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Abstract: The harmonics of an acoustic beam have been evaluated numerically by means of an

integral representation according to the perturbation theory. A method for evaluation of the integrals

of a rapidly oscillating function has been applied. Special attention has been paid to the accuracy

of calculations and an algorithm for error estimation has been proposed. A computer program has

been realized, and the profiles of the first and the second harmonics have been plotted. The used

methods can be applied for the problem with dissipation or dispersion.
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1. Introduction

The problem of the propagation of a nonlinear sound has been studied for rather

along time, and several modeling equations for sound beam propagation have been

proposed. Among them is the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [1]:

ρzt−
ε

2c0ρ0
ρ2tt−δρttt=

c0
2
∆⊥ρ. (1)

It takes into consideration weak nonlinearity and weak absorption. The KZK equation

has been widely used to describe nonlinear fields of sound and acoustic pulses. It

provides an excellent model for the sound field of a plane source of an arbitrary shape

when the ratio of source dimension to wavelength is large.

Like all other modelling equations for this problem, the KZK equation cannot

be solved exactly for the general case and has been investigated with various numerical

schemes and asymptotic methods (for examples see [2, 3]). The solution of this

equation by the perturbation method has been proposed by Kunitsyn and Rudenko [4].

We propose a computer code for numerical evaluation formulas from [4]. As

experimental measurements are usually made for pressure, the main equation will
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be rewritten in terms of pressure. The problem geometry will be the same as in [4].

Cylindrical coordinates and a piston plane source with uniform amplitude distribution

have been used.

For the sake of analysis, normalization has been made. Pressure has been

normalized by pressure amplitude on the source, the longitudinal coordinate σ – by

the Rayleigh distance, and the transversal coordinate ξ – by the diameter of source

a. Additionally, we have neglected dissipation (δ=0). The equation to solve is:

pσt−
ε

2c0
p2tt=

c0
2
∆⊥p. (2)

The following dimensionless variables have been introduced: p – pressure, ε – the

nonlinear constant, σ – the longitudinal coordinate along the direction of beam

propagation, ∆⊥ – the Laplasian over the transversal coordinate ξ, c0 – the velocity

of linear sound propagation.

The solutions of this equation by the perturbation method for the first and the

second harmonics result in:

p(σ,ξ,t)= p(1)(σ,ξ)eiωt+p(2)(σ,ξ)e2iωt+c.c., (3)

p(1)(σ,ξ)=

∞∫

0

J1(λ) J0(λξ) e

(
1
4 iλ

2σ
)
dλ=V (σ,ξ), (4)

p(2)(σ,ξ)=−2ε(ka)2
σ∫

0

exp

(
− 2iξ

2

σ−σ′
)
dσ′

σ−σ′×

×
∞∫

0

(
V (σ′,ξ′)

)2
e

(
−
2iξ′2

σ−σ′

)
J0

(
4ξξ′

σ−σ′
)
ξ′dξ′=−2ε(ka)2W (σ,ξ), (5)

where c.c. means complex conjugation (see [4]).

It is supposed that p(1)(σ,ξ)� p(2)(σ,ξ). Equation (4) can be simplified and
rewritten as an elementary function in special cases only. There are no convenient

representations of expressions (4) and (5) for arbitrary arguments σ, ξ, so that special

methods to calculate integrals need to be used. Because of these complications,

asymptotes are used for Equations (4) and (5). We propose a method for the

calculation of the integrals of the oscillating functions (4) and (5). This work pays

special attention to the estimation of calculation error. This is important for the

correct comparison of the results of a medium parameters extraction by measuring

the amplitudes of harmonics and the results obtained from a theoretical model.

2. Calculation of the first harmonic

For ξ=0, integral (4) can be transformed into a simple analytical formula [4].

The latter will be used for the calculation of a field of the first harmonic on longitudinal

axis:

V (σ,0)= 1−exp(i/σ). (6)

The calculation according to this formula does not involve any numerical method, let

us consider therefore the error of the calculation to be negligibly small.
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Equation (4) will be used to evaluate the field for ξ > 0 (the non-axial case). For

the convenience of presentation of the formulas, new notations have been introduced:

f(λ)= J1(λ)J0(λξ), g(λ)=
iλ2σ

4
, V (σ,ξ)=

∞∫

0

f(λ)eg(λ)dλ. (7)

In the area ξ > 0, it is reasonable to present the second expression in Equation (7) as

a sum of two integrals calculated by different methods:

V (σ,ξ)=

∫ L

0

f(λ)eg(λ)dλ+

∫
∞

L

f(λ)eg(λ)dλ= I1(0,L)+I2(L,∞). (8)

