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Abstract: Three numerical benchmarks concerning the freezing of water in small enclosures are

analysed using the commercial FLUENT code. The first case is a steady-state natural convection

in a differentially heated cavity for temperatures near the freezing point. In the second case, the

freezing of water in a differentially heated cavity is simulated. The third case describes a simulation

of freezing water in the presence of forced convection and a free surface flow. Two finite-differences

numerical codes are used to verify results of the FLUENT simulations for the natural convection and

solidification in the differentially heated cavity. It is found that the simulation of water solidification

requires very fine meshes and short time steps, extending the computational time to the extreme.

Keywords: numerical simulation, numerical benchmarks, finite volume method, fixed grid enthalpy-

porosity method, volume of fluid, solidification, free surface flow

1. Introduction

The simulation of solidification processes is still a challenging task for numerical

modelling. Such modelling became to play an important role in several branches of

industry, including the foundry industry (in continuous casting of metals), welding, the

material industry (in composite materials and crystal growth), cryosurgery and food

conservation. Solidification is also present in several natural processes, like iceberg

evolution, magma chambers or crust formation. Direct application of numerical

methods to the engineering or environmental problems is not a trivial task. It is due

to the usual complexity of geometry, variable and often not exactly known thermal

properties of both phases, a moving interface, non-linearity of the underlying equations

and difficulties in precise estimation of thermal and initial boundary conditions [1, 2].

Hence, in the recent years, special attention has been paid to the formulation of

numerical and experimental benchmarks based on simple geometry and fluids of well-

known properties [3, 4]. Such experimental and numerical benchmarks are useful for

establishing a proper physical model or for verifying new numerical methodologies.
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They can be applied for tuning and validating numerical codes before they are applied

to industrial tasks.

The aim of this work is to apply the finite volume code FLUENT 6.0 (Flu-

ent Inc. [5]) to define three benchmark solutions for water freezing in small rectangu-

lar containers. It is generally recognised that the phase change processes are mostly

influenced by natural convection. Additionally there is a close relationship between

the convective flow in the melt and the structure of the solid formed in the solid-

ification process [6]. Hence, the first benchmark concerns modelling of steady-state

natural convection of water in a differentially heated cavity. Although this numerical

model does not contain solidification, an anomaly of water density variation close

to the freezing point creates an interesting and challenging numerical problem. The

steady-state flow pattern established during the pure convection phase decides about

the later development of the solidification front. Hence, the first benchmark solution is

used as an initial condition for the second benchmark – modelling of water freezing in

a differentially heated cavity. The last benchmark concerns modelling of solidification

in the presence of a free surface flow. In this case, flow is driven not only by natural

convection, but also by forced convection. We believe that this benchmark can be

useful for verifying numerical codes used for modelling casting problems, where the

interior of a complex geometry is filled during the solidification process.

The finite volume solver of FLUENT uses an enthalpy-porosity fixed-grid

method for modelling the phase change [7] and the volume of fluid (VOF) method

to model the free surface flow. We performed 2D and 3D calculations assuming

incompressible laminar viscous flow. The anomalous water density variation was

implemented in the buoyancy term. All remaining material properties of water and

ice, like thermal conductivity, viscosity and specific heat, were assumed to be constant.

The numerical results obtained with FLUENT for the first two problems, i.e.
natural convection and freezing in differentially heated cavity, were compared with

two reference codes: FRECON3V [8] and NC4MARV2 [9]. FRECON3V is a revised,

three-dimensional, variable properties version of FRECON [10].

In the following, we give a brief description of the numerical model used for the

three investigated configurations, details of material properties and discrete schemes,

boundary and initial conditions, followed by examples of results and their discussion.

2. Natural convection of water in a differentially

heated cavity

2.1. Problem formulation

We consider natural convection of water in the

differentially heated cubic cavity of a height L. Two

vertical walls are isothermal, kept at temperatures TH ,

TC . All remaining walls are assumed to be adiabatic.

