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Abstract: The paper deals with numerical modelling of confined flow of granular materials in

vertical bins. Quasi-static mass flow of non-cohesive sand with a controlled outlet velocity along

the entire silo bottom was numerically studied using a finite element method taking into account

an elasto-plastic constitutive law laid down within a Cosserat continuum. The influence of the

initial density and the mean grain diameter of the solid, wall roughness, wall stiffness and wall

imperfection, the initial stress state and the pressure level on the stress and deformation states

in plane-strain vertical bins was investigated. The numerical results were compared with similar

model tests performed with a rectangular vertical bin containing sand. The calculated results were

in satisfactory agreement with the experimental ones. The advantages and limitations of the polar

elasto-plastic approach to model granular silo flow were outlined.
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1. Introduction

The existing theoretical models of silo flow of granular materials can be divided

into those treating the fill as a continuum or as separate particles. The former

are more suitable for slow silo flow, i.e. flow with low deformation rates, where

particles behave like a conglomerate and exhibit solidlike behaviour (grain contacts

are preserved). During such flow, internal stresses are generated only by normal and

friction forces among particles. The latter correspond to rapid silo flow, where the

material behaves more like gas or dense fluid. Rapid flow is connected with high

deformation rates and large inertial forces. During such flow, particles can lose contact

and are subject to permanent short impulsive collisions and overriding. Internal

stresses are created by normal and friction forces between grains and collisions.

Both slow and rapid flow is dissipative. In slow flow, some energy is lost due to

friction, as grains slide against each other. In rapid flow, the loss of energy is more

pronounced because particle collisions are inherently inelastic. Both types of flow

may occur simultaneously at various locations in a silo. Usually, the material at

the outlet is in the rapid flow regime, whilst the material higher up is moving
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slowly. Slow flow is mainly modelled in the continuum approach and rapid flow –

using a discrete approach. Theoretical models describing the behaviour of granular

materials within a continuum are mainly based on the finite element method. Discrete

models use granular dynamics algorithms, kinetic theories or cellular automata

approaches.

The aim of the theoretical research presented in this paper is to study the

onset of quasi-static mass flow of granular materials in a plane strain vertical bin.

Such flow often occurs in large silos when the material flows slowly and its outflow

velocity is controlled. During such flow, many phenomena occur (sudden increase

of wall stresses, shear zone formation, stress oscillation, non-uniform stress distribu-

tion) which have not been explained in detail yet. The study was performed with

a continuum model based on the finite element method taking into account the po-

lar elasto-plastic constitutive law. Inertia effects were neglected. The model has been

formulated within continuum mechanics, but it has some properties characteristic for

discrete models: it includes mean grain diameter, grain rotations and couple stresses.

During FE calculations, the effect of the initial density, modulus of elasticity and mean

grain diameter of the solid, initial stress state, wall roughness, wall stiffness and wall

imperfection, as well as pressure level, on the material’s behaviour was investigated.

Additionally, the effect of large deformations and curvatures, as well as micro-polar

constants was analysed. The FE results were compared with the corresponding model

tests carried out in a rectangular model silo with parallel walls and a slowly movable

bottom.

The existing FEM solutions of silo flow [1–13] are more realistic than analytical

formulae to calculate loads in silos, since they are able to calculate deformations and

stresses at each point of the silo fill. However, most of them have been obtained

within a classical continuum and, thus, the obtained results are dependent on the

magnitude of the element mesh [5–8, 10–12]. Moreover, some of them have not

considered the material’s softening [5–8, 10, 11] caused by the formation of shear

zones, a factor of major importance for dense granular bodies [1, 4]. They have

also been unable to consistently describe the interface behaviour along the silo

wall [5–8, 10–12]. The influence of wall roughness on the behaviour of flow was

not systematically investigated either [5–12]. A great advantage of finite element

simulations as compared to discrete methods is their ability to consider large systems,

while the material constants in continuum constitutive models can be calibrated with

standard laboratory tests. However, granular dynamics models [14–21] still require

too much computer time and they are, thus, not applicable to large silos. Moreover, the

determination of micro-structural material parameters and wall boundary conditions

is difficult in these models. There is simply a lack of experimental data on micro-

structural parameters that could help better calibrate granular dynamics models. The

identification of material constants and the assumption of realistic wall boundary

conditions in analytical kinetic theories [22–26] is also difficult. At the same time,

cellular automata approaches are purely kinematic models [27, 28], and as such, they

are not suitable to realistically describe confined flow in silos and to calculate stresses

in the fill.
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2. Model tests

Experiments were carried out with dry sand (mean grain diameter d50 =

0.50mm) in a rectangular container with a slowly movable bottom [1, 29, 30]. The silo

height was h=0.50m, its length was l=0.60m and its width – b=0.10–0.30m. Three

resultant forces were measured during filling and emptying: the vertical wall friction

force, the vertical bottom force and the horizontal force on the wall. Additionally, the

bottom is displacement and the displacement of the upper fill surface were recorded.

Quasi-static mass discharge was simulated by slowly lowering a bottom plate with

a constant velocity of 5mm/h. The model tests were performed with three degrees of

wall roughness. The roughness rw is depicted as a relative height between the highest

and the lowest point along the surface at a length of (3–4)×d50 [1, 31, 32]. The silo

walls were smooth (rw ≈ 0), rough (0< rw < d50) or very rough (rw ≥ d50). The fill

was loose (initial density γd=14.50kN/m
3, initial void ratio e0=0.83), medium dense

(γd=15.75–16.30kN/m
3, e0=0.63–0.69) or dense (γd=16.75kN/m3, e0=0.60).

