Figure 1). Reproduction is
the process necessary for species to survive, but the potential abilities of species to
reproduce are so large, that the size of a population would increase exponentially
if all individuals could reproduce with success. Mutation guarantees diversity in
biological systems. Because the environment of an evolving population is limited,
there is competition between individuals. The outcome of selection is elimination
of some individuals due to competition: only some individuals can survive and have
offspring. Phenotype diversity is a consequence of recombination and errors in genome
transcription.

Usually, binary coding is used, which means that a potential solution (called
a chromosome) is coded as a string of bits. Mutation is implemented as random
changes of bits: from 0 to 1 or opposite. Crossover means exchange of parts of bits’
strings between two randomly selected individuals. Better individuals (solutions) are
preferred for reproduction.
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Parameters coding – potential solutions are represented
as genotypes (individuals)

Production of an initial population of individuals (potential solutions)

Subject the population to environment evaluation
(evaluation of solutions in terms of their “fitness”)

Checking for the stop conditions
(e.g. whether satisfactory solution is achieved or not)

No – continue! Yes – stop!

Choice of couples of individuals for breeding
(favoritism of better individuals)

Applying the genetic operators (e.g. crossover and mutation;
production of the next generation of the population)

Figure 1. A general schema of GA performance

Using Genetic Algorithm for TSP we define a chromosome (an individual) as
a sequence of city numbers (a list of cities), e.g. ith individual Ii = [13524] encodes
the tour C1→C3→C5→C2→C4→C1. The distance F of an encoded tour is our
goal function, we must find the tour with minimal distance:

Fg =min
i
(F (i)), i=1,. . .,N, (1)

where F (i) is the distance of the route encoded by the ith individual in the current
population, N – the size of evolved population (number of individuals).

Classic mutation and recombination produce wrong solutions: some numbers of
cities may be doubled while others may be absent. Therefore, specialized genetic
operators for permutation problems are developed, which combine crossover and
mutation effects. They assure production of only correct solutions (satisfying the
constraints). Literature shows that the so-called Cycle Crossover (CX) and Asexual
Crossover (AX) give relatively good results and operate quite quickly [5]. In the
presented study we assume the following operators (with assumed probabilities).

Cycle Crossover (CX)

CX uses two parents, I1 and I2. It goes as follows:

Step 1 : select randomly one gene in I1 (e.g. the first in Figure 2).
Step 2 : offspring (I1’) receives the selected gene from the first parent (offspring I1’

takes his first gene – city number 1 – from parent I1),
repeat:

Step 3 : find in the second parent (I2) the value of a gene placed in the same position
as the redrawn gene (in the first position in I2 there is a value equal to 4 –
a city number 4),

Step 4 : redraw from the first parent (I1) the gene with the found value to the offspring
– put value 4 on the fourth position of I1’,
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I1 : 1 2 3 4 5 6 7 8

I2 : 4 3 2 7 6 5 8 1

I1’: 1 - - - - - - -

I1’: 1 - - 4 - - - -

I1’: 1 - - 4 - - 7 -

I1’: 1 - - 4 - - 7 8

I1’: 1 3 2 4 6 5 7 8

I2’: 4 - - - - - - -

I2’: 4 - - - - - - 1

I2’: 4 - - - - - 8 1

I2’: 4 - - 7 - - 8 1

I2’: 4 2 3 7 5 6 8 1

Figure 2. An example of CX crossover

I : 1 2 3 4 5 6 7 8

I : 1 2 | 3 4 5 6 | 7 8

I1: 3 4 5 6

I2: 1 2 7 8

I2: 1 2 7 | 8

I’: 1 2 7 3 4 5 6 8

Figure 3. An example of an AX operator

I : 1 2 3 4 5 6 7 8

I : 1 2 | 3 4 5 6 | 7 8

I’: 1 2 | 6 5 4 3 | 7 8

I’: 1 2 6 5 4 3 7 8

Figure 4. An example of Inversion

I : 1 2 3 4 5 6 7 8

I : 1 2 3 4 5 6 7 8

I’: 1 2 3 4 5 6 7 8

Figure 5. An example of Mutation

until created offspring (I1’) already contains the value found in step 3 (value
1 stops the loop during creation of I1’, value 7 stops the loop when I2’ is
produced, see Figure 2).

Step 5 : redraw the remaining genes from the second parent.

In a similar way the second offspring I2’ is created.

Asexual Crossover (AX)

Asexual Crossover uses only one parent. An example of AX is shown in Figure 3:

Step 1 : select randomly two points on the parent individual (e.g. points between
2 and 3, 6 and 7 in Figure 3),

Step 2 : copy to the one temporary individual (I1 in the figure) the part between
selected points, and to the second temporary individual (I2) – the rest of
parent,

Step 3 : select a random point on the second temporary individual (I2), e.g. between
7 and 8,

Step 4 : create the offspring (I’): insert the sequence remembered on the first tempor-
ary individual (I1) to the position selected in Step 3 on the second temporary
individual (I2).

Inversion

Inversion acts on a single individual (parent). Figure 4 shows an example of inversion:

Step 1 : select randomly two points on the parent individual (points between 2 and 3,
6 and 7 in Figure 4),

Step 2 : invert the middle part of the chromosome.

