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Abstract: In this paper we present the Beta function and its main properties. A key feature of

the Beta function, which is given by the central-limit theorem, is also shown. We then introduce

a new category of neural networks based on a new kernel: the Beta function. Next, we investigate the

use of Beta fuzzy basis functions for the design of fuzzy logic systems. The functional equivalence

between Beta-based function neural networks and Beta fuzzy logic systems is then shown with the

introduction of Beta neuro-fuzzy systems. By using the Stone-Weierstrass theorem and expanding

the output of the Beta neuro-fuzzy system into a series of Beta fuzzy-based functions, we prove

that one can uniformly approximate any real continuous function on a compact set to any arbitrary

accuracy. Finally, a learning algorithm of the Beta neuro-fuzzy system is described and illustrated

with numerical examples.

Keywords: beta function, kernel based neural networks, Sugeno fuzzy model, neuro-fuzzy systems,
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1. Introduction

There are two principal approaches to solve the problem of construction of

a suitable set of fuzzy rules: manual generation or automatic generation.

In the manual approach, several parameters of the fuzzy inference engine must

be built by a fuzzy logic expert and is often based on heavy experimental and heuristic

methods [1]. The development of these methods takes an excessive time to build and

to adjust the fuzzy rules and it becomes even more difficult when the number of rules

increases. This motivated the researchers to automate the process of extraction of

fuzzy rules.

The basic idea of the automatic approach is to estimate the fuzzy rules by

training starting from couples of input/output data. Fuzzy systems using the capacity

of training of neural networks are currently used to successfully build input/output

transformations in several applications [1, 2].

The two principal advantages of neuro-fuzzy systems are: first, their capa-

city to identify fuzzy rules and to adjust automatically and simultaneously mem-

bership functions and, second, the fact that the parameters of these systems of-
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ten make physical sense, which is not always the case in the traditional neural

networks.

In this paper, we introduce a new category of neuro-fuzzy systems based on

a new kernel: the Beta function. Four theorems dealing with the main properties

of Beta neuro-fuzzy system are presented (their proofs are given in appendixes).

Main properties of this function are shown in Section 2. Section 3 is devoted to

Beta-based function neural networks (BBFNN). In Section 4 we present the Beta

fuzzy logic system (BFLS). The functional equivalence between Beta based function

neural networks and Beta fuzzy logic systems is then shown in Section 5 with

the introduction of Beta neuro-fuzzy systems. Section 6 deals with the universal

approximation property of the BNFS. Finally, a learning algorithm of the BNFS

is described in Section 7 illustrated with numerical examples.

2. Properties of the Beta function

2.1. Definition 1: One-dimensional Beta function

In the one-dimensional case, the Beta function [3] is defined by [4, 5]:

β(x; p,q,x0,x1)=







(

x−x0
xc−x0

)p(
x1−x

x1−xc

)q

if x∈]x0,x1[

0 elsewhere

(1)

with p,q,x0<x1 ∈ IR, and

xc=
px1+qx0
p+q

. (2)

Figure 1 shows the different shapes that can be generated by the Beta function.

One can note that this function is able to approximate many usual shapes such as

triangular, trapezoidal or Gaussian shapes [6].

2.2. Basic properties of a one-dimensional Beta function

The Beta function may be characterized by the following properties:

β(x0)=β(x1)= 0, (3)

β(xc)= 1, (4)

dβ(x)

dx
=

[

px1+qx0−(p+q)x)

(x−x0)(x1−x)

]

β(x), (5)

dβ(xc)

dx
=
dβ(x0)

dx
=
dβ(x1)

dx
=0, (6)

p

q
=
xc−x0
x1−xc

. (7)

It should be noted here that the Beta function may be considered as a linear function

of x if one takes p=1, q=0 or p=0, q=1.

2.3. Definition 2: A multi-dimensional Beta function

The Beta function in the multi-dimensional case is defined by [4]:

β(x)=

m
∏

k=1

β(xk,pk,qk,x0,k,x1,k). (8)
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Figure 1. Different forms of the Beta function in the one-dimensional case (x0=−1; x1=1)

It should be noted here that the multi-dimensional Beta function given by Equa-

tion (8) is the product ofm one-dimensional Beta functions expressed by Equation (1).