The sand’s flow was of the plug type, except for a narrow shear zone adjacent to

the wall [1, 29, 30]. For very rough walls and dense sand, secondary shear zones were

created inside the fill. They first appeared in the lower region of the silo above the

outlet and then propagated upwards causing a non-symmetry of flow. The thickness

of the wall shear zone was found to be approximately 5mm (10×d50) for smooth

walls, 20mm (40×d50) for very rough walls and loose sand, and 15mm (30×d50)

for very rough walls and dense sand. During filling, the maximum wall shear force

was reached for very rough walls and dense sand; it increased with increasing wall

roughness and initial sand density. The maximum horizontal wall force during filling

was observed in loose sand with smooth walls; it decreased with increasing fill density

and wall roughness. The emptying tests [1] showed that the greater the roughness

of silo walls and the initial density of bulk solids, the smaller the minimum bottom

force after bottom displacement, and the larger the wall friction force, and angle and

material softening in the wall shear zone. The changes of forces during emptying were

insignificant for loose sand. The maximum horizontal force on the wall occurred for

rough walls and dense sand, and the minimum horizontal force appeared for smooth

walls and dense sand. In the case of very rough walls, the maximum horizontal wall

force occured for medium dense sand. Thus, no unique relationship between the

horizontal wall force and wall roughness or fill density was found. Only for loose

sand, the horizontal wall force behaved qualitatively almost according to the Janssen

equation [33] (an increase of the force with a decrease of wall roughness). The shape of

the horizontal wall force depended upon the silo’s width (an increase of the normalised

normal force with decreasing silo width was observed). The measured forces always

reached a residual state. During flow, dense and medium dense sand first experienced

dilatancy, followed by an insignificant contractancy in the residual state; loose sand

only densified during flow. To investigate the effect of the mean grain diameter on the

thickness of the wall shear zone, experiments were carried out with the same sand,

but using only grains larger than 1.0mm. In this case, the thickness of the shear zone

was about 2–2.5cm in the silo with very rough walls.

The maximum wall forces T and N were approximated by a slice method using

the Janssen equation [33] for plane strain to calculate mean pressure coefficients
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K̄ =σw
11
/σm
22
(σw
11
– horizontal wall normal stress, σm

22
– mean vertical normal stress).

We have obtained the following maximum values of K̄: 0.24–0.29 (dense sand) and

0.36–0.39 (loose sand) for filling (b=0.20m), and 0.30–0.73 (dense sand) and 0.37–

0.50 (loose sand) for emptying (b=0.20m). Thus, the K̄ coefficients were greater with

increasing initial sand density during emptying and decreasing initial sand density

during filling. In any case, they increased with increasing wall roughness.

3. Plane polar continuum

A polar (Cosserat) continuum differs from a classical (non-polar) continuum in

that an additional rotation, ωc, appears in its kinematics [34, 35]. Thus, each material

point of the plane polar continuum has three degrees of freedom: two translational

degrees of freedom, u1 and u2, and a rotational degree of freedom, ω
c (Figure 1a).

The state of deformation within a polar continuum is described by the following six

deformation quantities (which are considered here to be infinitesimal):

ε11=u1,1, ε22=u2,2, (1)

ε12=u1,2+ω
c, ε21=u2,1−ω

c, (2)

κ1=ω
c
,1, κ2=ω

c
,2, (3)

where

(),i= ∂ ()/∂xi. (4)

εij are components of the deformation tensor, and κi are components of the curvature

vector. The normal deformations εii are defined similarly as in a non-polar continuum.

The shear deformations ε12 and ε21 can be viewed as relative deformations relating

the macro-displacement gradient and micro-rotation; in contrast to a non-polar

continuum, ε12 6= ε21. The curvatures κ1 and κ2 describe the macro-deformation

gradients of micro-rotation. The quantities εij and κi are invariant with respect to

rigid body motions [36, 37]. Six deformation quantities are conjugate with respect

to energy to six stress quantities referred to the actual configuration. The four

components of εij are associated with the four components of the stress tensor

σij , which is generally non-symmetric (σ12 6= σ21). The curvatures κi are associated

with the couple stresses mi. Figure 1b shows the stresses and couple stresses at an

(a) (b)

Figure 1. Plane Cosserat continuum (without volume loads):

(a) degrees of freedom (u1, u2 – horizontal and vertical displacement, ω
c – Cosserat rotation),

(b) stresses, σij , and couple stresses, mi, at an element
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infinitesimal element (dx1, dx2) of a plane Cosserat continuum. The force equilibrium

and the moment equilibrium give the following equations of motion:

σ11,1+σ12,2−f
B
1
=0, (5)

σ21,1+σ22,2−f
B
2
=0, (6)

m1,1+m2,2+σ21−σ12−m
B =0, (7)

where fBi are the volume body forces and m
B denotes the volume body moment.

The equilibrium conditions (Equations (5)–(7)) are equivalent to the virtual work

principle:
∫

B

(σijδεij+miδκi)dV =

∫

B

[

fBi δui+m
Bδωc
]

dV +

∫

∂1B

tiδuidA+

∫

∂2B

mδωcdA, (8)

where

σijnj = ti on ∂1B, mini=m on ∂2B. (9)

ti and m are prescribed boundary tractions and moment, respectively; δεij and

δκi denote virtual deformations and curvatures; δui is virtual displacement; δω
c

is the virtual Cosserat rotation and V is body volume. Virtual displacements and

the virtual Cosserat rotations disappear on those parts of the boundary where the

kinematic boundary conditions are prescribed. The work principle states that the

fields σij , mi satisfying for arbitrary kinematically admissible virtual δui, δω
c also

satisfy the equilibrium conditions (Equations (5)–(7)) and the boundary conditions

(Equation (9)). The virtual work principle is used to formulate an FEM of motion [1, 4,

37]. As a consequence of the presence of rotations and couple stresses, the constitutive

law for granular materials within a polar continuum is endowed with a characteristic

length corresponding to the mean grain diameter. Thus, the numerical results are

not sensitive to spatial discretisation [1, 4, 37, 38], and boundary value problems

remain mathematically well-posed [38–40] when using softening constitutive laws.

Due to the presence of a characteristic length, a polar approach can model the

thickness of shear zones and related grain size effects in granulates [4]. Otherwise,

numerical calculations with constitutive laws without a characteristic length produce

unreliable results. Shear zones become narrower upon mesh refinement and computed

load-displacements curves change considerably [1]. A polar approach is more suitable

to model shear zones in granulates as compared to other models able to capture

localisation of deformations in a proper manner (e.g. non-local, strain gradient and

viscous models [38]) on better physical grounds, since it takes into account rotations

and couple stresses, which are observed during shearing [41–43] but remain negligible

during homogeneous deformation. A polar model is stiffer and stronger than a non-

polar one because the work of a Cosserat continuum (Equation (8)) is augmented by

couple stresses, curvatures and rotations depending upon the mean grain size. Thus,

the additional degree of freedom of a polar continuum releases additional resistance

against itself (which corresponds, for instance, to the overstiffening of a hinge joint

of a frame by prescribing an additional moment). The FE calculations have shown

that the thickness of shear zones depends insignificantly upon mesh refinement if

the size of finite elements in the shear zone is not greater than five times the mean
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grain diameter (when using triangular finite elements with linear shape functions for

displacements and a Cosserat rotation, see [1, 4, 43]).