The temperature difference between the vertical walls

∆T = TH − TC is 10K. The initial temperature of

the fluid is set at T0 = 278K. Both two and three-

dimensional simulations have been performed, but for the sake of brevity we have

given below only the mathematical formulation for the two-dimensional case.
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2.2. Mathematical formulation

The basic equations modelling natural convection describe conservation of mass,

momentum and energy:

∂u

∂x
+
∂w

∂y
=0, (1)

ρ0
∂u

∂t
+ρ0u

∂u

∂x
+ρ0w

∂u

∂y
=−
∂p

∂x
+µ∆u, (2)

ρ0
∂w

∂t
+ρ0u

∂w

∂x
+ρ0w

∂w

∂y
=−
∂p

∂y
+µ∆w−g[ρ(T )−ρ0], (3)

∂T

∂t
+u
∂T

∂x
+w
∂T

∂y
=α∆T. (4)

The above equations describe two-dimensional flow of an incompressible viscous

fluid, where u, w, ρ0, p, µ, g, T , α denote horizontal and vertical velocities, the

reference density of the fluid, pressure, dynamic viscosity, gravitational acceleration,

temperature and thermal diffusivity, respectively. Water properties, like dynamic

viscosity, specific heat, thermal conductivity and density are assumed to be constant.

The anomalous thermal variation of water density is implemented in the buoyancy

term only (Equation (3)). The fourth order polynomial ρ(T ) given by Kowalewski

and Rebow [3] is used here. Material properties used in the numerical model are

provided in Table 1. Thermal boundary conditions for isothermal walls have been

taken as T |Γ1 = TH = 283K and T |Γ2 = TC = 273K; for adiabatic walls
∂T
∂n
|Γ3 = 0.

Standard no-slip boundary conditions at the walls have been adopted for the velocity

components. The initial conditions are T (0) = T0 = 278K for temperature and ~υ0 =

(u,w)= 0 for the velocity field. Dimension of the cavity L is 38mm.

Table 1. Properties of water used in the simulations

Material properties of water Value Unit

ρ0 density of water at reference temperature Tref =273K 999.8 kg/m3

µ dynamic viscosity (at T =288K) 0.001003 kg/ms

ν=µ/ρ0 kinematic viscosity (at T =288K) 1.0032·10−6 m2/s

κ thermal conductivity (at T =288K) 0.6 W/mK

cp specific heat (at T =288K) 4182.0 J/kgK

g gravitational acceleration 9.81 m/s2

α=κ/(ρ0cp) thermal diffusivity (at T =288K) 1.435·10−7 m2s

β0 thermal expansion coefficient (at T =273K) 6.734·10−5 1/K

The dimensionless parameters defining the problem are the Rayleigh and

Prandtl numbers: Ra = gβ0(TH −TC)L
3/αν = 2518084, Pr = ν/α = 6.99. Dimen-

sionless variables for temperature ϑ, horizontal and vertical coordinates x̃, ỹ, ho-

rizontal and vertical velocities ũ, w̃, and time t̃, have been defined as follows:

ϑ=(T −TC)/(TH−TC), x̃=x/L, ỹ= y/L, ũ=uL/α, w̃=wL/α, t̃= tα/L
2.

2.3. Numerical algorithms and mesh sensitivity test

Steady-state two- and three-dimensional solutions for the problem defined

above were obtained using the finite volume code FLUENT 6.0 on uniform structural
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grids (details are given it Table 2). The implicit false transient method was used

to reach efficiently a steady-state. Spatial derivatives were approximated using the

QUICK scheme, which is based on a weighted average of second-order-upwind and

central interpolation of the variable. Pressure-velocity coupling was done with the

SIMPLE algorithm, introduced by Patankar [11]. For comparison the same problem

was solved using the FRECON3V finite difference code [4], which is based on the

vorticity-vector potential formulation of the Navier-Stokes and energy equations for

laminar flow of a viscous, incompressible fluid. As FRECON3V is essentially a 3D

code, two-dimensional solutions were simulated using 5 grid points in depth and no-

slip, adiabatic conditions for the side walls in the third dimension.