Below, we will use the same appellation (Beta function) when speaking about one-

dimensional or multidimensional Beta functions.

2.4. Definition and properties of the Gaussian function

The Gaussian function is defined by:

Gauss(x; µ,σ)= exp

[

−
(x−µ)2

2σ2

]

, (9)

Gauss(µ)= 1, (10)

dGauss(x)

dx
=−
(x−µ)

σ2
Gauss(x), (11)

Gauss(µ+nσ)=Gauss(µ−nσ)= exp−n
2/2= ε, (12)

ε→ 0 if n→ 0. (13)

2.5. Theorem 1: Approximation of the Gaussian function by
a Beta function

For any given Gaussian function Gauss(x; µ,σ) and for any given precision ε,

there exists a Beta function β(x; p,q,x0,x1) that approximates the Gaussian function
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Table 1. Parameters of the Beta functions illustrated in Figure 2

n p x0 x1 error(%)

3 4.5 −3 3 6.9871

4 8.0 −4 4 3.9726

5 12.5 −5 5 2.5505

6 18.0 −6 6 1.7738

7 24.5 −7 7 1.3043

8 32.0 −8 8 0.9997

100 5000.0 −100 100 0.0075

200 20000.0 −200 200 7.5866 ·10−5

1000 500000.0 −1000 1000 7.673 ·10−87
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Figure 2. Approximation of the Gaussian function Gauss(x; 0,1) with the Beta function

with an error of less than ε: |β(x; p,q,x0,x1)−Gauss(x; µ,σ)| ≤ ε for any x∈ IR. This

Beta approximation is characterized by choosing a sufficiently great n and taking:

p=n2/2, q=n2/2, x0=µ−nσ and x1=µ+nσ [6]. ut

Figure 2 illustrates some examples of such approximation. As can be seen in

this figure, for n=3, 4, 5, a residual error is still apparent on the edges of the Gaussian

function. However, for n≥ 6, it is not possible visually to distinguish the Gaussian

function from its Beta approximation.

It should be noted that the reverse is not true, since the Beta function can have

forms richer than the Gaussian function (asymmetry, linearity, etc.)

Moreover, the larger n, the better the approximation of the Gaussian function

by the Beta function. Indeed, n represents to some extent the distance from the center

of the Gaussian function at which this function is regarded as null. Table 1 illustrates

the values of n, p, x0, x1 for the examples in Figure 2 and their error. Error is given
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in % and represents the relative error between the Gaussian function and its Beta

approximation.

2.6. The central limit theorem

The central-limit theorem [7, 8] is a fundamental theorem which is extensively

treated in mathematical literature. Its formulation is based on probabilistic concepts.

In a reformulation of the central limit theorem, Papoulis [9] showed that:

Papoulis theorem

Let’s consider a set of n functions fi that are zero outside a finite interval

(ai,bi); then, under certain general conditions, their product tends to a Beta function

as n tends to infinity. ut

This theorem provides an important theoretical support in favor of the use

of Beta functions. An illustration of the central-limit theorem is given in Figure 3,

where it can be seen that only for n=3, the obtained functions product may be easily

approximated by a Beta function.

3. Beta basis functions neural networks (BBFNN)

An artificial neural network [10] may be represented as a set of interconnected

neurons; each neuron performs a given function and each connection specifies the

direction of the passage of the signal from one neuron to another. The behavior of

a neural network is governed by a certain number of adjustable parameters, which

are distributed among the neurons. Each neuron has its own transfer function.

Among the existing neural networks, the most used in literature are radial

basis function neural networks (RBFNN) [11]. In the remainder of this section, we

will consider, for reasons of simplicity and clarity, multi-input single-output (MISO)

networks.

3.1. Definition of a radial basis function neural network
(RBFNN)

A radial basis function neural network is a three layered neural network such

that: the first layer contains neurons corresponding to the input vector, the second

layer includes kernel neurons whose output is a Gaussian function, and the last layer

includes only one neuron which calculates the final output of the network given by [11]:

y= f(x)=

N
∑

j=1

wjGaussj(x), (14)

where

• x=(x1,x2, .. . ,xn)
T ∈I ⊂ IRn is the input variable;

• y ∈O ⊂ IR is the output variable;

• wj are the weights of the connections between the N hidden kernels and the

output neuron.