4. Polar elasto-plastic constitutive relation

Bogdanova-Bontscheva and Lippmann [44] showed for the first time that

Cosserat type rotations appear during shearing of granular materials. Further studies

by Becker and Lippmann [45] and Kanatani [46] demonstrated that the Cosserat

effects are of major importance only along the boundaries. A Cosserat elasto-plastic

constitutive model for granular materials with isotropic hardening and softening was

proposed by Mühlhaus [37] and further developed by Mühlhaus und Vardoulakis [47]

and Mühlhaus [48, 49]. It differs from the conventional constitutive law of Drucker-

Prager in the presence of Cosserat rotations and couple stresses using the mean grain

diameter as a characteristic length. It can be summarised as follows:

ε̇ij = ε̇
e
ij+ ε̇

p
ij , κ̇i= κ̇

e
i + κ̇

p
i , (10)

ε̇eij =
1

E
[(1+ν)σ̇ij−νσ̇kk], i= k, (11)

ε̇eij =
1

2G

∂τ̇2

∂σij
, κ̇ei =

1

2G

∂τ̇2

∂mi
, i 6= j, (12)

ε̇pij =λ
∂g

∂σij
, κ̇pi =λ

∂g

∂mi
, (13)

τ =(a1sijsij+a2sijsji+
a3
d2
50

mimi)
1/2, (14)

f = τ+µ(e0,γ
p)p−c, (15)

g= τ+α(e0,γ
p)p, (16)

µ=sinφ, (17)

α=sinβ, (18)

wherein τ is the second invariant of the deviatoric stress tensor, sij – the non-

symmetric deviatoric stress tensor (sij = σij − pδij), p – mean stress (p = 1/2σii),

σij – the stress tensor, mi – the couple stress vector, a1, a2 and a3 – micro-polar

coefficients, d50 – mean grain diameter, f – the yield function, g – the potential

function, µ – the mobilised friction factor, α – the mobilised dilatancy factor, φ –

the internal friction angle, β – the dilatancy angle, e0 – the initial void ratio, c –

cohesion, γp – plastic shear deformation, εij – the deformation tensor, ε̇ij – the rate

of deformation tensor, κi – the curvature vector, κ̇i – the rate of curvature vector, λ

Figure 2. Yield curve f =0 and flow potential curve g=0 in the τ , p plane
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– the proportionality factor, E – the elastic modulus, G – the shear modulus, ν – the

Poisson ratio, δij – the Kronecker delta. The superimposed indexes e and p designate

the elastic and the plastic strain or curvature, respectively. The meaning of f , g, τ ,

γp and λ is analogous to that in non-polar plasticity [50]. The equations f = 0 and

g=0 describe a yield curve and a flow potential curve, respectively (Figure 2). The

factor λ is calculated from the consistency condition df =0. The expression for τ in

Equation (14) was determined with the aid of the plastic shear strain rate γ̇p which

had been derived on the macroscopic level by taking into account slip and rotation

in a random assembly of circular rods with a diameter d50 [49]. If the moment stress

vector mi disappears, τ in Equation (14) is reduced to its counterpart in a non-polar

continuum:

τ =(sijsij)
0.5. (19)

The micro-polar constants a1, a2 and a3 (Equation (14)) control the influence of the

Cosserat quantities on the material’s behaviour. The smaller the difference between a1
and a2, the greater the non-symmetry of the stress tensor and the effect of the Cosserat

quantities on the material’s behaviour [4, 51]. All combinations of the constants a1
and a2 are theoretically possible, provided that a1+a2=0.5 [49]. The influence of a3
on the results is rather insignificant [4]. Since the coefficients a1, a2 and a3 are micro-

polar constants, they can be generally found with comparative FE calculations [4].

The factors µ in Equation (15) and α in Equation (16), which are related to the angle

of internal friction, φ (Equation (17)), and the angle of dilatancy, β (Equation (18)),

of granular materials, can be identified for plane-strain problems with tests in a plane-

strain apparatus [52], Figure 3.

Figure 3. Mobilised friction factor, µ, and mobilised dilatancy factor, α, for granular materials

(φ – angle of internal friction, β – dilatancy angle, γp – plastic shear deformation);

1 – dense sand, 2 – medium dense sand, 3 – loose sand

The outlined constitutive law includes the following constants or functions

to be determined for non-cohesive granular materials: the modulus of elasticity E;

Poisson’s ratio, ν; the internal friction angle, φ, versus plastic shear deformation, γp;

the dilatancy angle, β, versus plastic shear deformation, γp; mean grain diameter,

d50; and the micro-polar coefficients a1, a2 and a3. The coefficient E can be assessed

for quasi-static silo flow problems with a formula for oedometric unloading [4]:

E=
1+e0
Cs
p, (20)
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wherein e0 is the initial void ratio, Cs denotes the swelling index, and p is the mean

stress. Poisson’s ratio, ν, was chosen as 0.30 [52]. The mean grain diameter can be

determined in a standard laboratory test.

The capability of an elasto-plastic Cosserat model for solving various boundary-

value problems involving localisation was demonstrated by Tejchman [1, 4, 53], Mühl-

haus [36, 37, 48, 49], de Borst [54], Papanastasiou and Vardoulakis [55], Sluys [38],

Tejchman and Wu [51, 56, 57], Tejchman and Gudehus [2], Unterreiner et al. [58],

Steinmann [59], Murakami and Yoshida [60] and Groen [61].