Mutation

Mutation is similar to Inversion, but it concerns only two neighbour genes – number
of cities (see Figure 5).
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Step 1 : select randomly two neighbour points (genes) on the parent individual (genes
3 and 4 in the figure),

Step 2 : invert the selected numbers (replace 3 4 by 4 3).

Each individual is evaluated: distance of the encoded route is calculated (our
goal function F (i), which we should minimize). The goal function is transformed into
a fitness function Fit:

Fit(i)=Fmax−F (i), (2)

where Fit(i) – fitness of the ith individual, Fmax is the maximal distance in the current
population (Fmax=maxjF (j),j=1,. .. ,N).

So defined fitness function Fit can be used in a popular roulette wheel selection
method.

3. Simulated Annealing as a tool for TSP solving

Simulated Annealing (SA) is a method based on cooling and freezing metal into
its minimum energy crystalline structure, i.e. the annealing process. SA exploits the
analogy between the annealing process and searching for a minimum in more general
systems. The background of the method can be found in [6–8].

Before using SA, we must perform some initial steps (similarly as in GA).
The analogy between the optimisation process and the physical concepts must be
recognised. The energy function becomes the goal function, configurations of particles
– configurations of questing parameter values, searching for minimum energy –
searching for the near optimal solution, temperature – a parameter that controls
the whole process (Figure 6). The way in which new configurations are obtained must
also be established [9]. We assume (similarly as in GA) that we can calculate the value
of the goal function f(x) – distance of the coded tour – for each potential solution x.

Procedure SA

begin

iteration t← 0
initial value of temperature T

random choice of xc
evaluation of xc
repeat

repeat

choice xn from neighbours of xc using assumed way

if f(xn)<f(xc) {the new tour is shortest} then xc←xn
else if random [0,1]< exp{−(f(xn)−f(xc))/T}
then xc←xn

until (end condition)

T ← g(T,t)
t← t+1
until (stop criterion)

end

Figure 6. The pseudocode of SA

In the above pseudocode of SA ‘end condition’ allows to stop the internal loop
when temperature equilibrium is reached, which means that probability distribution
of choosing a new solution is close to the Boltzman distribution. SA often assumes
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that this part of the algorithm is repeated k times, where k is done as a parameter,
or until no improvement of the solution is observed. g(T,t) is a function decreasing
temperature T in sequential iterations. ‘Stop criterion’ acts when temperature T
is very small; it means that the considered system is cooled (nothing worse than the
current solution can be accepted).

The probability p of acceptation of a new solution xn worse than the current
solution xc depends on the values of the goal function of these solutions and
temperature T :

p= e−(f(xn)−f(xc))/T . (3)

4. Ant Colony System solving TSP

The ant algorithm was proposed by Dorigo and others [10, 11]. It is a relatively
new approach to difficult combinatorial optimisation problems like the Travelling
Salesman Problem (TSP) or the Quadratic Assignment Problem (QAP) [10]. The
ant-based algorithm is becoming a popular subject in the scientific community and
it is extended to various discrete optimisation problems [12]. Observations of real ant
colonies were the inspiration for artificial ant algorithms. Ants are social insects: they
live in colonies. The behaviour of a colony is aimed at the survival the colony as
a whole. A particularly interesting pattern of behaviour among ant colonies is seen
in how they can find the shortest route between food sources and their nest. Ants,
when walking from food sources to the nest and back, deposit pheromone on the
ground, thus forming the so-called pheromone trail. Choosing their way, ants prefer
paths marked by strong concentrations of pheromone. If an ant colony has a number
of possible paths to the food source, it is able to find the shortest path by exploiting
the pheromone trails left by the individual ants. Ant colony behaviour in controlled
conditions was studied by Deneubourg et al. [13]. Qualitative results are shown in
Figure 7.

Without any barrier, ants’ path to the food source is a straight line. When we
put an obstacle in their way, both possible paths, the upper and the lower, are without
pheromone, therefore ants select them with the same probabilities. As time goes on,
random fluctuations cause that more ants randomly select one path, for example
the upper one, as shown in Figures 7b and 7c. Walking ants deposit pheromone:
the more ants on the path the greater amount of pheromone is deposited on it, and
in turn, it is a stimulus for ants to choose this way, and so on. This experiment
can be easily extended to the case with two different length paths. Based on the
above observations, the following probabilistic model of artificial ant colonies has
been developed. The ants which took the shortest way, come back to the nest from the
food source first. When they start another trip, the shortest path has more pheromone
and is selected with higher probability. So, we have a kind of distributed optimisation
mechanism, to which each single ant gives only a very small contribution. Ants perform
a difficult optimisation task using indirect communication mediated by pheromone
laying: such communication is called stigmergy. Stigmergy has a physical nature of
information distributed by communicating ants and it has a local nature of distributed
information. We can find different realisations of the Ant Colony System depending
on assumptions about forming a pheromone trail, evaporation of pheromone, and
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Figure 7. A general schema of Ant Colony behaviour [13]

so on. In the presented study we have implemented the algorithm yielding the best
result [10].