3.2. Definition 3: Beta basis function neural network (BBFNN)

A Beta basis function neural network is a three layered neural network such

that: the first layer contains neurons corresponding to the input vector, the second
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Figure 3. Illustration of the central limit theorem with n=3. The first four sub-figures represent

three randomly generated functions each: triangular, trapezoidal, Gaussian, and Beta. The product

of these three functions is presented in the last four sub-figures. The forms of the obtained product

functions can simply be reproduced by Beta functions

layer includes kernel neurons whose output is a Beta function, and the last layer

includes only one neuron which calculates the final output of the network given by:

y= f(x)=
R
∑

j=1

fj(x)βj(x), (15)

where

• x=(x1,x2, .. .,xn)
T ∈I ⊂ IRn is the input variable;

• y ∈O ⊂ IR is the output variable;
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Figure 4. The architecture of a Beta-based functions neural network (BBFNN)

• fj are the weights of the connections between the R hidden kernels and the

output neuron. One of the differences with the standard RBFNN is that, one

can have weights that depend on input vector x.

The architecture of a BBFNN is illustrated in Figure 4.

3.3. Theorem 2: Approximation of a RBFNN by a BBFNN

Any radial basis function neural network (RBFNN) can be approximated to any

precision by a Beta basis function neural network (BBFNN) with the same number

of hidden kernels. ut

It is important to note that the inverse is not true, since the Beta kernels of

a BBFNN can generate more rich shapes than the Gaussian kernels of a RBFNN

(asymmetry, linearity, etc.)

4. The Beta fuzzy logic system (BFLS)

4.1. The architecture of a fuzzy logic system (FLS)

Thirty years after the introduction of the state space theory by Kalman in

1960 [12], which initiated the modernization of the analysis methods of traditional

systems, the fuzzy logic theory of Zadeh [13] seems to open new horizons in the vast

field of data analysis and processing. The fuzzy approach is marked to a certain extent

by a revolution in methodology while moving away from the heavy approaches based

on the development of precise mathematical models and towards modeling and the

concrete reproduction of the human processes of thinking and decision-making.

The fuzzy set theory is a theory of inaccuracy and uncertainty; it makes it

possible to employ ill-defined concepts in ill-defined situations. It is a generalization

of the conventional binary logic in the sense that, instead of using ambiguous

membership functions such as 0 or 1, any degree of membership between 0.0 and

1.0 are allowed. This makes it possible to describe mathematically vague, ambiguous

and qualitative information in terms of membership functions. A fuzzy logic system

(FLS), as represented in Figure 5, characterizes a black box whose output is obtained

by a reasoning elaborated from the observation of the state of the system and a list

of rules describing how the system must evolve.
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Figure 5. Architecture of a general fuzzy logic system (FLS)

The fuzzification (or fuzzy quantification) consists in changing the type of data

representation: from a real number towards a fuzzy set of linguistic variables defined

in a universe of discourse constituted by several qualitative terms by using coding

generally expressed in linguistic terms.

The stage of inference uses two sets of data: observations of the state of the

system and a set of rules describing the system functionality, in order to infer the

system’s output depending on its current state.

Defuzzification relates to the production of a non-fuzzy value of the output,

which represents as accurately as possible the system’s output inferred by the fuzzy

inference engine.

Fuzzy logic becomes even more tempting when one notes the capacity of humans

to understand complex interrelationships and to react in consequence while observing,

reasoning and learning, and this with incomplete and partly inaccurate information. It

should be noted that in spite of the popularity of fuzzy logic, it is surprising to notice

that a fuzzy system is nothing more than a static, nonlinear and multidimensional

transformation of the input space towards the output space.

The principal objective of a fuzzy system is to model the human process of

decision-making by using the concepts of fuzzy logic and approximate reasoning.

A multi-input multi-output fuzzy system (MIMO) can be regarded as being

a function f :I ⊂ IRn→O ⊂ IRn
′

, where I is the input space and O is the output

space. As shown by Zeng and Singh [14] and by Lee [15], a MIMO fuzzy system can

always be separated into groups of multi-input simple-output (MISO) fuzzy systems.