5. Finite element implementation

For the plane-strain calculations of the onset of granular flow in the model

silo (h = 0.50m, b = 0.20m) of Section 2, an FE mesh with quadrilateral finite

elements composed of four diagonally crossed triangles was applied to avoid volumetric

locking and spurious element behaviour [61]. A total of 3 000 triangular elements were

used (Figure 4) with linear shape functions for the displacements and the Cosserat

rotation. Symmetry with respect to the centre line was taken into account. In order

to realistically describe the interface behaviour along the wall, the FE mesh was

significantly refined at the wall. The width of quadrilateral elements close to the wall

was equal to 0.5mm, 1.5mm and 3mm, respectively. The height of all quadrilateral

elements was 10mm.

Figure 4. The mesh assumed for FE calculations

Calculations were performed both with a changing and a constant elastic mod-

ulus E calculated from Equation (20). In the former case, we assumed E∼=500p (with

e0=0.60–83 and Cs=0.003–0.004 [62]), in the latter case – E =500 ·4.0=2000kPa

(with p∼=4.0kPa on the basis of initial calculations).
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As an initial stress state before lowering the bottom, the stresses σij after filling

according to Janssen’s [33] slice method for plane strain were assumed (with couple

stresses mi being zero):

σ22=
γdb

2K tanϕw

[

1−exp

(

−2K tanϕwx2
b

)]

, (21)

σ11=Kσ22, (22)

σ12=σ21=σ11 tanϕw(1−2x1/b), (23)

whereinK is the mean pressure coefficient, ϕw denotes the wall friction angle, x2 is the

vertical coordinate measured from the top of the fill, x1 is the horizontal coordinate

measured from the wall, and b denotes the silo’s width. On the basis of model tests, we

chose: K =0.29 and ϕw =43̊ (very rough walls, dense sand), K =0.39 and ϕw =39̊

(very rough walls and medium dense sand), K =0.39 and ϕw =32̊ (very rough walls

and loose sand), K =0.27 and ϕw =36̊ (rough walls and dense sand), K =0.24 and

ϕw =15̊ (smooth walls and dense sand). Both model experiments [1] and numerical

calculations [63] show that stresses in silos due to filling can be approximated with

a slice method, provided that K and ϕw have been estimated empirically. The FE

calculations began with γp = 0.03, corresponding to φ= 35̊ and β = 0̊ (dense and

medium dense sand) and φ=34.0̊ and β=−8̊ (loose sand).

The Cosserat boundary conditions in a polar continuum allow for the variety

in wall roughness. The numerical calculations were performed with smooth walls

(rw� d50), rough walls (0<rw <d50), and very rough walls (rw ≥ d50). For modelling

very rough silo walls, full shearing of the material along a non-movable wall was

assumed [4, 63]:

u1=0, u2=0, ωc=0. (24)

In the case of smooth silo walls, both shearing and slip of the material along a rigid

wall was taken into account. The calculations were carried out with the following

assumptions [4, 63]:

u1=0, ωc/u2=−rw/d
2

50
. (25)

Assuming a relationship between the couple stressm1 and the vertical shear stress σ21,

the third condition is obtained automatically. In the residual state, it is approximately

equal to m1/σ21= d
2

50
/rw [4].

The rw/d50 ratio was chosen to be 0.05 for smooth walls and 0.25 and 0.50

for rough walls. The boundary conditions assumed in Equation (25) turned out to

be realistic and consistent, i.e. for rw/d50 ≈ 0, no stress changes in the material

were observed, and for rw/d50 = 0.5–1.0 (depending on the micro-polar constants),

the numerical results approached the results for very rough walls with the boundary

conditions expressed by Equation (24) [63]. As a result of the assumed polar boundary

conditions on the wall, the wall friction angle was derived and no special interface

elements were needed [4]. The remaining boundary conditions in the silo fill were

along the top traction and moment free, and in the symmetry axis: u1 = 0, ω
c = 0,

σ21=0.

Quasi-static mass flow was initiated through constant vertical displacement

increments prescribed to all nodes along the bottom. The displacement increment
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was 0.025mm. In the case of very rough walls, the bottom node on the wall was also

kept fixed.

The calculations were carried out with large deformations and curvatures. In

this case, an updated Lagrangian formulation [64] was applied using the Jaumann

stress rate and couple stress rate. At the same time, changes in the configuration and

volume of elements were taken into account.

To satisfy the consistency condition f =0, the trial stress method was applied

(linearised expansion of the yield condition about the trial stress point) using an

elastic predictor and a plastic corrector with radial return mapping algorithm [65]. The

integration was performed at 3 sample points placed in the middle of each triangular

element side.

The volume body momentmB (Equation (7)) was neglected. Initial calculations

showed that mB =±γd(d50/2) had a rather insignificant influence on the results [4].

The density of the silo fill was kept constant during the FE analyses.

To solve the non-linear equation of motion governing the response of a system

of finite elements, a modified Newton-Raphson scheme was used. The calculations

were performed using a symmetric, elastic global stiffness matrix. To accelerate

the convergency, the increments of the initial displacements and rotations in each

new calculation step were assumed to be equal to the total increments calculated

in the previous step [4]. For the calculations with a changing elastic modulus, the

global elastic stiffness matrix was updated every few steps. The iteration steps were

performed using translation and rotation convergence criteria (found in preliminary

FE calculations).

Tensile normal stresses were not allowed in the silo fill. If they were obtained

in some elements, the normal stresses, shear stresses and couple stresses in these

elements were replaced by zero values. For such elements, the element elastic stiffness

matrix was either significantly reduced or assumed to be equal to the initial elastic

one.

6. Numerical results

Figures 5–25 present numerical results of the finite element simulation of

quasi-static mass flow in a plane-strain silo with parallel walls. During the FE

calculations, the effect of the following parameters on the material behaviour was

carefully investigated:

• initial sand density,

• wall roughness,

• the modulus of elasticity,

• the initial stress state in the silo,

• the mean grain diameter of sand,

• the polar coefficients,

• wall stiffness,

• wall imperfections and

• the pressure level.

Additionally, the effect of small deformations and curvatures was analysed.