4.1. Ant Colony System meta-heuristic applied to the Travelling
Salesman Problem

An ant colony consists of m ants and solves the TSP problem in tmax iterations.
We assume a cyclic algorithm, i.e. each ant deposits pheromone on the path after
construction of the whole tour.1

The amount of pheromone τij(t) on the arc (i,j) represents attractiveness of
choosing this edge. All ants have memory: they remember cities visited and remaining
for closing the Hamiltonian circuit.

Ant number k chooses the route between cities i and j (the jth city is the
neighbour of the ith) during iteration t of tour construction with probability pkij(t)
given by the following equations:

aij(t)=
[τij(t)]α

[

1
dij

]β

∑

l∈Ni

[τil(t)]α
[

1
dil

]β
, (4)

pkij(t)=
aij(t)
∑

l∈Nk
i

ail(t)
, (5)

1. There are other possible algorithms, called ant-density and ant-quantity. In an ant-cycle
algorithm ants deposit pheromone after they have completed the whole tour, but in ant-density and
ant-quantity algorithms ants deposit pheromone during construction of the tour: ant-density means
that ants deposit a constant amount of pheromone, ant-quantity – that the amount of pheromone
on the chosen arc is inversely proportional to its length.
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where τij(t) – the amount of pheromone on the edge (i,j) deposited in the tth

algorithm iteration; dij – the length of edge (i,j); Ni – the set of neighbour cities
of the ith city; α, β – parameters that control the relative weight of the pheromone
trail and the length of the edge; Nki ⊆Ni – the set of neighbour cities of the ith city
not yet visited by ant k.

When all ants belonging to the colony have completed their tours, the pher-
omone on all edges evaporates. The role of evaporation is to prevent stagnation: it
allows the ants to escape from a local optimum. Next, each ant k deposits ∆τkij(t)
pheromone on each used edge, according to the equation:

∆τkij(t)=







1
Lk(t)

if (i,j)∈T k(t),

0 if (i,j) /∈T k(t),
(6)

where T k(t) – the tour done by the kth ant at the tth algorithm iteration; Lk(t) – the
length of the route T k(t).

The amount of pheromone deposit depends on how well the ant has performed,
i.e. the shorter the tour, the more pheromone on it. In practice, the following rule is
applied to all edges to calculate a new pheromone trail:

τij(t)= (1−γ)τij(t−1)+
m
∑

k=1

∆τkij(t−1), (7)

where γ ∈ (0,1] is a coefficient responsible for pheromone evaporation.
Initial values of parameters may be the following: τij(0) is set to a small positive

value on all edges, α= 1, β = 5, γ = 0.5, and the number of ants m is equal to the
number of cities N [10]. Too high α can cause stagnation – all ants select the same
route; with too high β ants always choose the nearest city.

5. Tabu Search meta-heuristic

Tabu Search (TS) is a meta-heuristic with possibilities of escaping from local
optima. It uses short-time memory to remember the latest solutions. In TS, discovered
solutions are written to the so-called tabu list the search process cannot use the
solutions present on this list. The tabu list has a finite length. At the beginning,
a tabu list is empty. As an optimisation process goes on, successive solutions are
written to this list. If it is full, the oldest solution is removed and a new one is added.
The larger the problem, the longer the tabu list, but a long tabu list causes that the
optimisation process consumes more time. Therefore, a tabu list should be as small as
possible, enough to a search large solution space, but long enough to allow the escape
from local optima. Another component of TS is the aspiration level, which allows for
using a tabu (i.e. forbidden) solution to escape from a local optimum.

A TS algorithm starts with an initially generated solution (tour). It can be
done using any method, for example, nearest neighbour heuristics. An initial tour
becomes current solution and best solution. Using local heuristic search, based on
a current solution, TS generates new, neighbourhood solutions. Potential solutions
are evaluated and the best one is selected as a candidate for current. The tabu list is
checked and the aspiration level is taken into account. The process is repeated until
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the stop criterion is reached. The TS method does not guarantee reaching a global
optimum.

TSP is a good test problem for Tabu Search. After Tsubakitani and Ewans [14],
for TSP with N cities, the size of a tabu list may be equal to N/4. An initial solution
can be stated using the nearest neighbour method. The question concerns local
heuristic, viz. how we should select neighbourhood solutions. For TSP, such heuristics
are based on k-Opt moves. Neighbourhood solutions are obtained by removing k edges
from the current tour and adding such k new edges that constitute a legal tour. k-Opt
moves are the basis of three frequently used heuristics: 2-Opt (Figure 8a), 3-Opt
(Figure 8b) and Lin-Kernigan (Figure 8c). Exchanging four or more edges can cause
the loss of tour consistency, therefore a sequential method of edge removal is proposed
in [15]. The set of removed edges is enlarged until it is promising. Figure 8c shows the
three first steps of the Lin-Kernigan method. The shortest route found becomes the
current solution.

Figure 8. Neighbour solutions searching heuristics

In the presented paper, the first two heuristics are taken into account in
searching for neighbourhood solutions. Additionally, a roulette wheel method for edge
selection in the 2-Opt and 3-Opt methods is implemented. A roulette wheel is built
from the distances between two subsequent cities on the current route which are
greater than the mean distance. Applied heuristics do not work well in situations
where only one city in the route should be changed to improve solution. Therefore
additional (optimisation) process is proposed. Solutions given by the 2-Opt or 3-Opt
heuristics are tested sequentially: another city is inserted between two neighbour
cities and the shortest route is selected as the current solution. The current tabu list
is always taken into account.