Table 2. Discretization meshes used in the calculation

Run No Mesh name/code Size Number of nodes Number of elements

#1 2d0005/FLUENT 76×76 5929 5776

#2 2d0002/FLUENT 190×190 36481 36100

#3 2d0001/FLUENT 380×380 145161 144400

#4 3d0005/FLUENT 76×76×76 456533 438976

#5 3d0002/FLUENT 190×190×190 6867871 6859000

#6 2df81×81/FRECON3V 81×81 6724 6561

#7 3df81×81×81/FRECON3V 81×81×81 551368 531441

The mesh sensitivity analysis performed for FLUENT (Table 2) shows that two-

dimensional solutions converge for both refined meshes (run #2 and #3). We may

estimate that a local error of the velocity and temperature results obtained for run #3

is below 3%. Figure 1 shows temperature and velocity profiles along the horizontal

and vertical symmetry lines of the cavity for meshes from Table 2. It is worth noting

that the errors of simulation performed for the quite fine mesh (run #1) may reach

almost 50% for vertical velocity (compare Figure 1f). Large errors also occur for

the horizontal velocity component obtained for the coarse mesh (Figure 1d). This

test indicates that modelling a simple natural convection in the presence of strongly

non-linear variation of water density requires careful analysis of results and very fine

meshes.

2.4. Analysis of numerical results

Results for temperature, velocity and stream-function fields obtained for the

most accurate run #3 are presented in Figures 2a and 2c. Due to anomalous thermal

variation of water density, the flow structure consists of two competing circulations,

easily discernible in the velocity field and the stream-function contour (Figures 2b

and 2c). In the vicinity of the cold wall, normal and abnormal convection streams

collide forming a clearly visible saddle point. These two-dimensional results seem

to be in good agreement with the three-dimensional simulation (run #5) displayed

for the central cross-section of the cavity (Figure 2d). Then, the two-dimensional

FLUENT simulation (run #3) is compared with the reference solution obtained using

the FRECON3V numerical code (run #6). A detailed comparison of the velocity and

temperature profiles is given in Figure 3. It can be found that, despite a relatively
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Mesh sensitivity test of two-dimensional simulations obtained with FLUENT (runs #1,

#2, #3); profiles of temperature (top), the horizontal velocity component (middle) and the

vertical velocity component (bottom), obtained along the horizontal symmetry lines (left column)

and the vertical symmetry line (right column) of the cavity
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(a) (b)

(c) (d)

Figure 2. (a) Contours of temperature (run #3); (b) velocity field and velocity magnitude

contour (run #3); (c) velocity field and stream function contours (run #3); (d) velocity field and

temperature contours (run #5)

coarse mesh, results obtained with the FRECON3V university code are very close

to those of the costly FLUENT solution. Both temperature and velocity profiles

practically overlap, and local discrepancies are below 3%.

Two- and three-dimensional simulations performed with both of the analysed

codes are compared along the vertical line passing through the velocity saddle point

(x = 0.93). As can be seen in Figure 4b, two-dimensional and three-dimensional

results obtained with FRECON3V are practically identical and overlap with the three-

dimensional solution obtained with FLUENT. However, the two-dimensional solution

obtained with FLUENT (run #3) shows slight deviations. It is a rather surprising

result, requiring more detailed analysis of two and three-dimensional solvers applied

in FLUENT.

3. Water freezing in a differentially heated cavity

3.1. Problem formulation

The second problem concerns the modelling of water freezing in a differentially

heated cavity. The computational domain is the same cube-shaped cavity as in the

previous case. We consider freezing of water after the thermal boundary condition is
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Comparison of two-dimensional simulations obtained with FLUENT (run #3) and

FRECON3V (run #6). Profiles of temperature (top), horizontal velocity component (middle), and

vertical velocity component (bottom) obtained along the horizontal (left column) and vertical

(right column) symmetry lines of the cavity
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(a) (b)

Figure 4. (a) Velocity vectors and temperature field in the central cross-section of the cavity

(Z =0.5) for run #5; (b) Comparison of 2D and 3D simulations with FLUENT (runs #3, #5) and

FRECON3V (runs #6, #7); profiles of the vertical velocity component at the central cross-section

along line x=0.93

abruptly changed from Tc = 273K to Tc = 263K at the cold wall. The steady-state

convection pattern obtained in the previous case becomes the initial condition for

the temperature and velocity fields in the fluid domain. A FLUENT solver is used

to obtain two-dimensional transient solutions describing the development of velocity

and temperature fields as the solidification front propagates from the cold wall. The

NC4MARV2 2D finite volume university code is used for comparison.

3.2. Mathematical formulation

A fixed grid-enthalpy method is used in both codes to simulate the freezing

process [7]. This method uses a single set of conservation equations and boundary

conditions for the whole domain. The interface conditions between the solid and the

liquid phase are accounted for by incorporating a suitable source term in the governing

equations. Total heat content (enthalpy) and the liquid fraction function have to be

defined to present a unique set of equations.

