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Abstract: The paper deals with experimental and theoretical research of resonance effects during

silo emptying. The influence of resonance effects on wall pressures in silos has been investigated with

model tests and FE analyses. The model tests were carried out with a cylindrical and rectangular silo

containing various cohesive and non-cohesive bulk solids. The onset of dynamic silo flow was simulated

with controlled outlet velocity along the bottom in a plane strain model and large silo. The confined

flow of dry sand in a silo with parallel walls during resonance was described with a finite element

method based on a polar elasto-plastic constitutive law. It differs from the conventional theory of

plasticity by the presence of Cosserat rotations and couple stresses using mean grain diameter as

a characteristic length. In the FE calculations, the silo walls were taken into account.
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1. Introduction

Dynamic effects in bulk solids are an inherent characteristic of every silo dis-

charge [1–4]. They occur in the form of pulsations and shocks. In dry granular ma-

terials (non-cohesive), only pulsations are created. In cohesive bulk solids, pulsations

and shocks can be observed at the same time. Silo pulsations are connected to natural

vibrations of the silo fill induced by disturbances of the flow at the silo bottom due

to the outlet being smaller than the silo diameter, the hopper, or the bottom plate,

slowing down the flow. The pulsations are created at the bottom and propagate up-

wards in the form of stress waves. At the silo bottom, a change in the direction of

shear deformation is connected to local volume changes in the fill alternating from

dilatancy to contractancy. The material’s dilatancy results in a decrease of the ver-

tical stress, an increase in wall pressure, and deceleration of the fill. The contractancy

causes, in turn, an increase of the vertical stress, a release of the wall stresses, and

acceleration of the fill. The stress changes due to the presence of inertial forces lead

to dynamic pulsations. Silo shocks are created due to the formation and collapse of

bridges connected to a strong change of cohesion with the material’s density above
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the outlet. The solid is consolidated by filling and pressurizing in the hopper and then

dilated and softened near the outlet, so that the bridges break down.

Dynamic effects can be very dangerous if the frequencies of self-excited dynamic

effects in bulk solids match the frequencies of natural vibrations of the silo structure

and resonance effects thus occur. It is very often the case in steel and aluminium

silos, whose walls are relatively thin (compared with concrete silos, see [4, 5]). The

resonance phenomena take place mainly during mass flow of stiff grains in silos with

smooth walls. In this case, they are directly transferred to the wall and then to the

supporting structure. During channel flow in the middle of the silo, dynamic effects

are damped by the material sticking to the wall. In silos with very rough walls, they

are damped in the wall shear zone, where plastic deformations prevail.

The intention of the experimental and theoretical research presented in this

paper was to determine the effect of resonance on wall stresses during silo emptying.

2. Model tests

Model tests were performed with a perspex cylindrical silo (height h= 0.2m,

inner diameter d = 0.2m) and a perspex rectangular silo (height h = 0.2m, cross-

section 0.15×0.3m2) [6, 7]. They contained various non-cohesive bulk solids: fine sand,

gravel, polymer granulate, wheat, and cohesive bulk solids: sand with water, sand with

glycerine and sand with clay. The emptying process was produced mainly by opening

a steel plate in the silo bottom (gravitational outflow). Tests were also performed

with controlled outlet velocity. During the model tests, the following quantities were

measured: horizontal and vertical accelerations on the wall (also circumferential

accelerations in a cylindrical silo), vertical accelerations on the upper boundary of the

bulk solid, horizontal and vertical strains on the wall, and horizontal normal stresses

on the wall. The model experiments were carried out with the following variable

parameters:

• initial sand density, γ (loose and dense sand),

• outlet diameter, do, for gravitational flow (do=0.01, 0.04, 0.07 and 0.12m),

• filling height, h (h=1.0 and 2.0m),

• mean grain diameter of sand, d50 (d50=0.3, 0.8 and 3.0mm),

• grain stiffness (sand, gravel, polymer granulate and wheat),

• wall roughness (smooth, rough and very rough walls),

• velocity of the bottom plate, v, for controlled outflow (v = 0.7, 2.0, 4.0 and

5.0mm/s),

• cohesion (sand with water, sand with glycerine, sand with clay).

First, natural frequencies of the model silos were measured. Silos were excited

by both vertical and horizontal vibration. During vertical excitation, the following

natural frequencies below 100Hz were obtained in silos containing fine sand: 22, 69,

80 and 88Hz (cylindrical silo), and 19Hz (rectangular silo). The deformed cylindrical

silo had the form of a barrel of varying height and diameter. In turn, bending

deformations were dominant in the rectangular silo. When the silos were excited by

the horizontal vibration, the following natural frequencies below 100Hz were obtained

in silos containing fine sand: 11, 28, 67, 69, 72 and 87Hz (cylindrical silo), and 11, 66

and 90Hz (rectangular silo). The natural frequencies of solids in a vertical direction
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were in the range of basic frequencies calculated from the equation for the fundamental

frequency of longitudinal wave propagation in an elastic bar:

f =

√

E(1−v)

ρ(1+v)(1−2v)
/2h=

vc
2h
=
200

4.0
=50Hz (at end conditions free-free), (1)

f =

√

E(1−v)

ρ(1+v)(1−2v)
/4h=

vc
4h
=
200

8.0
=25Hz (at end conditions fixed-free), (2)

where vc – velocity of the longitudinal compressive stress wave, E =50MPa (elastic

modulus of sand), v = 0.3 (Poisson’s ratio of sand), h = 2.0 (silo height) and ρ ≈

1700kg/m3 (mass density of sand).