6. Hopfield Neural Network in TSP problem solving

Neural networks (NN) are a strongly developed field, starting from the early
forties, when McCulloch and Pitts proposed their architecture [16, 3, 17, 18]. Sim-
ilarities of artificial and biological neural networks lie in the possibilities of learning
(and generalizing) on the basis of a training set. In the last decades, new methods of
training have been developed, as well as their mathematical basis. NN’s are useful in
a variety of practical problems.

An artificial neural network is a collection of connected units, called neurons.
All connections are weighed (weights are usually real values). A neural network can
perform a desired task without knowing any algorithm of the task solution. Instead
of this, a network has to learn (be trained) to do a specific task. The learning
of neural networks means the adjustment of the weights of all connections in the
network [17, 18].

TQ107F-I/81 10X2003 BOP s.c., http://www.bop.com.pl



82 H. Kwaśnicka

For TSP, we can use a Hopfield Neural Network. In a recurrent Hopfield Neural
Network, all connections between neurons are allowed: outputs of neurons can be
connected as inputs to neurons of the same or earlier layer. A signal processed in such
a network oscillates between neurons until a convergence criterion is fulfilled, then
the output signal is produced. In analogue Hopfield networks, continuous activation
functions are assumed. An analogue network consists ofM working elements (neurons)
with the activation function:

xi= fβ(ui)=
1
2
(1+tanh(βui)) , (8)

where ui – an input signal of neuron i, xi – the output signal produced by neuron i,
β – an assumed parameter (β > 0).

For TSP with N cities, a Hopfield network has N2 neurons divided into N
groups. Each group contains N neurons and is responsible for a single city. A value
equal to 1 on the output of the kth neuron in the mth group denotes that the mth

city is in the kth position in the tour (solution). Because each city must be present in
the tour only once, only a single neuron in each group can produce the output signal
equal to 1. Therefore, some constraints must be defined.

Let us assume that xpi denotes the value of the output signal of the ith neuron
in the pth group. We can formulate the required constraints as follows:

xpi ∈{0,1}, p=1,2, . .. ,N ; i=1,2, .. . ,N, (9)

h1(x)=
∑

p

∑

i

∑

j 6=i

xpixpj =0, (10)

h2(x)=
∑

p

∑

i

∑

p 6=q

xpixqi=0, (11)

h3(x)=

(

∑

p

∑

i

xpi−N

)2

=0, (12)

where Equation (9) denotes that outputs of all neurons must be equal to 0 or to 1;
Equation (10) – that each city can be visited only once; Equation (11) – that two
different cities cannot be placed on the same position in the route; Equation (12) –
that all cities have to be present in the tour.

With above constraints defined, the goal function is:

J(x)=
∑

p

∑

p6=q

∑

i

dpqxpi(xq,i+1+xq,i−1), (13)

where dpq denotes the distance between cities p and q, xq0 means xqN , and xq,N+1
means xq1 (the tour is closed, a salesman must go back to the initial city).

Having formulated the problem, we can use a Hopfield Neural Network with
the energy function given by the equation:

E(x)=
A

2
h1(x)+

B

2
h2(x)+

C

2
h3(x)+

D

2
J(x)+

∑

p

∑

i

1
τ

∫ xpi

0.5

f−1β (ξ)dξ, (14)

where A, B, C, D, and τ are positive coefficients, fβ is given by Equation (8).
By minimising E(x), we minimise all its components. The first three compon-

ents have minimum values equal to zero, by minimising the fourth component we
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minimise the length of a route. The last component ensures that constraint (8) is ful-
filled. When a network reaches a stable state, the process stops and the route has been
found. In our computer implementation, the algorithm proposed by Muller, Reinhardt
and Strickland [17] has been used.

7. Simulation study of particular meta-heuristics

A computer program2 that has been used for this simulation study works in the
Microsoft Windows environment [19]. Special emphasis has been put on efficiency of
the methods and on possibilities of assuring comparable conditions for all the methods
(e.g. screen refreshing is blocked when time is measured).

7.1. Initial experiments (configurations of the studied methods)

The main aim of the initial experiments is to select appropriate values of
parameters of the tested methods. We must take into account the quality of the
obtained solution (i.e. the length of the found tour) and the computation time.

Genetic Algorithm (GA) is sensitive to probabilities of genetic operators
and population size. A list of parameters which need to be adjusted is as follows:
probabilities of Asexual Crossover (pAX), Mutation (pmut), Cycle Crossover (pCX),
Inversion (pinv), Size of the evolving population (Npop) and Fmultiple – a parameter
used for fitness scaling. Option Use SN allows to use the nearest neighbour method
in the initial phase.