Liquid fraction is a function of temperature, varies from 0 to 1 and defines

volumetric ratio of the liquid phase in a computational cell:

fl=

{

0 if T <Ts
T−Ts
Tl−Ts

if Ts<T <Tl
1 if Tl<T

(5)

Using the definition of liquid fraction, fl, the total heat content for a fluid (or the

enthalpy function), h(T ), can be defined as:

h(T )=

T
∫

Tref

cpdT +flλ. (6)

Here, λ denotes latent heat required for a phase change, and Tl, Ts denote the liquidus

and solidus temperatures for the fluid.
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The governing equations can be written in the following way:

ρ0

[

∂

∂t
(cpT )+u

∂

∂x
(cpT )+w

∂

∂y
(cpT )

]

=κ∆T −ρ0λ
∂fl
∂t
, (7)

∂u

∂x
+
∂w

∂y
=0, (8)

ρ0
∂u

∂t
+ρ0u

∂u

∂x
+ρ0w

∂u

∂y
=−
∂p

∂x
+µ∆u+Su, (9)

ρ0
∂w

∂t
+ρ0u

∂w

∂x
+ρ0w

∂w

∂y
=−
∂p

∂y
+µ∆w−g[ρ(T )−ρ0]+Sw, (10)

in which, velocity components, density, thermal conductivity, viscosity and specific

heat stand for a linear combination of the proper value for the solid and the liquid

phases:

u=flul+(1−fl)us, (11)

w=flwl+(1−fl)ws, (12)

cp=flcpl+(1−fl)cps, (13)

κ=flκl+(1−fl)κs. (14)

The source terms at the right hand side of Equations (9) and (10) are responsible for

velocity suppression in the solid phase. In our calculation, the following representation

of the source terms was applied:

Su=−C
(1−fl)

2

f3l +0.001
u, (15)

Sw =−C
(1−fl)

2

f3l +0.001
w. (16)

It describes an implementation of Darcy’s law for flow in a porous medium. One

may find that, for a temperature grater then Tl, both source terms disappear, and

the equations describe pure fluid flow. When local temperature is less than Ts, these

terms become dominant (C = 108), suppressing velocity in the solid phase. In the

region where local temperature is between Ts and Tl, flow in the porous medium is

simulated (so called “mushy zone”).

The thermo-physical properties of ice (the solid phase) were assumed to be

constant and equal to their counterparts for water, except for thermal conductivity

and density. The value of thermal conductivity for ice κs = 2.26W/mK and density

ρ= 916.8kg/m3 were applied in the codes. The value of latent heat taken was λ=

335kJ/kg, the temperatures of solidus and liquidus were Ts=273.0K, Tl=273.3K.

The dimensionless parameters defining the problem are the Rayleigh, Prandtl

and Stefan numbers: Ra = gβ0(TH −T0)L
3/αν = 2518084, Pr = ν/α = 6.9, Ste =

cp(TH − T0)/λ = 0.125 where T0 = 273.0K is the melting temperature, and β0 =

6.734 ·10−51/K is the thermal expansion coefficient at the reference temperature.

3.3. Numerical algorithms and mesh sensitivity test

The problem was solved using the FLUENT 6.0 finite volume code on uniform

structural grids (details are given it Table 3). A fully implicit method was used to

simulate transient evaluation in time. Time derivatives were approximated using a first
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order scheme. Spatial derivatives were approximated using the QUICK scheme, which

is based on a weighed average of second-order-upwind and central interpolation of

the variable. The pressure-velocity coupling was done using the SIMPLE algorithm.

For comparison, the same problem was solved with the NC4MARV2 finite volume

code [9], where enthalpy formulation is used for the vorticity-velocity formulation of

the Navier-Stokes equations.