On the interval [0,L], the integral has been calculated by the method of trapezoids

with a constant step hλ:

I1(0,L)=
N∑

i=1

λi+hλ∫

λi

f(λ)eg(λ)dλ≈
N∑

i=1

hλ
2
(f(λi)e

g(λi)+f(λi+hλ)e
g(λi+hλ)). (9)

For the second interval, an asymptotic formula constructed by repeated integrations

by parts has been used:

I2(L,∞)=
∞∫

L

f(λ)eg(λ)dλ=

∞∫

L

f(λ)

g′(λ)
d(eg(λ))= f(λ)

eg(λ)

g′(λ)

∣∣∣∣
∞

L

−
∞∫

L

eg(λ)d

(
f(λ)

g′(λ)

)
=

= f(λ)
eg(λ)

g′(λ)

∣∣∣∣
∞

L

−
(
f(λ)

g′(λ)

)′
eg(λ)

g′(λ)

∣∣∣∣
∞

L

+

∞∫

L

eg(λ)d

((
f(λ)

g′(λ)

)′
1

g′(λ)

)
+ . . . (10)

It may be noted, that the results of the subsequent integrations differ from the

previous ones by multiplier 1/g′(λ). For σλ� 1, each subsequent term will be less
then the previous one. This enables us to obtain the necessary accuracy of calculation

depending on the number of terms and the value of L.

The choice of the value of L in Equation (10) and the size of step hλ in

Equation (9) are closely connected with the problem of the accuracy and time of the

calculation. On the one hand, a reduction of L reduces the time of the calculations.

On the other hand, the accuracy of the results thus decreases. We have used the

following procedure.

Let the accuracy of integration in Equation (8), ∆V (σ,ξ) = n, be given and

suppose that:

∆V (σ,ξ)=∆I1(0,L)+∆I2(L,∞) ∆I1(0,L)=
1

2
n, ∆I2(L,∞)=

1

2
n. (11)

Using the second term in Equation (10) as an error estimation of the asymptotic

formula, let us find a minimal value of L for the given value of error ∆I2(L,∞):

∆I2(L,∞)=
4J1(Lξ)J1(L)Lξ−4J0(Lξ)J0(L)L+8J0(Lξ)J1(L)

L3σ2
e
1
4 iσL

2

. (12)

As the above equation is transcendent and not solvable analytically with respect to

L, an estimation obtained by the following simplifications [5] has been used:

Jν(x)=

√
2

πx
cos(x− 1

2
νπ− 1

4
π), |a+b| ≤ |a|+ |b|. (13)
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The usage of such asymptotes for cylindrical functions essentially simplifies Equa-

tion (12). However, it simultaneously results in a drastic decrease of in accuracy for

small ξ. Therefore, it is necessary to use Equation (12) to obtain a more realistic value

of the accuracy of calculation (not estimation).

The usage of Equation (13) results in the following inequality:

|∆I2(L,∞)| ≤ 8
L(ξ+1)+2

πσ2L4
√
ξ
. (14)

The value of L is a solution of a set of conditions:

8
L(ξ+1)+2

πσ2L4
√
ξ
=
n

2
, L> 0, Im(L)= 0. (15)

The value of hλ is calculated from an estimation of the error value of the trapezoids

method, by using the values of L and n:

∆I1(0,L)=−
h2λ
12
(f(L)eg(L)−f(0)eg(0))′. (16)

It is possible to select, by an appropriate choice of the parameter n, such a value of

step hλ at which, for one period of oscillations of any integrands f(λ) and e
g(λ), there

will be a sufficient number of points for a correct calculation.

As for the calculation of the parameter L, Equation (15), a number of simpli-

fications have been made. It is necessary to apply Equations (12) and (16) directly to

obtain the actual error of the calculation ∆V (σ,ξ).

The proposed technique allows us to preserve the accuracy of the calculations

while reducing the amount of steps in the trapezoids method (9) for an increasing

coordinate σ. It considerably reduces the time of calculation for σ > 0.1.

3. Calculation of the second harmonic

The field of the second harmonic is described by formula (5) from [4]. Let us

consider certain features of the given formula.

Firstly, both integrands are products of functions oscillating rapidly with

different speeds; therefore, a special method of numerical calculation must be applied.

Secondly, in the integral over ξ′, the integrand is a product of the tabulated function

p(1)(σ,ξ), analytic Bessel’s functions and an exponent. As the integration over ξ′

and σ′ has been carried out along a fixed grid, where the value of V (σ,ξ) has

been calculated, then the accuracy of calculation of p(2)(σ,ξ), along with the chosen

numerical method, depends on the quality of tabulation of the function V (σ,ξ).