The calculations investigating the effect of the initial fill density and wall roughness
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(carried out with a changing elastic modulus E) were compared with the model

tests of Section 2. Other parameter studies were performed with a constant modulus

of elasticity and mainly with very rough walls, where the largest changes of forces

occur during confined granular flow. During the FE calculations, the evolution of the

resultant wall forces T and N was closely followed, as well as that of, the resultant

bottom force P , the horizontal wall stresses during silo flow, and the thickness of the

wall shear zone. The resultant forces T , N and P were calculated as the total sum of

all vertical or horizontal nodal forces along the wall or all vertical nodal forces along

the bottom, respectively. The wall stresses were obtained from nodal forces along the

wall. To compare the calculated forces (plane strain, l= 1m) with the experimental

ones (obtained in a rectangular bin with a length of l=0.60m), the calculated values

of P , T and N were reduced by multiplying them by the factor 0.6. However, the

calculated stresses were left unchanged.

6.1. Influence of the initial sand density

Figures 5–11 show the results for dense sand (γd=16.75kN/m
3, E=500pkPa,

ν = 0.3, φmax = 47̊ , φcr = 35̊ , βmax = 28.3̊ , βcr = 0̊ , γ
p
p = 0.05, γ

p
cr
= 0.20, d50 =

0.50mm, a1 = 0.30, a2 = 0.20, a3 = 1.0) in a silo with very rough parallel walls

(h= 0.50m, b= 0.20m). φmax and φcr are the internal friction angle at peak and in

the residual state, respectively (Figure 3). βmax and βcr denote the dilatancy angle at

peak and in the residual state, respectively (Figure 3). The plastic shear deformation

at peak and the plastic shear deformation at β = 0̊ are described as γpp and γ
p
cr
,

respectively (Figure 3). The calculated resultant P , T and N forces and the resultant

wall friction angle ϕw = arctg(T/N) versus the vertical bottom displacement u
b
2
are

presented in Figure 5. The calculated stresses and couple stresses at various points of

the solid are depicted in Figures 6 and 7. The horizontal wall stresses σ11 were obtained

from the division of horizontal nodal forces along the wall by the node distance or

calculated as the mean values in the triangular elements located directly at the wall. In

both cases, very similar values of σ11 were obtained. The evolution of the wall pressure

coefficients K =σ11/σ22 is shown in Figure 8. The results of the vertical displacement

u2, the Cosserat rotation ω
c and stresses σij (mean values from quadrilateral elements)

along the silo width at half the silo’s height are described in Figure 9. The calculated

displacements and Cosserat rotations are depicted in Figure 10. The magnitude of the

Cosserat rotation was marked by circles with a maximum diameter corresponding to

the maximum value in the given step. The distribution of stresses σ11, σ22 and σ21 in

all triangular elements of the mesh are presented in Figure 11. The darker the region,

the lower the absolute stress value.

The calculated results of forces P , T and N (Figure 10) are in satisfactory

agreement with the experimental ones [1]. They reach their asymptotes in a way

similar to that of the measured curves, but some discrepancies occur: the calculated

maximum and residual N forces are too great compared to the experimental results,

while the minimum bottom force P is too small. However, the residual bottom force P

is in good accordance. The calculated maximum resultant wall friction angle ϕw =48̊

and the residual wall friction angle ϕw =32̊ are close to the experimental values [1].

In general, the solid’s behaviour is similar to that during simple shearing [4].
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Figure 5. FE results for dense sand and very rough walls: evolution of resultant forces P , T , N

and wall friction angle, ϕw =arctg(T/N), versus bottom displacement, u
b
2
(T – vertical wall

friction force, N – horizontal wall force, P – vertical bottom force)

The calculated horizontal wall stresses show clear peaks at the beginning

of shearing and subsequently decrease, reaching a residual state (Figure 6). They

indicate a tendency to oscillate. The maximum horizontal wall stresses, σmax
11
=3.4–

3.6kPa, are significantly higher than those calculated for very rough walls by the

German Silo Code (plane strain), σ11=2.45kPa, with γd=16.75kN/m
3,K =0.70 and

µ= tanϕw = 0.6. Since the peaks of horizontal stresses along the wall are displaced

in time, the maximum horizontal wall force is not very high. The distribution of

stresses along the wall significantly differs from that obtained with the slice method

of Janssen [33]. The behaviour of vertical wall shear stresses and wall couple stresses

is similar to that of σ11 (Figure 7). The shape of the curves σ22= f(u
b
2
) is similar to

that of the calculated bottom force P .

Cosserat rotations, couple stresses and the non-symmetry of the stress tensor

are noticeable only in the wall shear zone (Figures 9 and 10). The thickness of the wall

shear zone, based on the vertical displacement and the Cosserat rotation, is 17.0mm

(Figure 10), and compares well with the experimental value [1]. It can therefore be

assumed that only Cosserat rotations greater than 0.1 (at ub
2
=25mm) are significant

in the shear zone.
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Figure 6. Calculated horizontal normal stresses, σ11, and vertical shear stresses, σ21, versus

bottom displacement, ub
2
, at various points along the wall (dense sand, very rough walls)

The stresses σij are not uniformly distributed in the entire silo (Figures 9

and 11). The residual pressure coefficients are always 1 in the wall shear zone

(Figures 8 and 9). The mean pressure coefficients are about 0.8–0.9. The ratio

between the wall couple stress mw
1
and the vertical shear stress σw

21
along the wall is

approximately 0.50 in the residual state.

The mean volume changes (u−w)/h = 0.018 in the residual state are in

accordance with the experiment [1].

The results for medium dense sand (γd = 15.20kN/m
3, E = 500pkPa, ν = 0.3,

φmax = 40̊ , φcr = 35̊ , βmax = 12̊ , βcr = 0̊ , γ
p
p = 0.05, γ

p
cr
= 0.20, d50 = 0.50mm,

a1 = 0.30, a2 = 0.20, a3 = 1) are shown in Figure 12 and those for loose sand

(γd = 14.50kN/m
3, E = 500pkPa, ν = 0.3, φmax = φcr = 35̊ , βcr = 0̊ , γ

p
cr
= 0.05,

d50=0.50mm, a1=0.30, a2=0.20, a3=1) are shown in Figure 13.

A decrease of the initial sand density causes smaller changes of the T , N

and P forces, horizontal stresses, σ11, and wall friction angle, ϕw, during silo flow.