Table 3. Discretization meshes used in the calculation

Run No Mesh name/code Size Number of nodes Number of elements

#8 2d0005/FLUENT 76×76 5929 5776

#9 2d0002/FLUENT 190×190 36481 36100

#10 2d0001/FLUENT 380×380 145161 144400

#11 2d81x81/NC4MARV2 81×81 6724 6561

Figure 5 shows profiles of temperature and both velocity components, drawn

along the horizontal and vertical symmetry lines of the cavity. The solutions have been

obtained for time t=100s after freezing has started. Three computational runs (#8,

#9, #10 in Table 3) using FLUENT for different meshes are compared. This mesh

sensitivity analysis shows that, similarly to the previous case, solutions obtained for

the two fine meshes practically overlap. Error for the finest mesh (run #10) is below

1%. The analysis indicates that including the solidification process in FLUENT does

not change the mesh sensitivity of the code, at least for the first 100s of the freezing

process. However, the proper modelling requires a very fine mesh and, when combined

with the transient solidification process, the simulation becomes very expensive, as

there is an additional equation to solve for the new variable – liquid fraction. In the

code, liquid fraction is updated during iterations in the way proposed by Rady and

Mohanty [12]. This approach introduce an additional internal loop for each time step.

Because liquid fraction and temperature are calculated after the velocity components

have been obtained, the time step has to be small enough, so that during this time the

position of the solid-liquid interface moves less than the diameter of the computational

cell. This jeopardises computational time for very fine meshes.

3.4. Analysis of numerical results

Numerical results obtained for water freezing in a differentially heated cavity

indicate that in the initial period of time (0–500s) solidification is much faster than

for later time (> 500s). After 2600s, the steady-state seems to have been achieved.

During the first 100s, the thickness of the ice layer is rather uniform, whereas after

100s the main flow recirculation decreases the solidification rate in the upper part

of the cavity and a characteristic belly-like shape of the phase-change front becomes

evident (Figure 6).

Numerical results obtained with FLUENT are compared with those obtained

with the NC4MARV2 university code. Figure 7 displays profiles of temperature and

velocity obtained for both of these codes at the time step t= 100s. Comparison of

the velocity and temperature profiles reveals several discrepancies, especially near

the solid-liquid interface. Moreover, there are differences in details of the interface
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Mesh sensitivity analysis for runs #8, #9, #10, time t=100s. Profiles of the horizontal

velocity component (top), the vertical velocity component (middle) and temperature (bottom),

taken along the horizontal symmetry line (left column) and along the vertical symmetry

line (right column) of the cavity
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(a) (b)

(c) (d)

(e) (f)

Figure 6. FLUENT solutions (run #8) for freezing water at time steps: 100s – (a), (b);

300s – (c), (d); 500s – (e), (f); temperature contours (left column)

and the velocity vector field (right column); (continued on the next page)

profile. The FLUENT solution predicts a rather uniform, flat layer of ice, whereas the

NC4MARV2 code already at that time yields a well-developed “belly” in the middle

part of the ice layer (Figure 8). These differences could arise due to insufficient internal
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(g) (h)

(i) (j)

(k) (l)

Figure 6 – continued. FLUENT solutions (run #8) for freezing water at time steps:

1 000s – (g), (h); 2 000s – (i), (j); 3 000s – (k), (l); temperature contours (left column)

and the velocity vector field (right column)

iterations in solving the energy equations, predefined when using FLUENT. Further

numerical analysis is necessary to elucidate this problem. A similar configuration has

been studied experimentally by Kowalewski and Rebow [3]. There is relatively good
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparison of the FLUENT solution (run #10) with the NC4MARV2 solution

(run #11) at time t=100s. Profiles of the horizontal velocity component (top), the vertical

velocity component (middle) and temperature (bottom), taken along the horizontal symmetry line

(left column) and along the vertical symmetry line (right column) of the cavity
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qualitative agreement for the interface shape and the recirculation pattern. However,

a detailed comparison of our simulations with the experimental data is not possible

due to differences in the applied boundary conditions and material properties.

(a) (b)

Figure 8. The NC4MARV2 solution (run #11) for freezing water at time step 100s:

(a) temperature contours and (b) the velocity vector field

4. Solidification in the presence of free surface flow

4.1. Problem formulation

The third analysed case concerns water freezing during a cavity filling process.