Thirdly, as the calculations are carried out on a finite range of coordinates, the upper

limit of integration on ξ′ – viz. infinity – creates the problem of proper selection of

a higher limit of the integration.

Equation (5) includes the source and medium parameters. To exclude their

influence, only the integral part denoted by W (σ,ξ) will be calculated. It differs from

the second harmonics by a multiplier, which is constant for a given system. Let us

rewrite the part of the expressions from Equation (5) as a sequence in which the

integration will be made:

I(σ,ξ,σ′)=

∞∫

0

(V (σ′,ξ′))2J0

(
4ξξ′

σ−σ′
)
ξ′ exp

(
− 2iξ

′2

σ−σ′

)
dξ′, (17)
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W (σ,ξ)=

σ∫

0

I(σ,ξ,σ′)

σ−σ′ exp
(
− 2iξ

2

σ−σ′
)
dσ′. (18)

Using the same numerical scheme for different ranges of the variable of integration for

calculating integrals (17) and (18) leads to incorrect results. Formally, there are no

singularities in integrand (17), but both construction of an asymptotic series by the

integration by parts and integration by the method of stationary phase have failed.

Therefore, it has been decided to take advantage of the method offered in [6]. Let

f(x), g(x) be functions of a complex argument. Then, it is possible to use a special

quadrature formula for the integration:

I =

b∫

a

f(x)eg(x)dx=
N∑

k=1

xk+h/2∫

xk−h/2

f(x)eg(x)dx≈
N∑

k=1

Bk,

Bk =

{
(f(xk)e

g(xk)h, |g′(xk)h| ≤ 0.1 ,
f(xk)e

g(xk) 2
g′(xk)

sh(g′(xk)
h
2 ), |g′(xk)h| ≥ 0.1 .

(19)

To obtain an estimation of error in the case of |g′(xk)h| ≥ 0.1, let us turn to a method
of obtaining the formula of integration. Let us expand functions f(x) and g(x) in

a Taylor series up to the second and third terms, correspondingly, in the neighborhood

of a point xk, the middle of the interval [xk−h/2,xk+h/2]:

B̃k =

xk+h/2∫

xk−h/2

f(x)eg(x)dx ∼

∼
xk+h/2∫

xk−h/2

(f(xk)+f
′(xk)(x−xk))eg(xk)+g

′(xk)(x−xk)+
1
2 g
′′(xk)(x−xk)

2

dx. (20)

Subsequently, we expand factor e
g′′(xk)

2 (x−xk)
2

in a Taylor series. Using the first two

terms of the expansion superimposes the condition | 12g′′(xk)(x−xk)2| � 1, which is
true for the variable ranges we use:

B̃k =

xk+h/2∫

xk−h/2

(f(xk)+f
′(xk)(x−xk))eg(xk)+g

′(xk)(x−xk)
(
1+
g′′(xk)

2
(x−xk)2

)
dx=

= f(xk)e
g(xk)

xk+h/2∫

xk−h/2

eg
′(xk)(x−xk)dx+f ′(xk)e

g(xk)

xk+h/2∫

xk−h/2

(x−xk)eg
′(xk)(x−xk)dx+

+f(xk)e
g(xk)
g′′(xk)

2

xk+h/2∫

xk−h/2

(x−xk)2eg
′(xk)(x−xk)dx+

+f ′(xk)
g′′(xk)

2
eg(xk)

xk+h/2∫

xk−h/2

(x−xk)3eg
′(xk)(x−xk)dx. (21)
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The first term is an approximate value of the integral, the next are estimations of

the error of calculation. The contribution of the last term can be neglected, when

compared with the values of the second and the third ones, and ∆B̃k (the error of

this calculation) is expressed as:

∆B̃k ≈ f ′(xk)eg(xk)
(
h

g′(xk)
ch(
g′(xk)h

2
)− 2

g′(xk)2
sh(
g′(xk)h

2
)

)
+

+f(xk)e
g(xk)
g′′(xk)

2

((
h2

2g′(xk)
+

4

g′(xk)3

)
sh(
g′(xk)h

2
)− 2h

g′(xk)2
ch

(
g′(xk)h

2

))
. (22)

It is possible to simplify this formula without significantly altering its accuracy by

expansion in a Taylor series on h. Thus, the formula for the error of calculation based

on Equation (19) is as follows:

∆I ≈
N∑

k=1

∆Bk,

∆Bk =

{
1
2h
2(f(xk)e

g(xk))′, |g′(xk)h| ≤ 0.1,(
2f ′(xk)g

′(xk)+f(xk)g
′′(xk)

)
1
24e
g(xk)h3, |g′(xk)h| ≥ 0.1.