Experiments (50 cities, 100 individuals, pAX = 0, pCX = 0, Fmultiple = 2, 10
runs with the same conditions) show that GA works well with pmut=0.2, pinv=0.8,
but with crossover used somewhat lower values of pmut and pinv are suitable (0.15 and
0.6 respectively). Comparing the results presented above with those obtained with
pmut, pinv, and pCX working together, we can see that GA works well without cycle
crossover. A series of experiments was made to study the influence of pAX on the
algorithm’s efficiency. It seems that pAX = 0.4 is near the optimal value. In further
experiments, we have included the nearest neighbour heuristic to create the initial
population. In such a case, the best results are given by pAX=0.6 and pCX=0.3. An
algorithm with all four operators switched on (mutation, inversion, cycle crossover and
asexual crossover) and with randomly generated initial population gives better results
than those obtained using only one, two or three operators. When GA works with
four operators switched on and an initial population is created by a nearest neighbour
heuristic, the appropriate parameter values are pAX = 0.1 and pCX = 0.2. The most
suitable value of Fmultiple has also been tested; the results show that Fmultiple =2
is relevant (with option NS , also the value of 3 works well).

The above described experiments indicate the optimal values ofGA parameters.
A number of experiments have been performed to check these values, with random
initial populations (pCX = 0.3, pAX = 0.6, pmut = 0.15, pinv = 0.6, Fmultiple = 2,
Population = 100) and with the nearest neighbour heuristic (pCX = 0.2, pAX = 0.1,

2. The computer program used in all the experiments was developed by Adrian Stefaniak during
work on his master thesis [19] at the Department of Computer Science, Wroclaw University of
Technology. Also some results presented in the paper were obtained by A. Stefaniak during his work
on the master thesis under supervision of the author of the paper.
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pmut =0.15, pinv =0.6, Fmultiple =3, Population =100). Experiments with different
sizes of the problem show that optimisation of individuals in the initial populatin by
the nearest neighbour heuristicis very significant: the best solution is found quicker,
for 100 cities the computation time is about 30% shorter. Additionally, for TSP with
more than 100 cities, e.g. 200 and more, the quality of solutions obtained is much
better.

Simulated Annealing (SA) requires that the user settles a number of para-
meters influencing the efficiency of SA. Parameters specific for SA are: Anneal-
ing factor , responsible for the rate of temperature decrease, number of iterations
(How many steps), initial (Begin temp.) and final temperature (End temp.), max-
imum number of trials of route searching during one iteration (Max path PS ), and
maximum number of changes of route for a single iteration (Max changes PS ). It is
possible to start with a route given by the nearest neighbour heuristics.

By means of simulations, we have found, that for 100 cities, the initial value of
temperature 5 is optimal. The result confirms recommendation found in [20]:

Tinitial=
Length of initial route

Number of cities1.5
. (15)

In our experiments, such theoretical value is equal to 4.9. While searching for an
optimal number of modifications in a single iteration (Max changes PS ), other
experiments have been made. According to simulation results, Max changes PS can
be assumed as follows:

Max changes PS =10Number of cities. (16)

Computation time does not depend significantly on this parameter.
The parameter Max path PS strongly influences computation time, as well

as solution quality. For 100 cities, values from the range [6400, 12800] seem to be
adequate. Because the quality of solution (the length of the obtained route) is a
significant issue in TSP, we assume that:

Max path PS =100Number of cities (17)

Another tested parameter is the annealing factor. Selection of this parameter together
with the number of iterations is very significant for the quality of results; SA needs
time to anneal temperature to zero. A higher value of the annealing factor causes that
temperature is reduced slowly. For 200 cities, the value of 0.99 gives good results if SA
is not stopped too early. Further tests (with different numbers of cities) confirm that
higher annealing factors give better results, but lower values (e.g. 0.1) can produce
good solutions only if SA works for a longer time. Using the nearest neighbour
heuristic to produce the initial tour does not significantly influence the efficiency
of SA. The quality of the obtained route and computation time are not better than
the previous ones.

An Ant Colony System (ACS) is very sensitive to the initial configuration of
cities, therefore many different configurations were used to select the suitable values
of parameters.

The ACS parameters are as follows: Number of ants is the size of ants’
population, Beta controls ants’ decisions, Gamma controls the rate of pheromone
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evaporation, Q3 modifies the amount of pheromone deposited, Tau is the initial value
of pheromone, and Steps to do is the number of iterations.

Experiments were made with 100 and 50 cities (about 9000 runs). The results
show that parameter Beta plays a crucial role. The best results are obtained with
Beta =6. Enlarging Q3 causes a worsening of the performance.

For 100 cities, with Beta = 6, Gamma = 0.5, Q3 = 100, Tau = 0.1, we have
searched for an optimal number of ants. A small number of ants (1, 5, 10, 16) is
able to find worse (longer) routes than larger populations. It seems that a population
of 32 ants repeatedly gives satisfactory results. Results obtained for other values of
parameters (Beta =6, Gamma =0.6, Q3 =10, Tau =0.1) are similar to the previous
ones. Experiments searching for an optimal value of Tau (with Beta =6,Gamma =0.5,
Q3 =100, 32 ants) show that Tau =0.1 yields the best results.

Tabu Search (TS) has been initially tested taking into account particular
heuristics. The required parameters are: length of tabu list (TL length), number of
iterations (Steps to do), choice of heuristic (2-Opt or 3-Opt), including or excluding
the optimisation process when TS reaches a local optimum (Optimize TS ), switching
on the roulette wheel (Use roulette) in the edge selection process, and the nearest
neighbour (Use it) or the random (Randomize) method for initial route construction.