The water of initial temperature TH is forced into an inclined cavity through a circular

opening made in the bottom wall. The two opposite walls of the cavity are kept at

constant temperatures T1, T2 below the freezing point. All other walls of the cavity

are assumed to be adiabatic. Both the forced convection and the residual natural

convection within the cavity are responsible for heat transfer through the cold side

walls. The model attempts to simulate mould filling during a casting process, and

it was investigated experimentally by Kowalewski et al. [4]. Calculations have been
performed to simulate the experimental conditions: the cavity’s height is 114mm and

its width is 38mm (see Figure 9). The inclination angle is α=11.4̊ . During the filling

process, intense mixing of fluid strongly modifies the temperature field, diminishing

the solidification rate. As soon as the cavity has been filled up, the inlet is closed and

the freezing process dominates. Similar conditions have been applied in the numerical

model. Due to the complexity of the problem, involving both solidification and free

surface flow, only the two-dimensional case has been solved.

Figure 9. Cross-section of the cavity
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4.2. Mathematical formulation

A FLUENT solver using the volume of fluid (VOF) method was used to simulate

free surface flow. The freezing of water was modelled using the enthalpy-porosity

method, described in the previous section. During the filling process, tracking of the

gas-liquid interface is done by solving a continuity equation for volume fraction:

∂α1
∂t
+u
∂α1
∂x
+w
∂α1
∂y
=0. (17)

Volume fraction is an additional variable defined for the gaseous and the fluid phases

in such a way that for each computation cell the following condition holds:

α0+α1=1. (18)

Due to the definition of volume fraction, all of the fluid properties included in the

conservation equations have the following meaning:

ρ=α0ρ0+α1ρ1, (19)

µ=α0µ0+α1µ1, (20)

cp=α0cp0+α1cp1, (21)

κ=α0κ0+α1κ1. (22)

Thus, during the filling process, the governing equations can be written in the

following form:
∂u

∂x
+
∂w

∂y
=0, (23)

ρ
∂u

∂t
+ρu
∂u

∂x
+ρw

∂u

∂y
=−
∂p

∂x
+µ∆u+Su+Fσ, (24)

ρ
∂w

∂t
+ρu
∂w

∂x
+ρw

∂w

∂y
=−
∂p

∂y
+µ∆w−g [ρ(T )−ρ]+Sw+Fσ, (25)

∂

∂t
(α0ρ0cp0T +α1ρ1cp1T )+u

∂

∂x
(α0ρ0cp0T +α1ρ1cp1T )+

+w
∂

∂y
(α0ρ0cp0T +α1ρ1cp1T )=κ∆T −ρλ

∂fl
∂t
. (26)

The interaction between the gas and the liquid phases is incorporated in an additional

source term Fσ. The surface force due to the surface tension is interchanged by

applying the Gaussian theorem to the volumetric force [13]. This term is defined

as a function of surface tension σ, gradient of volume fraction α1, local curvature of

the free surface γ and the average density:

Fσ =σ
ργ∇α1
1

2
(ρ0+ρ1)

. (27)

This term is nil in all computational cells filled by only one phase, due to the gradient

of volume fraction. The anomalous thermal variation of water density is implemented

only in the buoyancy term in Equation (25), in the same way as in the previous

section.

Thermal boundary conditions applied at the two opposite isothermal walls were:

T1 =265K and T2 =266K. For other walls other than the inlet, adiabatic boundary
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conditions were applied. The temperature of hot water supplied through the inlet

was TH =281K. Standard no-slip boundary conditions were adopted for the velocity

components on the walls. At the inlet, a constant velocity V = 0.0267m/s plug flow

is assumed. As the initial condition in the empty cavity we assume air at rest at

a uniform temperature of To=298K. The liquid’s temperature at the inlet is constant

and equals To. The initial volume fraction of the liquid is α1=0 in the whole domain.

The cavity’s height, L (38mm), is used to scale non-dimensional variables. These

conditions correspond to the experimental data.

Thermophysical values specific for each phase used in the calculations are

collected in Table 4. These values are based on the default database included in

the FLUENT code.