Thus, all MIMO versions of the results in this paper can be easily obtained by simple

algebraic operations.
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4.2. Definition of a MISO Sugeno fuzzy system

According to the Sugeno model [16, 17], the output of a MISO fuzzy system

may be expressed by:

y= f(x)=







R
∑

j=1

fj(x)

n
∏

i=1

µXj
i

(xi)







/

{

R
∑

k=1

n
∏

l=1

µXk
l
(xl)

}

(16)

=
R
∑

j=1

fj(x)wj(x), (17)

where

• x=(x1,x2, .. . ,xn)
T ∈I is the input variable: xi,min≤xi≤xi,max,

• y ∈O is the output variable,

• R is the number of fuzzy rules in the formRj : IF (x is X
j) THEN (y is fj(x)),

• Xj =(Xj1 ,X
j
2 , .. .,X

j
n)
T are linguistic terms characterized by fuzzy membership

functions µXj
i

(xi) (these functions are in general triangular, trapezoidal, or

Gaussian functions),

• fj are functions: I ⊂ IRn→ O ⊂ IR (these functions are usually polynomials

in input variables xi, but can be any functions that describe the output of the

system within the fuzzy region specified by the antecedent of the fuzzy rule).

When fj is a constant, the fuzzy system is known as a Sugeno FLS of order 0,

• wj are R fuzzy basis functions (FBF), representing the firing intensity of each

fuzzy rule given by:

wj(x)=

n
∏

i=1







µXj
i

(xi)/

[

R
∑

k=1

n
∏

l=1

µXk
l
(xl)

]1/n






. (18)

Because of the great flexibility and interesting approximation properties of the

Beta function, we proposed [4, 5] the use of one-dimensional Beta functions as

membership functions and the use of multi-dimensional Beta functions as fuzzy

basis functions. This leads to the definition of a Beta fuzzy logic system.

4.3. Definition 4: Beta fuzzy logic system (BFLS)

A Beta fuzzy logic system (BFLS) is a Sugeno fuzzy system for which the fuzzy

basis functions are Beta functions. The output of a BFLS is given by [4, 5]:

f(x)=
R
∑

j=1

fj(x)βj(x). (19)

This definition is based on the central limit theorem. Indeed, we have proposed [4, 5]

to approximate the fuzzy basic functions (FBFs) given by Equation (18) by Beta

functions (since FBFs are products of n functions) and that this product tends,

according to the central limit theorem, towards a Beta function when n tends towards

infinity. It should be noticed that the use of Beta functions as FBFs does not require

normalization, which is the case in traditional FBFs given by Equation (18). Thus, one

may characterize the intensity of activation of each ruleRj : by a Beta function [4, 5]:

wj(x)=βj(x). (20)
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Figure 6. Illustration of approximation by Beta functions (Equation (8)) of some FBFs

(Equation (18)) for different membership functions used in a fuzzy system. The first three

sub-figures represent three membership functions each: triangular, trapezoidal and Gaussian. The

remaining sub-figures show FBFs of the different FLS using different combinations

of these membership functions
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An illustration of approximation by Beta functions (Equation (8)) of some fuzzy

basis functions (Equation (18)) for various membership functions used in a fuzzy

system is given in Figure 6.

5. Beta neuro-fuzzy system (BNFS)

Radial basis function neural networks (RBFNN) were shown [18] to be func-

tionally equivalent to Gaussian FBF based FLS without normalization. An extension

of this functional equivalence to generalized RBFNN, when using normalized FBF as

in Equation (18), has also been made [19].

5.1. Theorem 3: Functional equivalence between BBFNN and
BFLS

Beta basis function neural networks are functionally equivalent to Beta fuzzy

logic systems [4, 5]. ut

This theorem allows the simple and effective design of neuro-fuzzy models of

complex systems starting from the knowledge of couples of input/output data as it

will be presented in the next section.

5.2. Definition 5: Beta neuro-fuzzy system (BNFS)

A Beta neuro-fuzzy system (BNFS) is a system whose output is described by

Equation (19) and who, while being based on the preceding theorem, can be considered

at the same time as a Beta fuzzy logic system (BFLS) or as a Beta-based function

neural network (BBFNN).