The nearest neighbour heuristic applied with the 2-Opt method searching for
a new neighbour solution gives better results: shorter routes and lower dispersion
of results. Similarly, using the nearest neighbour with 3-Opt improves performance
of Tabu Search. Including the optimisation method makes Tabu Search much more
efficient: obtained results are better.

The tabu list is a very significant parameter of the Tabu Search method. Its
length is responsible for the balance between efficiency and capacity to escape from
local optima. Experiments (for 200 cities) show that, in our program, the optimal
length of the tabu list is about 40, which constitutes 20% of the number of cities.
For 100 cities the length of the tabu list should be between 10 and 20. A long tabu
list requires a lot of computation time, too short a tabu list can cause stagnation.
As we remember, in [14] we can find that the length of tabu lists should be 25% of
the number of cities. The roulette wheel method as a way of edge removal brings
slightly shorter routes and saves computational time. Combining the roulette wheel
and the optimisation process, the 3-Opt heuristic gives better results, taking into
account the required computational time. For large TSP (more than 100 cities), the
2-Opt heuristic seems to be more convenient: it is 100 times quicker than 3-Opt. But
the results given by 3-Opt have smaller dispersion. This means that if we require a
quick solution, we should use 2-Opt, but if we need a good solution (short route), the
3-Opt heuristic is better.

A Hopfield Analog Neural Network (NN) requires determination of its
specific parameters, i.e. for modification of energy – Time increment, Tau, three
parameters called Lambda[1], Lambda[2], Lambda[3] and coefficient Inverse slope
are required during initialisation of the network. Additionally, we can switch on
Adjust Lagrange parameter, which causes dynamical modification of the Lambda
parameters.

The Neural Network used in this simulation study is able to find solutions
only for a limited number of cities. Initial tests have been made for 50 cities.
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The results show that the three Lambda parameters equal to 1 work well, however
values 1.5, 1, 0.5 respectively, also give good results (experiments were made with
Time increment =0.0005, Tau =1, coefficient Inverse slope =0.03, Adjust Lagrange
switched off). With Adjust Lagrange switched on, the optimal values of all Lambda
parameters are equal to 0.1. Time increment equal to 0.00075 gives good results and
is acceptable taking into account time requirements. Inverse equal to 0.03 assures
good solution and acceptable computation time. The optimal value of Tau is 0.06,
no matter if dynamic modification is switched on or off. The higher values give worse
results, but the required computation time is lower.

7.2. Comparison of efficiency of selected meta-heuristics

Because the main objective of our study is to compare the efficiency of selected
methods, the presented results have been obtained using each method with the most
suitable parameters. They have been set as below:

• GA without nearest neighbour heuristic: pCX = 0.6, pAX = 0.3, pmut = 0.15,
pinv=0.6, Fmultiple =3, Population =100 individuals;
• GA with nearest neighbour heuristic: pCX = 0.2, pAX = 0.1, pmut = 0.15,
pinv=0.6, Fmultiple =3, Population =100 individuals;
• SA:Annealing factor =0.99,Begin temp. – done automatically (Equation (15)),
End temp. = 0, Max path PS = 100Number of cities, Max changes PS =
10Number of cities;
• ACS: Beta =6, Gamma =0.5, Q=100, Tau=0.1;
• TS: with roulette wheel and additional optimisation;
• NN: Lambda[1 ] =Lambda[2 ] =Lambda[3 ] = 1, Inverse slope =0.03,
Time increment = 0.00075, Tau = 0.6, Adjust Lagrange parameters switched
off.

For all conditions, each algorithm has been run 10 or 20 times.

Experiment 1. Sensitivity of the methods to the number of cities

Simulations for TSP consisting of different number of cities, varying from 20 to
1000, have been made. Results obtained are collected in Table 1.

All the used methods are able to find an optimal route for a small TSP, e.g. one
containing 20 cities. Only the Hopfield Neural Network has problems with tuning its
solution. Genetic algorithm, when it uses the nearest neighbour heuristic in the step
of creation of an initial population, works better. Sometimes for a small number of
cities it has the shortest route in the initial population. The Ant Colony System and
Tabu Search return solutions with the shortest processing time. For greater number
of cities, Simulated Annealing and Tabu Search are the most efficient methods. TS
with the 2-Opt heuristic is much quicker than SA, albeit for large numbers of cities
(between 500 and 1000) it produces slightly worse solutions. The advantage of SA is
an exactly defined stop time: when the temperature is near to zero. GA is able to find
a near optimal solution for more than 50 cities, but it consumes a lot of computation
time (compared with other methods). The Ant Colony System is a very fast method,
but the results become worse as we increase the number of cities. ACS is sensitive to
the initial configuration of cities, but not so strongly as the Hopfield Neural Network.
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Table 1. Results given by different methods for TSP – dependency on the number of cities

Algorithm Number The best Average The worst Dispersion Time [ms]
of cities route route route