Table 4. Properties of the water and air used in the calculations

Material properties of air and water Value Unit

ρ1 density of air at reference temperature T =288K 1.225 kg/m3

µ1 dynamic viscosity of air (at T =288K) 1.7894 ·10−5 kg/ms

κ1 thermal conductivity of air (at T =288K) 0.0242 W/mK

cp1 specific heat of air (at T =288K) 1006.43 J/kgK

ρ0 density of water at reference temperature (T =273K) 999.8 kg/m3

µ0 dynamic viscosity of water (T =288K) 0.001003 kg/ms

ν0=µ0/ρ0 kinematic viscosity (at T =288K) 1.0032 ·10−6 m2/s

κ0 thermal conductivity of water (T =288K) 0.6 W/mK

cp0 specific heat of water (T =288K) 4182.0 J/kgK

β0 thermal expansion coefficient (at T =273K) 6.734 ·10−5 1/K

σ surface tension 0.0735 N/m

λ latent heat 335 kJ

The dimensionless parameters defining the problem are the Rayleigh, Prandtl,

Stefan and Reynolds numbers: Ra = gρ0cp0β0(TH − T0)L
3/κ0ν0 = 1762582, Pr =

ν0ρ0cp0/κ0=6.99, Ste= cp0(TH−T0)/λ=0.0999, Re= ρ0vinletL/µ0=100−500.

4.3. Discretization and numerical algorithm

The cavity filling problem was solved using four different uniform structural

grids (Table 5). A fully implicit method was used to simulate transient evaluation

in time. The time derivative was approximated using a first order scheme. Spatial

derivatives were approximated using a first order upwind scheme. The pressure-

velocity coupling was done using the PISO algorithm with skewness correction at

each time step.

The mesh sensitivity analysis shows quite serious differences in the obtained

solutions, persistent even for the finest meshes. Differences are especially apparent

near the free surface. It seems necessary to apply local mesh refinement at the interface

to stabilise the solution during transient modifications of the interface.
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Table 5. Discretization meshes used in the calculation

Run No Mesh name/code Size Number of nodes Number of elements

#12 2d001/FLUENT 38×114 4800 4626

#13 2d0005/FLUENT 76×228 18822 18476

#14 2d0002/FLUENT 190×570 116374 115510

#15 2d0001/FLUENT 380×1140 463767 462040

(a) (b)

(c) (d)

Figure 10. Temperature and velocity fields during the free surface flow phase (run #13) at:

(a) t=10s, (b) t=20s, (c) t=30s, (d) t=40s

(a) (b)

(c) (d)

Figure 11. Temperature and velocity fields during the freezing phase (run #13) at:

(a) t=73s; (b) t=173s; (c) t=273s, (d) t=373s
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4.4. Analysis of preliminary results

Preliminary numerical results of temperature and velocity field obtained for

a relatively coarse mesh (run #13) are given in Figures 10 and 11. Initially, during

the filling process, the simulation indicates the presence of several counter-rotating

circulation patterns. A similar pattern was observed in the experiments [4]. Initially,

the hot fluid penetrated the cavity mainly along the free surface, creating a thermally

stratified configuration. When more than half of the cavity was filled, a characteristic

recirculation pattern appeared. After the valve was closed, the fluid trapped in the

cavity started to cool. The thermal conductivity of the fluid supported by natural

convection attempted to homogenise temperature distribution in the cavity. Our

simulation shows relatively uniform growth of the ice layer, both for the upper and

the lower walls.

There are serious discrepancies between the simulated and the experimental

results. The most distinct difference is the lack of the ice layer in the numerical

simulations during the first filling phase. One of the most probable sources of these

differences is inaccurate information obtained from the experiment for the thermal

boundary conditions at two metal walls. Our assumption of the isothermal conditions

seems to be wrong, and detailed experimental data about temperature variation at

the side walls must be implemented in the code. However, in spite of these differences,

the main flow patterns obtained for the second phase of the process are qualitatively

in agreement with the experimental data.

5. Conclusions

The FLUENT commercial code was used to simulate convection of water

associated with the freezing process. Three numerical solutions are presented. The

steady-state solution for natural convection of water close to the freezing point

has been positively verified using the FRECON3V university code [8]. This solution

can be proposed as a benchmark for comparing and verifying numerical codes.

The second solution, obtained using the fixed grid enthalpy-porosity method, shows

only qualitative agreement with the reference solution [9]. Further investigations

are necessary to select a correct solution for this configuration. The third solution

concerns a complex flow configuration, combining free surface flow, forced convection

and solidification. Our preliminary numerical investigation indicates problems with

modelling free surface flow. An additional re-meshing procedure seems to be necessary

to accurately follow the progressing fluid surface.

It appears that modelling the freezing of water requires very fine meshes

and small time steps. Using refined meshes cause a tremendous decrease of code

performance, hardly acceptable for simulation of practical and technological processes.

Further studies are necessary to overcome this problem.
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