With this definition, we are able to benefit at the same time from the expres-

sional richness of fuzzy systems and the training flexibility of neural networks.

6. Universal approximation properties of Beta neuro-fuzzy

systems

It is with the universal approximation theorems that fuzzy systems and neural

networks gained the recognition of the scientific community as useful tools with robust

mathematical bases.

6.1. Stone-Weierstrass theorem

Let X be a non-empty compact metric space, C[X] – a set of continuous

functions defined on X, and A – a subalgebra of C[X] with the following two

properties:

1. A contains the function (1),

2. A separates points in X, i.e. for any two distinct points a,b ∈ X, there is

a function f ∈A such that f(a) 6= f(b).

Then A is a dense subalgebra of C[X] in the topology induced by the uniform

metric [20, 21]. ut

Based on the theorem of Stone-Weierstrass [20, 21], Wang and Mendel [22]

have shown that, in the case of Gaussian membership functions, the set of all FBF

expansions given by Equation (17) can approximate, to any given accuracy, any real

continuous function.
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6.2. Wang and Mendel theorem

In the case of Gaussian membership functions, the set of all expansions of

FBF given by Equation (17) can approximate, with any precision, any real function

continuous [22]. ut

In the preceding section, based on the central-limit theorem, we have shown

that Beta functions given by Equation (8) used as Beta FBF can approximate any

FBF given by Equation (18) for any membership function used in the FLS. Using

the Stone-Weierstrass theorem [20, 21], we have proven a theorem concerning Beta

neuro-fuzzy systems [4–6] equivalent to that of Wang and Mendel [22].

6.3. Theorem 4: A Beta neuro-fuzzy system is a universal
approximator

For any given real continuous function g on the compact I ⊂ IRn and any

arbitrary ε> 0, there exists a Beta neuro-fuzzy system f such that:

supx∈I |g(x)−f(x)|<ε. (21)

In other words, a Beta neuro-fuzzy system (BNFS), by its two components BFLS

or BBFNN, can approximate any continuous real function on a compact to any

precision [4, 5]. ut

We have recently proven the same theorem with an entirely different approach

based on pseudo-trapezoidal functions, which Beta functions are a particular case

of [23, 24].

7. A learning algorithm for a Beta neuro-fuzzy system

To carry out the training of a Beta neuro-fuzzy system, we developed many

learning algorithms based on genetic algorithms [25, 26], iterative approaches [27], or

incremental gradient approaches [28, 29]. In this paper we will describe a learning

algorithm based on a modified version of the hierarchically self-organizing learning

algorithm [30, 31].

Our algorithm considers unknown fuzzy rules starting from a data set. The

training of a Beta neuro-fuzzy system consists in determining the minimum necessary

number R of rules and adjusting the parameters of the Beta functions of each hidden

node as well as their weights. The algorithm starts with 0 rules and generates the

suitable fuzzy rules as long as it is necessary. The fuzzy rules are generated by

recruiting in an incremental way the units which are Beta functions (hidden nodes)

and by adjusting parameters until a desired precision is reached. Incremental addition

of nodes is based simultaneously on control and adjustment of parameters x0, x1, p

and q.

A general procedure of the learning algorithm is as follows:

1. Initialize the number of training cycles l=1, the number of hidden nodes h=0,

and the number of patterns presented to the Beta neuro-fuzzy system n=1;

2. At the lth training cycle, evaluate |tnk−ynk| by using the nth pattern to be

learned (tnk and ynk are respectively the desired value and the current value of

the kth output unit);

3. If |tnk−ynk|>em, where em represents the error margin, then go to (4); if not

go to (5);
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4. If there is a hidden node such as the patterns to be learned xn are in the

hypersphere (β(xn) 6=0), then go to (5); if not create a hidden node and go to

(6) (The parameters of the new hidden node are determined initially by: set

h=h+1, set xc,h= input of the pattern to be learned xn, set x1,h−x0,h= rinit,

set ph= qh= pinit.);

5. Apply the training of the parameters for all the hidden nodes;

6. If all the patterns to be learned are presented, go to (7); if not, set n= n+1

and go to (2);

7. Set l= l+1;

8. If the network presents satisfactory performances (l > lmax); if not, set n= 1

and go to (2).