The maximum wall friction force decreases with decreasing initial density. Thus,

the minimum bottom force decreases with increasing initial density. The maximum

horizontal wall force is greater for medium dense sand than for dense sand (as in

the experiment [1]). The residual wall forces are similar independently of the initial
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Figure 7. Calculated vertical normal stresses, σ22, and wall couple stresses, m1, versus bottom

displacement, ub
2
, at various points of the silo fill (dense sand, very rough walls)

Figure 8. Calculated pressure coefficients, K, versus bottom displacement, ub
2
, at various points

along the wall (dense sand, very rough walls)

sand density. The thickness of the wall shear zone increases with decreasing initial

solid density. The thickness of the wall shear zone is about 17.5mm and 17.2mm for

loose and medium dense sand, respectively. The maximum horizontal wall stresses

σ11 are about 2.8kPa (medium dense sand) and 1.8kPa (loose sand). The peaks of
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Figure 9. Calculated vertical displacement, u2, Cosserat rotation, ω
c, and stresses, σij ,

along the silo width in the middle of the silo (dense sand, very rough walls);

---------- ub
2
=1.25mm, -- -- -- ub

2
=25mm

σ11 are less displaced in time than for dense sand. The tendency to stress oscillation

diminishes with decreasing initial density. The maximum resultant wall friction angles

are ϕw =42̊ (medium dense sand) and ϕw =38̊ (loose sand). The residual wall friction

angle is ϕw =32̊ . The mean volume changes in the residual state are (u−w)/h=0.01

(medium dense sand) and (u−w)/h=−0.01 (loose sand). They are twice those of the

experiments.

6.2. Influence of wall roughness

The calculations were carried out only with dense sand (γd = 16.75kN/m
3,

E = 500pkPa, ν = 0.3, φmax = 47̊ , φcr = 35̊ , βmax = 28.3̊ , βcr = 0̊ , γ
p
p = 0.05,

γp
cr
= 0.20, d50 = 0.50mm, a1 = 0.30, a2 = 0.20, a3 = 1.0). The FE results for smooth

walls (rw = d50/20) are demonstrated in Figure 14. The results of forces are in

good accordance with the experiment. The changes of P and T are small after

bottom displacement. At the same time, the changes of N are greater. The maximum

horizontal wall stresses are significantly smaller than for very rough walls. The

thickness of the wall shear zone is equal to d50. In comparison with the experiment,

the increase of the horizontal wall force N during flow is excessive. Additionally,
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(a) (b)

Figure 10. Calculated displacements (a) and Cosserat rotations (b) in a model silo with dense

sand and very rough walls in the residual state (ub
2
=25mm)

the maximum wall friction angle, ϕw = 20̊ , is 2̊ too great, and the residual wall

friction angle, ϕw = 9.5̊ , is 5̊ too small. However, the FE calculations demonstrate

that the increase of N can be reduced by an increase of the difference between

a1 and a2.

Figures 15 and 16 present results for the model silo with rough walls (rw = d50/4

and rw = d50/2). The increase of wall roughness contributes to greater force and

stress changes after bottom displacement. The greater wall roughness, the greater

the wall friction force, the wall friction angle, wall stresses and the thickness of the

wall shear zone, and the smaller the drop of the bottom force and the increase of

wall forces after bottom displacement. The resultant normal force on the wall in

the residual state is slightly higher for rw = d50/2 than for very rough walls (as

in the experiment). The maximum wall friction angles are ϕw = 45̊ (rw = d50/4)

and ϕw = 47̊ (rw = d50/2). They are too high compared with the experiment. The

maximum horizontal stresses on the wall are about 2kPa (rw = d50/4) and 3.6kPa
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(a) (b) (c)

Figure 11. Calculated stresses (a) σ11, (b) σ22 and (c) σ21 in a silo with dense sand and very

rough walls in the residual state (ub
2
=25mm)

(rw = d50/2). In the latter case, they are similar to those obtained for very rough

walls. The thickness of the wall shear zone is equal to d50 (rw = d50/4) or 17mm

(rw = d50/2).

In general, the calculated FE results compare well with the experimental values.

The essential flow properties of granular materials in silos with different initial fill

density and wall roughness observed in the model tests were described realistically.

The existing differences between the experimental and the theoretical results may

be due to various factors. First, the experiments were performed in a rectangular

bin, where the effect of perspex walls occurred. In turn, the FE calculations were

carried out for the case of plane strain. Second, symmetry with respect to the

centre line was assumed. However, flow of dense sand is always non-symmetric

due to the formation of shear zones inside the solid. Third, the constitutive model

used is too simple to describe the complex behaviour of granular bodies during

flow. Therefore, to achieve better agreement between calculations and experiments,
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Figure 12. FE results (medium dense sand, very rough walls): evolution of resultant

forces P , T , N , wall friction angle, ϕw =arctg(T/N), and horizontal normal stresses, σ11,

at various points along the wall versus bottom displacement, ub
2
, and deformed mesh

in the residual state (ub
2
=25mm); T – vertical wall friction force,

N – horizontal wall force, P – vertical bottom force

a more realistic constitutive model should be used, e.g. a polar hypoplastic one

([4, 43, 63]), obtained by the extension of the non-polar hypoplastic model ([66–68])

with polar quantities. It also takes into account such important material properties

as: dependence on the stress level, on the material density and on the direction of
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Figure 13. FE results (loose sand, very rough walls): evolution of resultant forces P , T , N ,

wall friction angle, ϕw =arctg(T/N), and horizontal normal stresses, σ11, at various points along

the wall versus bottom displacement, ub
2
, and deformed mesh in the residual state (ub

2
=25mm)

T – vertical wall friction force, N – horizontal wall force, P – vertical bottom force

deformation: the transition between dilatancy and contractancy during shearing with

a constant pressure; and the transition between the pressure increase and pressure

release during shearing with a constant volume. Advantages of the model are its

simplicity and the simple procedure for determination of material constants with

standard laboratory experiments. At the same time, the obtained results for smooth
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Figure 14. FE results (dense sand, rough walls, rw = d50/20): evolution of resultant

forces P , T and N , wall friction angle, ϕw =arctg(T/N), and horizontal normal stresses, σ11,

at various points along the wall versus bottom displacement, ub
2
; T – vertical wall friction force,

N – horizontal wall force, P – vertical bottom force

and rough walls are strongly dependent upon the polar constants. Therefore, to obtain

better agreement with experimental results, further FE studies on polar boundary

conditions are necessary.