(23)

While numerical integration can be performed with greater accuracy by other numer-

ical schemes, the advantages of formulas (19) and (23) are the simplicity of program

realization and the absence of calculation of higher derivatives from the tabulated

function V (σ,ξ).

As the calculation of the first harmonic has been made with some error, the

latter involves an additional error in the calculation of the field of the second harmonic,

which is necessary to take into account when calculating Equations (17) and (18). Let

function ϕ(x)= f(x)eg(x) be preset with accuracy ∆ϕ(x). After numerical integration,

it results in:
∫
(ϕ(x)+∆ϕ(x))dx=

∫
ϕ(x)dx+

∫
∆ϕ(x)dx'

'
∑

k

Bk(ϕ(x))+
∑

k

Bk(∆ϕ(x))+
∑

k

∆Bk(ϕ(x))+
∑

k

∆Bk(∆ϕ(x)). (24)

The value of error is determined by the last three terms: the error of the

numerical method of calculation of an integral from function ϕ(x), the value of an

integral from function ∆ϕ(x), and the error of the method of calculation of this

integral.

Equations (19), (23) and (24) represent a set of formulas for evaluation of the

field of the second harmonic (5) and an estimation of the accuracy of results.

4. Grid parameters

The selection of the range of coordinates σ and ξ is determined by several

factors. As in Equation (4), the coordinates are involved as parameters, the value of

V (σ,ξ) can be calculated at any point (σ,ξ), i.e. calculation on grid (σ,ξ) of any size

with arbitrary values of the size of steps hσ, hξ is possible. The only limitation for
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the interval on σ is applicability of the perturbation theory. Equations (4) and (5) are

correct at the length about the Rayleigh distance:

r0=
1

2
ka2, k=

ω

c0
. (25)

The variable σ in Equations (4) and (5) is already normalized by this value, hence

the upper boundary σmax should be of the order of 1. The lower boundary σmin
can be determined as the minimal distance for the fixed grid pitch hσ at which the

values in two adjacent points correctly interpolate the behavior of function (4). As an

estimation, we will use an absolute value of the expression (6):

V (σ,0)=2
∣∣sin((2σ)−1)

∣∣. (26)

The frequency of oscillations increases with the argument approaching zero

and, at some range of coordinates σ, the values of the function in adjacent points of

a grid do not reflect the actual behavior of the function. The criterion for calculating

the minimum value of the coordinate, σmin, at fixed pitch of a grid hσ will be the

difference of arguments of a function sine in two adjacent points of the grid:

σmin>−
hσ
2

(
1−
√
1+
2

hσπ

)
. (27)

Due to the limitation of the area of the applicability of the KZK Equation [7], there

is a minimal distance at which this equation becomes correct. It depends on the wave

length and the size of the source, so that calculations at σKZK < (ka)
(1/3)a/r0 are

not physically correct. For a typical ultrasonic source at values of hσ of the order of

10−2, the inequality σmin<σKZK is true, and our algorithm mathematically correctly

covers the region where the basic Equation (2) fails. It is necessary to note that

Equation (2) is not only unusable near the source, but experimental measurements

also are not carried out in this area.

The selection of an interval for the construction of a grid on the transversal

coordinate, ξ, is rather easy. From the slow change of the profile of a beam in the

longitudinal direction follows its low transversal divergence: it is thus necessary to

consider distances not greatly exceeding the size of the source. Taking into account

the normalization of ξ by the size of the source, a, in Equations (4) and (5), we

obtain the following: ξmin = 0 and 1< ξmax < 10. Function (4) is also oscillating on

the coordinate ξ, but there are no convenient formulas to estimate the speed of these

oscillations, and the size of step hξ has been selected from the results of calculations.

It will be shown in the discussion section that the speed of oscillation decreases with

increasing σ or ξ.

The results of the first harmonic calculation are used to evaluate the second one.

The accuracy of the calculation ofW (σ,ξ) depends not only on the numerical method

used, but also on the quality of tabulation of V (σ,ξ), the ranges of the grid and its

pitch. As shown above, the calculation of V (σ,ξ) is possible at any values of σ, ξ and

any size of steps hσ, hξ. In the case of the calculation by Equation (18), the numerical

integration over σ′, ξ′ has been made on the same grid that the values of V (σ,ξ) were

obtained on. Therefore, for the calculation of integral (17), the upper limit is replaced

by ξmax. Because of low beam divergence, it is possible to consider that V = 0 at
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