GA∗ 20 380.06 386.07 408.34 8.85 774
GA∗∗ 20 380.06 380.06 380.06 0 0
SA 20 380.06 380.06 380.06 0 448
ACS 20 380.06 382.45 427.96 10.7112 1
TS 20 380.06 382.84 393.95 5.70 17
NN 20 401.90 428.78 461.76 14.5260 1800
GA 50 673.30 679.15 683.60 4.5479 8121
SA 50 645.14 646.91 652.41 2.5117 3493
ACS 50 678.51 678.51 678.51 0.0000 27
TS 50 645.14 652.35 681.95 9.52 456
NN 50 823.49 1027.58 1242.65 96.4085 109934
GA 100 804.92 811.87 814.92 4.0932 29478
SA 100 782.80 790.95 801.66 5.4153 10060
ACS 100 842.55 878.49 903.89 18.3044 1877
TS 100 788.15 798.30 809.42 6.39 3179
NN 100 2203.37 2412.43 2665.69 193.7298 364263
GA 150 961.41 983.06 995.77 15.0987 173148
SA 150 936.47 952.83 975.14 12.3128 20765
ACS 150 1096.55 1102.36 1110.21 4.1938 1096
TS 150 978.72 993.64 1002.02 11.84 3
NN 150 6882.44 7026.00 7198.01 159.6962 29700
GA 200 1166.77 1190.56 1200.75 13.5490 372922
SA 200 1111.91 1135.97 1152.79 9.8380 28636
ACS 200 1259.99 1276.63 1294.96 11.5443 2752
TS 200 1116.29 1143.07 1155.65 13.77 6589
NN 200 9227.68 9489.80 9626.14 155.3831 222041
SA 500 1659.67 1676.14 1688.21 8.90 99111
TS 500 1689.48 1706.88 1725.69 11.07 42653
SA 1000 2432.11 2445.76 2461.97 10.02 459206
TS 1000 2433.21 2448.95 2464.55 10.35 115420
∗ – without optimisation of initial population by the nearest neighbour heuristic
∗∗ – with optimisation initial population by the nearest neighbour heuristic

Experiment 2. Sensitivity of the methods to the number of removed edges

– optimisation of an incomplete TSP

In this experiment the methods are used for an incomplete TSP, which means
that not all the cities are directly connected. The number of removed routes (edges)
is equal to 100 or 1000. In all simulation runs, TSP consisting of 50 cities has been
solved. The results are collected in Table 2. Parameters of the methods are the same
as in Experiment 1, only in Tabu Search the 3-Opt heuristic has been used.

All simulations show that only Simulated Annealing and Tabu Search with the
3-Opt heuristic are able to solve TSP (find an optimal route) with 50 cities and 100
removed edges. As the number of removed edges increases, the computation time of SA
and TS decreases. The result occured in 20 simulation runs, so it is hardly incidental.
It seems to be connected with the way in which these methods search for neighbour
solutions. A smaller number of edges in the TSP problem leads to a smaller number
of tours to check. SA works quicker than TS, which is an effect of including the 3-Opt
heuristic into TS. The Ant Colony System relatively quickly finds a solution of TSP
with 100 removed edges, but – similarly to the Hopfield Neural Network – produces

TQ107F-I/87 10X2003 BOP s.c., http://www.bop.com.pl



88 H. Kwaśnicka

Table 2. Results given by different methods for TSP – dependency on the number
of removed edges

Algorithm A number The best Average The worse Dispersion Time [ms]
of removed tour tour tour
edges

GA 100 745.97 805.41 859.85 32.5961 19529
SA 100 667.55 669.74 681.07 3.9647 3385
ACS 100 746.84 773.61 809.88 17.1711 269
TS 100 667.55 674.29 684.15 5.5533 10369
NN 100 1106.50 1299.70 1444.73 80.8202 54505
GA 1000 986.44 1019.35 1051.73 23.2975 27048
SA 1000 866.99 872.10 879.48 4.6392 2132
ACS 1000 911.91 944.06 979.10 18.8485 374
TS 1000 884.72 899.16 912.90 9.5848 9876
NN 1000 2568.79 2568.79 2568.79 0 0

a solution far from the optimum. However, for 1000 removed edges the error is not
very significant. NN cannot find any solution of TSP with 1000 removed edges. Such
results are probably caused by the implemented way of edge removal: the distance on
a removed edge is assumed to be very large (compared with real distances it can be
treated as a non-existing connection).

Experiment 3. Efficiency of the methods for a TSP with uniformly
distributed cities

The study presented below concerns efficiency of the methods tested on a TSP
problen in which cities are distributed uniformly. The number of cities varies between
16 and 100. The parameters of the methods are the same as in Experiment 1. Results
obtained are summarised in Table 3.

The Ant Colony System and Tabu Search emerge as the quickest methods
for 16, 25 and 36 cities. All methods solve this task easily, only NN has a problem
with accuracy. For 25 cities ACS is the fastest method, however, for 36 cities TS
is a bit faster. GA is able to find a solution, but works slowly and dispersion of
the produced solutions is high. SA and TS work well on TSP with 49 cities, GA
has a little problem with the optimum, produces an acceptable route but requires
relatively long simulation time. ACS is able to find an acceptable solution relatively
quickly, but evidently has a problem with tuning. NN seems to produce solutions
accidentally: the dispersion is relatively high. TS has found an optimal tour for 64
cities in all runs and in relatively short time. SA has also found solutions in all runs,
while ACS sometimes produces wrong answers. SA is able to find the shortest route
along 81 cities, ACS works very fast but imprecisely, TS returns better results than
ACS but imprecise, and the working time of TS is long. In TS, it is possible to
improve the obtained solution by increasing the number of iterations, but processing
time also increases. One hundred cities TSP is too big a task for NN, for which it is
quite unhelpful. TS has found an optimum in all runs, SA and ACS also have found
optimal tours, but not in all runs. In acceptable time, GA has problems with the
quality of its solutions: the produced tour is far from the optimum.