6.3. Influence of the modulus of elasticity

Figure 17 demonstrates the results for dense sand with a constant modulus of

elasticity in a silo with very rough walls (γd = 16.75kN/m
3, ν = 0.3, φmax = 47̊ ,
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Figure 15. FE results (dense sand, rough walls, rw = d50/4): evolution of resultant

forces P , T and N , wall friction angle, ϕw =arctg(T/N), and horizontal normal stresses, σ11,

at various points along the wall versus bottom displacement, ub
2
; T – vertical wall friction force,

N – horizontal wall force, P – vertical bottom force

φcr = 35̊ , βmax = 28.3̊ , βcr = 0̊ , γ
p
p = 0.05, γ

p
cr
= 0.20, d50 = 0.50mm, a1 = 0.30,

a2 = 0.20, a3 = 1.0). By assuming a constant modulus E, a greater oscillation of

the resultant forces and wall stresses is obtained. An increase of E causes an increase

of the maximum wall forces and residual bottom forces, and a drop in the minimum

bottom force and residual wall forces. The horizontal wall stresses and the thickness

of the wall shear zone are slightly smaller (by 10%) than those for a variable elastic
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Figure 16. FE results (dense sand, rough walls, rw = d50/2): evolution of resultant

forces P , T and N , wall friction angle, ϕw =arctg(T/N), and horizontal normal stresses, σ11,

at various points along the wall versus bottom displacement, ub
2
; T – vertical wall friction force,

N – horizontal wall force, P – vertical bottom force

modulus E estimated with Equation (20). The maximum of σ11 on the wall is not

influenced by E.

6.4. Influence of the initial stress state

The calculated resultant forces P , T and N for the initial stress state K0
(σ22 = γdx2, σ11 =K0σ22, σ12 = σ21 = 0, m1 =m2 = 0, K0 = 0.45) with dense sand
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Figure 17. FE results (dense sand and very rough walls, d50=0.5mm): evolution of resultant

forces P , T , N and horizontal normal stresses, σ11, at various points along the wall versus bottom

displacement, ub
2
; T – vertical wall friction force, N – horizontal wall force,

P – vertical bottom force; 1 – E=2000kPa, 2 – E=5000kPa

and very rough walls are presented in Figure 18. The assumption of an initial

stress state (assuming no shear stresses) has little effect on the calculated forces

at the beginning of the flow. The differences are more noticeable in the residual

state. In this case, the T and N forces are slightly stronger, and the P force is

slightly weaker. The effect of the initial stress state on horizontal wall stresses is

insignificant.
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Figure 18. FE results (dense sand and very rough walls, E=2000kPa, d50=0.5mm): evolution of

resultant forces P , T , N versus bottom displacement, ub
2
, for the initial stress state: 1 – by Janssen

and 2 – the K0-initial stress state; T – vertical wall friction force, N – horizontal wall force,

P – vertical bottom force

Figure 19. FE results (dense sand and very rough walls, E=2000kPa): evolution of resultant

forces P , T , N and horizontal normal stresses, σ11, at various points along the wall versus bottom

displacement, ub
2
; T – vertical wall friction force, N – horizontal wall force,

P – vertical bottom force; 1 – d50=0.5mm, 2 – d50=2.5mm
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6.5. Influence of the mean grain diameter

Figure 19 shows dense-sand-and-very-rough-walls results for a greater mean

grain diameter (d50=2.5mm). An increase of d50 increases the residual bottom force

P and decreases the residual wall forces T and N . The residual normal force N

is smaller by 20% (dense sand) or by 5% (medium dense sand) for d50 = 2.5mm.

The maximum wall stresses are almost the same. The thickness of the wall shear

zone, 18mm (d50 = 2.5mm), is slightly greater than for d50 = 0.50mm. The wall

friction angles are slightly higher for larger grains. The maximum and residual

resultant wall friction angles (dense sand, d50 = 2.5mm) are ϕw = 49̊ and ϕw = 34̊ ,

respectively. In the case of medium dense sand with d50 = 2.5mm and dense sand

with d50 = 0.1mm, the thickness of the wall shear zone is about 20mm and 8mm,

respectively. The influence of d50 on maximum wall stresses is minimal. The effect of

d50 on the obtained results decreases with decreasing initial sand density. It should

be noted that an increase of the internal friction angle and the dilatancy angle with

increasing mean grain diameter was neglected in the calculations [4]. If considered,

this dependency would increase the wall forces for larger grains. The influence of d50
on γd was likewise not considered. In general, the larger the grains, the smaller the

initial density.

6.6. Influence of the polar constants

The calculations were carried out for dense sand and very rough walls using

a1 = 0.375, a2 = 0.125, a3 = 1. These constants were proposed by Mühlhaus [49] in

the so-called kinematic polar model. In this case, the polar shear modulus and the

non-symmetry of the stress tensor are smaller than for a1 =0.3 and a2 =0.2 [4, 51].

According to the kinematic model, the maximum and residual wall forces are weaker

(Figure 20). The thickness of the wall shear zone on the basis of the Cosserat rotation,

15mm, is also smaller.

6.7. Influence of wall stiffness

In order to approximately model a flexible wall, horizontal elastic springs with

constant stiffness were prescribed to nodes along the entire vertical wall. In one case

we chose the spring stiffness of k = 200kN/m, and in another case – k = 50kN/m.

The results (Figures 21 and 22) show that the more flexible the wall, the greater

changes of forces can be observed during flow. For the greater spring stiffness of

k = 200kN/m, the residual wall forces and maximum horizontal wall stresses are

smaller compared to a rigid wall. For the lower spring stiffness of k = 50kN/m, the

evolution of wall forces and residual wall stresses is entirely different than for a rigid

wall. Both wall forces and residual wall stresses are significantly higher due to a high

wall curvature. In this case, a small part of the wall (below 3.5cm) is displaced towards

the symmetry axis. However, the part remaining above is curved to the outside. The

maximum outward wall displacement at the silo height of about 10cm is about 0.40–

0.45mm. The outward displacement is subsequently reduced toward the wall’s top.