The learning algorithm updates the parameters in an incremental way while

being based on the current presented pattern to be learned. The parameters of the

Beta neuro-fuzzy network vh = [x
T
0,h,x

T
1,h,p

T
h ,q
T
h ,w

T
h ]
T (wh being the consequence

part of the fuzzy rule of a zero-order Sugeno type) are updated by applying the

traditional method of Levenberg-Marquardt [32] in order to minimize the error. The

error function of the nth pattern to be learned is defined by:

En=
1

2
‖tn−yn‖

2, (22)

with tn and yn being respectively the desired output and the current output of the

Beta neuro-fuzzy network for the nth pattern to be learned.

In order to test our learning algorithm and to analyze performance of Beta

neuro-fuzzy systems, we have carried out three series of simulations.

In the first series of simulations, we considered the work of Mitaim and

Kosko [33], in which they carried out a comparative study between different member-

ship functions of fuzzy systems. They considered the following 6 functions:

f1(x)= 3x(x−1)(x−1.9)(x−0.7)(x+1.8), −2≤x≤ 2; (23)

f2(x)= 10tan
−1

[

(x−0.2)(x−0.7)(x+0.8)

x+1.4

]

, −1≤x≤ 1; (24)

f3(x)=
100(x+0.95)(x+0.6)(x+0.4)(x−0.1)(x−0.4)(x−0.8)(x−0.9)

(x+1.7)(x−2)2
, (25)

−1≤x≤ 1;

f4(x)= 8sin(10x
2+5x+1), −1≤x≤ 1; (26)

f5(x)= 10tan
−1

[

(x−0.2)(x−0.7)(x+0.8)

(x+1.4)(x−1.1)x+0.7

]

, −1≤x≤ 1; (27)

f6(x)= 10[exp(−5|x|)+exp(−3|x−0.8|/10)+exp(−10|x+0.6|)], (28)

−1≤x≤ 1.

Then, they sought the error of approximation of these functions (200 samples) by

fuzzy systems with 12 rules and different membership functions by using non-linear

methods of regression to seek the minimal error. They found that the Gaussian and

sinc functions (sinc(x)= sin(x)/x) have the best performances.

We continued their work by introducing the Beta function and found the relative

errors of approximation shown in Table 2 (where error is given in % and represents
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Table 2. Relative approximation error of Mitaim and Kosko’s functions with FLS of different

membership functions

Function BNFS Gaussian-based FLS Sinc-based FLS

f1 5.5589 ·10−5% 1.3229 ·10−4% 4.6308 ·10−2%

f2 1.7984 ·10−4% 1.8675 ·10−4% 8.1124 ·10−3%

f3 1.3350 ·10−4% 6.6626 ·10−4% 2.9980 ·10−4%

f4 5.2980 ·10−3% 2.6678 ·10−1% 1.5688 ·10−1%

f5 2.8628 ·10−4% 3.3936 ·10−4% 1.0076 ·10−2%

f6 2.1288 ·10−3% 1.2755 ·10−2% 3.2081 ·10−2%

the relative error between the function to be approximated and the output of the

fuzzy system), which show beyond doubt a reduction in the error of approximation

due to the adoption of the Beta function.

In the other two series of simulations, we considered the following 5 new

functions:

square(x)= sign(cos(x)), −3π≤x≤ 3π; (29)

parabola(x)=x2, 0≤x≤ 3; (30)

sine(x)= sin(x), −3π≤x≤ 3π; (31)

deadenedsine(x)= sin(x)exp(−0.1x), −3π≤x≤ 3π; (32)

logarithm(x)= log(x), 0.2≤x≤ 3. (33)

In the second series of simulations, we fixed the number of rules (or the neurons

in the hidden layer) and we sought to minimize the relative error of approximation

by Gaussian and Beta functions to find the results shown in Table 3, once again

confirming the superiority of the Beta function over the Gaussian function. For the

square function, we have obtained excellent performances with just 3 Beta functions,

which is far from being the case of the Gaussian function.