Experiments show that for odd numbers of cities (49 and 81), distributed
uniformly on a rectangle, the tested algorithms have some problems with finding
the optimal tour. SA is usually able to find an optimum, but needs more time than
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Table 3. Efficiency of methods for uniformly placed cities in the TSP problem

Algorithm Number The best Average The worst Dispersion Time [ms]
of cities route route route

GA 16 320.00 320.00 320.00 0 1016.0
SA 16 320.00 320.00 320.00 0 9.5
ACS 16 320.00 320.00 320.00 0 0.5
TS 16 320.00 320.00 320.00 0 0.5
NN 16 336.56 351.48 353.13 5.24 2951.6
GA 25 422.35 423.82 426.04 1.46 5152.6
SA 25 422.35 422.37 422.63 0.09 113.4
ACS 25 422.35 422.35 422.35 0 2.0
TS 25 422.35 422.35 422.35 0 4.6
NN 25 462.10 473.27 489.40 9.31 8247
GA 36 508.00 517.98 523.32 6.10 10443.2
SA 36 508.00 510.00 512.00 1.63 144.3
ACS 36 508.00 509.72 525.20 5.44 17.1
TS 36 508.00 509.80 512.00 1.48 12.1
NN 36 627.82 649.46 673.84 16.48 39625.7
GA 49 621.46 633.21 650.23 9.37 17669.5
SA 49 610.69 613.43 616.70 1.89 442
ACS 49 632.69 636.35 640.00 3.85 10.0
TS 49 612.69 619.98 626.08 4.57 27.0
NN 49 852.63 916.84 961.83 42.10 98691.5
GA 64 731.34 743.18 758.68 9.65 54302.9
SA 64 704.00 704.00 704.00 0 1100.9
ACS 64 704.00 706.72 717.60 5.73 11.9
TS 64 704.00 704.00 704.00 0 18.6
NN 64 1128.77 1193.66 1269.37 47.06 197626.2
GA 81 851.36 871.43 896.85 14.05 86844.0
SA 81 814.14 815.80 822.43 3.49 681.3
ACS 81 856.57 862.17 870.99 6.52 19.3
TS 81 822.43 831.95 838.99 4.80 72.4
NN 81 1454.51 1473.70 1478.12 9.35 51506.5
GA 100 979.83 996.92 1025.93 16.54 128738.9
SA 100 900.00 903.73 907.46 3.93 2378.4
ACS 100 900.00 904.45 911.13 5.74 29.1
TS 100 900.00 900.00 900.00 0 57.5
NN 100 1658.04 1658.04 1658.04 0 0

ACS or TS. It seems that TS gives a little better results than ACS, because imprecise
solutions produced by TS are closer to the optimum than those produced by ACS.
For 49 and more cities GA has a problem with the precision of its solutions and
with computation time. A neural network cannot give precise solutions even for small
problems.

8. Summary

All meta-heuristics tested in the paper are very popular optimisation tech-
niques. I am frequently asked: what meta-heuristic should be used for this or that
problem? There seems to be no generally good answer for this question. Therefore, I
have attempted to find a partial answer to the question. Five approaches have been
selected and simulation studies of their efficiency on the basis on one task, the TSP
problem, have been performed. Using a purpose-developed computer program, about
40000 runs have been made. Part of them have been used to recognise the sensitivity
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of the methods to their parameters and to discover the appropriate combinations of
parameters. To compare efficiency of the methods, suitable sets of parameters were
settled for each method in each experiment.

All experiments show that the best results, independently of the complexity
of the problem, are produced by Simulated Annealing and Tabu Search. These two
meta-heuristics give similar results, are flexible and work well also with incomplete
graphs. Simulated Annealing has some advantages in that some of its parameters
can be determined automatically, ensuring adequate values for solving TSP, and in
the stop criterion being clear. Including additional optimisation into Tabu Search
improves its performance. Application of the 2-Opt heuristic with the roulette wheel
method of edge selection makes TS work relatively quickly. But the problem is to
define a clear stop criterion adequate for the given TSP. Genetic Algorithm needs
reconfiguration of parameters for particular TSP’s and simulation time for satisfactory
results is relatively long. The Ant Colony System is able to find an imprecise solution
relatively quickly, but it has problems with tuning the route. Another feature of ACS
is its sensitivity to the initial configuration. Experiments with the Hopfield Neural
Network do not allow us to say that it is a satisfactory method of solving TSP.
Possibly, changes in network configuration may bring improvement of its performance.

Recently, hybrid methods have become more popular in solving difficult prob-
lems. It seems that for TSP it is worth developing a hybrid method, for example an
Ant Colony System starting as the first method, the obtained approximate solution
being fed as an input tour for the Tabu Search method. Other combined techniques,
e.g. Genetic Algorithm and Tabu Search, could produce good results. Such studies
are envisaged to be done in the nearest future.
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