The thickness of the wall shear zone along flexible walls is almost the same as for

rigid walls.
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Figure 20. FE results (dense sand, very rough walls, E=2000kPa, d50=0.5mm): evolution of

resultant forces P , T , N and horizontal normal stresses, σ11, at various points along the wall

versus bottom displacement, ub
2
, and deformed mesh in the residual state (ub

2
=25mm);

T – vertical wall friction force, N – horizontal wall force, P – vertical bottom force;

1 – a1=0.30, a2=0.20, 2 – a1=0.375, a2=0.125

6.8. Influence of wall imperfection

An imperfection was assumed in the form an initial horizontal displacement

of three wall nodes to the inside and to the outside, 40mm in length, at the height

of h= 100mm above the silo’s bottom. The horizontal wall displacement was taken

as 2mm. The FE results (Figure 23) show that this small imperfection directed inwards

increases the maximum horizontal wall stresses (by about 25%) and decreases them

(by about 5%) when directed outwards (Figure 17).

6.9. Influence of the pressure level

The calculations were carried out with a silo 10 times larger (h = 5.0m,

b = 2.0m) [62]. During calculations, a decrease of the internal friction angle and

the dilatancy angle and an increase of shear deformation at peak with increasing

pressure level was assumed [69]. The analysis was performed with γd=16.30kN/m
3,

φmax = 43̊ , βmax = 19̊ , E = 500pkPa, γ
p
p = 0.10 and d50 = 0.5mm. The normalised
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Figure 21. FE results (dense sand, very rough walls, E=2000kPa, d50=0.5mm): evolution of

resultant forces P , T , N and horizontal normal stresses, σ11, at various points along the wall

versus bottom displacement, ub
2
; T – vertical wall friction force, N – horizontal wall force,

P – vertical bottom force; 1 – rigid wall, 2 – flexible wall (k=200kN/m)

resultant wall forces (Figure 24) show that the minimum bottom and the maximum

wall friction force’s are weaker, and the maximum horizontal wall force is stronger than

for the smaller silo. At the residual state, the wall forces are stronger and the bottom

force is weaker. The maximum normalised horizontal wall stresses are 5% smaller

compared to the model silo. The thickness of the shear zone is about 17cm. The

calculations indicate that the results from model silos cannot be directly transferred

to large silos due to effects of scale.

6.10. Influence of small deformations and curvatures

An analysis was performed for small deformations and curvatures (Figure 25).

In this case, the stresses and couple stresses were calculated without taking into

consideration the Jaumann terms, and the changes of element configuration and

volume were neglected. The effect of large deformations and curvatures begins to

be noticeable at the bottom displacement of ub
2
= 7mm. The residual wall forces T

and N are stronger and the residual bottom force P is weaker for large deformations

and curvatures.
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Figure 22. FE results (dense sand, very rough walls, E=2000kPa, d50=0.5mm): evolution of

resultant forces P , T , N and horizontal normal stresses, σ11, at various points along the wall

versus bottom displacement, ub
2
; T – vertical wall friction force, N – horizontal wall force,

P – vertical bottom force; 1 – rigid wall, 2 – flexible wall (k=50kN/m)

7. Conclusions

The FE calculations show that quasi-static mass flow of granular bodies in

silos can be described with a polar elasto-plastic constitutive model. The model

captures the salient properties of granular materials during confined granular flow.

The obtained numerical results are in satisfactory agreement with the experimental

ones, in spite of the simplicity of the model used. The following observations can be

made on the basis of the FE calculations:

The calculated forces and stresses in granular materials during silo emptying

are very sensitive to the initial density of the silo fill, wall roughness, wall stiffness and

imperfections, the modulus of elasticity, the mean grain diameter of the bulk solid,

and the micro-polar coefficients.

The maximum resultant wall friction force increases with increasing initial solid

density and wall roughness. Thus, the minimum resultant bottom force decreases with

increasing initial density and wall roughness. The changes of forces during granular

flow increase with increasing initial density and wall roughness.
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Figure 23. FE results (dense sand, very rough walls with an imperfection, E=2000kPa,

d50=0.5mm): horizontal normal stresses, σ11, at different points along the wall versus bottom

displacement, ub
2
: top – imperfection directed inwards, bottom – imperfection directed outwards

The horizontal wall stresses have a tendency to oscillate, which increases with

increasing fill density. The maximum horizontal wall stresses increase with increasing

initial solid density. For dense sand, they increase with increasing wall roughness. They

are sensitive to wall imperfections and wall flexibility. Wall imperfections directed

inwards significantly increase wall stresses, while wall imperfections directed outwards

decrease them slightly. In the case of flexible walls, the maximum horizontal wall

stresses are smaller and the residual ones are greater.

Wall stresses can be greater than these calculated with silo codes, in particular

for dense sand and very rough walls. In general, the stresses are non-uniformly

distributed in bulk solids. Their non-uniformity increases with increasing initial

density and wall roughness.

Due to the effect of the pressure level and grain rotations in the wall shear zone,

the results from model tests cannot be transferred to large silos.

The polar approach is very effective as a regularisation method when shear

localisation is dominant. The calculated thickness of wall shear zones increases with

decreasing initial fill density and increasing wall roughness and mean grain diameter.
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Figure 24. FE results in a large silo (dense sand, very rough walls, h=5.0m, b=0.2m, E=500p,

d50=0.5mm): normalised resultant forces P , T , N and horizontal normal stresses, σ11, at various

points along the wall versus bottom displacement, ub
2
; T – vertical wall friction force,

N – horizontal wall force, P – vertical bottom force

Figure 25. FE results (dense sand, very rough walls, E=2000kPa, d50=0.5mm): evolution of

resultant forces P , T and N versus bottom displacement, ub
2
; 1 – large deformations

and curvatures, 2 – small deformations and curvatures
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Cosserat rotations and couple stresses are only noticeable in shear zones. The

Cosserat rotation is a suitable indicator of shear zones. A polar granular body is

stronger and stiffer than a non-polar one.

The numerical analysis of quasi-static flow of granular materials in silos with

a polar hypoplastic constitutive model will be carried out [70]. The results will be

re-checked with model tests. Numerical simulations will be carried out for the entire

silo. The initial void ratio of the solid will be stochastically distributed in the silo

using a random generator.
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