Table 3. Relative approximation error with FLS of the same number of rules

Function Number of rules BNFS Gaussian-based FLS

square 3 8.5122 ·10−2% 3.6484 ·10−1%

parabola 3 3.4133 ·10−4% 3.4133 ·10−4%

sine 6 3.9851 ·10−2% 4.0113 ·10−2%

deadened sine 6 9.4938 ·10−3% 9.4965 ·10−3%

logarithm 4 5.3821 ·10−3% 7.1865 ·10−3%

In the third series of simulations, we left free the number of rules (or the neurons

in the hidden layer) and we sought to minimize, with a common error threshold, the

relative error of approximation by Gaussian functions and Beta functions to find the

results (see Table 4) which clearly demonstrate the flexibility of the Beta function

in the design of powerful neuro-fuzzy systems with a low number of rules or hidden

neurons.
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Table 4. Number of rules for different FLS with the same error goal

Function Error goal BNFS Gaussian-based FLS

square 1.0 ·10−2% 4 rules 59 rules

parabola 1.0 ·10−4% 6 rules 9 rules

sine 1.0 ·10−2% 10 rules 17 rules

deadened sine 1.0 ·10−3% 11 rules 15 rules

logarithm 1.0 ·10−3% 5 rules 7 rules

8. Conclusions

We have presented the Beta function and its main properties. Based on the

central-limit theorem, we have shown that Beta functions given by Equation (8) used

as Beta fuzzy basis functions can approximate any fuzzy basis function given by

Equation (18) for any membership function used in fuzzy logic systems.

We have investigated the use of Beta fuzzy basis functions for the design of

fuzzy logic systems and Beta-based function neural networks. A functional equivalence

between Beta fuzzy logic systems and Beta based function neural networks has also

been demonstrated to obtain a new kernel-based architecture known as Beta neuro-

fuzzy systems.

By using the Stone-Weierstrass theorem and expanding the output of Beta

neuro-fuzzy systems in series of Beta fuzzy basis functions, we have proven that any

real continuous function on a compact set may be uniformly approximated to any

arbitrary accuracy. Thus, Beta neuro-fuzzy systems have been shown to be universal

approximators.

Recently, other theoretical works on Beta neuro-fuzzy systems have proven

a theorem concerning better approximation of Beta neuro-fuzzy systems (it should

be noticed that this property is not verified by the multi-layer perceptrons neural

networks [11]), as well as another theorem, concerning the unicity of the best

approximation of Beta neuro-fuzzy systems [34].

The Beta neuro-fuzzy system was successfully implemented as a VLSI cir-

cuit [35, 36] and applied in the following areas:

• control of non-linear systems [37],

• control of robotic systems [38, 39],

• robot trajectory planning [40],

• recognition of isolated spoken Arabic words [41],

• recognition of printed numerals [42],

• recognition of on-line handwritten characters [43],

• recognition of Arabic handwritten characters [44],

• recognition of on-line cursive handwriting [45],

• recognition of on-line Arabic handwriting [46].
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Appendix A: Proof of theorem 1

We wish to find the parameters of the Beta function β(x; p,q,x0,x1) which

approximates the Gaussian function as well as possible Gauss(x; µ,σ), that is for all

given µ and σ, find p, Q, x0 and x1 such that:

β(x; p,q,x0,x1)'Gauss(x; µ,σ), (34)

dβ(x; p,q,x0,x1)

dx
'
dGauss(x; µ,σ)

dx
. (35)

The Gaussian function being symmetrical and centered in µ, we must thus choose

a symmetrical Beta function centered in µ. One can thus choose:

p= q, (36)

xc=µ, (37)

x0=xc−∆, (38)

x1=xc+∆, (39)

One thus obtains:

|β(µ; p,q,x0,x1)−Gauss(µ; µ,σ)|= |1−1|=0,

|β(x0; p,q,x0,x1)−Gauss(x0; µ,σ)|= |0−exp
−n2/2 |,

and

|β(x1; p,q,x0,x1)−Gauss(x1; µ,σ)|= |0−exp
−n2/2 |,

that tends towards zero if n tends towards infinity.

In order to respect Equation (12) for the Beta function, one can choose:

∆=nσ. (40)

Finally, Equations (5), (11), (34), (35) give:
[

px1+qx0−(p+q)x)

(x−x0)(x1−x)

]

'−
(x−µ)

σ2
(41)

and since p= q and x0+x1=2µ, one obtains easily:

p=
(x−x0)(x1−x)

2σ2
. (42)

Equation (42) is valid for all x∈]x0,x1[, and in particular for x=xc, which gives:

p=
n2

2
. (43)

Let us now show that the Beta function which we have just built verifies the inequality

|β(x; p,q,x0,x1)−Gauss(x; µ,σ)| ≤ ε for all x∈ IR.

β(x; p,q,x0,x1)=

[

x−µ+nσ

nσ

]n2/2[
µ+nσ−x

nσ

]n2/2

, (44)
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=

[

1

nσ

]2n2/2
[

(nσ)2−(x−µ)2
]n2/2
, (45)

=

[

1

nσ

]n2
[

(nσ)2
]n2/2

[

1−

(

x−µ

nσ

)2
]n2/2

, (46)

= exp

{

n2

2
log

[

1−

(

x−µ

nσ

)2
]}

, (47)

= exp

{

n2

2

[

−

(

x−µ

nσ

)2

+O(1/n2)

]}

, (48)

= exp

{

−
(x−µ)2

2σ2
+
n2

2
O(1/n2)

}

. (49)

It is well known that for all given ε, there exists n sufficiently large such that:
∣

∣

∣

∣

exp

{

−
(x−µ)2

2σ2
+
n2

2
O(1/n2)

}

−exp

{

−
(x−µ)2

2σ2

}
∣

∣

∣

∣

≤ ε

and thus for all given ε, there exists n sufficiently large such that:

|β(x; n2/2,n2/2,µ−nσ,µ+nσ)−Gauss(x; µ,σ)| ≤ ε.

Appendix B: Proof of theorem 2

Based on theorem 1, one can approximate to any precision any Gaussian

function by a Beta function. Theorem 2 is then automatically deduced.

Appendix C: Proof of theorem 3

The proof easily results from the observation that the output of a Beta based

function neural network, given by Equation (15), is identical to the output of the Beta

fuzzy logic system, given by Equation (19).

Appendix D: Proof of theorem 4

We will use the Stone-Weierstrass theorem [20, 21] to prove theorem 4.

First, we will prove that the set of Beta neuro-fuzzy systems (BNFS) is

a subalgebra of C[I ]. Let f1, f2 be two BNFS, so we can write these functions as:

f1(x)=

R1
∑

j=1

f1j(x)β1j(x), (50)

f2(x)=

R2
∑

j=1

f2j(x)β2j(x), (51)

f1(x)+f2(x)=

R1+R2
∑

k=1

{δ1kf1k(x)β1k(x)+δ2kf2k(x)β2k(x)}, (52)

δ1k =1 if k≤R1, 0 otherwise, (53)

δ2k =1 if k >R1, 0 otherwise, (54)
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f1(x)f2(x)=

R1
∑

j=1

R2
∑

k=1

[f1j(x)f2k(x)][β1j(x)β2k(x)]. (55)

Equation (52) is in the same form as Equation (19), so that f1+f2 is a BNFS.

Similarly, we have Equation (55), which is also in the same form of Equa-

tion (19), since the product of two Beta functions given by Equation (8) is a Beta

function; hence f1×f2 is a BNFS.

Finally, for any α∈ IR:

αf1(x)=

R1
∑

j=1

[αf1j(x)]β1j(x), (56)

which is again in the form of Equation (19); hence, αf1 is a BNFS.

Therefore, the set of BNFS is a subalgebra of C[I ].

Next, we will prove that the set of BNFS verifies condition 1 of the Stone-

Weierstrass theorem.

This can be trivially obtained by noting that for p= q=0:

1=1
n
∏

k=1

(xk−xk,min)
0(xk,max−xk)

0, (57)

where xk,min and xk,max are the bounds of I in each dimension. This equation has the

same form as that of a Beta function given by Equation (8) and for which xk,min<x0,k
and xk,max<x1,k.

Finally, we will prove that the set of BNFS separates points on I (condition 2).

Let’s consider two a,b∈I such that a 6= b. Suppose for example that ai 6= bi.

Let’s construct an f ∈ BFBFe such that f(b) 6= f(a). Let’s choose f as following:

f(x)= (xi−ai). One can easily see that f(a)= 0 and f(b)= (bi−ai) 6=0, since ai 6= bi.
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