The tests with sand in the cylindrical silo (with gravitational flow) showed

that strong acoustic dynamic pulsations occurred from the beginning of the emptying

process independently of the outlet’s diameter and sand density. In the cylindrical

silo, pulsations were registered only in the upper region of the cylinder (0.8–1.0m

above the bottom) during plug flow. Later, channel flow in the middle of the solid

occurred. The tests with sand in a rectangular silo during gravitational flow showed

that the resonance effects appeared only in tests with dense sand during channel flow

occuring directly at the wall.

(a) (b)

Figure 1. Measured horizontal wall pressure, σn, at h=1.0m during time of flow, t:

(a) cylindrical silo – loose sand, d0=0.07m; (b) rectangular silo – dense sand, d0=0.12m

(d50=0.8mm, smooth walls)

The maximum wall pressures during resonance were about σn = 6.5–7kPa

(Figure 1). They were 2–3 times higher than those calculated with silo standards

(with the aid of a Janssen equation). The lowest frequency of wall vibrations was

equal to the basic frequency of natural vibrations of the silo structure in the vertical

direction. For more detailed discussion of the tests the reader is referred to [6, 7].

A controlled outlet velocity (in the considered range of v) influenced slightly the

amplitudes of vertical accelerations but it did not influence wall pressures (Figure 2).

During tests with v=0.7–5.0mm/s, the maximum vertical accelerations on the wall,

av, were ±(0.5–3.0)m/s
2. The maximum wall pressures increased during flow to

1.0kPa. The frequencies of wall vibrations were similar to those observed during

gravitational flow.
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(a) (b)

Figure 2. Measured horizontal wall pressure, σn, at h=1.0m for controlled outlet velocity:

(a) v=0.7mm/s; (b) v=5mm/s (cylindrical silo, loose sand, d50=0.8mm, smooth walls)

(a) (b)

Figure 3. Measured: (a) vertical acceleration av on the wall and (b) horizontal wall pressure σn
at h=1.0m (cylindrical silo, mixture of sand and water, d0=0.12m, smooth walls)

During silo tests with cohesive mixtures, both pulsations and non-regular shocks

were observed. The flow took place by jumps due to the formation and collapse of

arches. The effect of cohesion on accelerations and pressures was great. For a mixture

of sand and water, the strongest dynamic effects occurred at do=0.12m and cohesion

c= 0.18kPa. In this case, the maximum vertical accelerations on the wall, av, were

40m/s2 (Figure 3a) and the maximum wall pressures were 3.5kPa (Figure 3b). The

frequency of pulsations and shocks was equal to 60Hz and 0.8Hz, respectively. For

do=0.07m, wall pressures were smaller by about 20%.

For a mixture of sand with glycerine (0.05% of volume), the maximum vertical

accelerations on the wall were about 30m/s2 (Figure 4a). The maximum wall pressures

were 1.6kPa (Figure 4b). When the volume contents of glycerine was 0.08–0.09%, the

maximum vertical accelerations on the wall were 50–60m/s2 (Figures 4c and 4e),

and the maximum wall pressures were 2.3kPa (Figures 4d and 4f). The frequency of

pulsations was equal to 60Hz, the frequency of shocks was 1Hz.

In the case of a mixture of sand and clay (< 4% of volume), only short dynamic

pulsations appeared. The maximum vertical accelerations on the wall were 10m/s2

(Figure 5a). The wall pressures increased during flow by 20% only (in spite of the
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Measured vertical acceleration, av , on the wall and horizontal wall pressure, σn, at

h=1.0m: (a) and (b) 0.05% volume, (c) and (d) 0.08% volume, (e) and (f) 0.09% volume

(cylindrical silo, mixture of sand and glycerine, d0=0.07m, smooth walls)

short resonance) compared to static pressure (Figure 5b). When the contents of clay

was over 4%, flow did not occur due to arching.

The experimental results from model silos cannot be directly applied to large

silos due to scale effects caused by the pressure level (influencing both the internal

wall friction and the dilatancy angle of bulk solids), the ratio between the mean grain

diameter and the silo diameter, and the volume of the bulk solid damping dynamic

effects [4, 8].
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(a) (b)

Figure 5. Measured: (a) vertical acceleration, av , on the wall and (b) horizontal wall pressure,

σn, at h=1.0m (cylindrical silo, mixture of sand and clay, d0=0.12m, smooth walls)

3. Method of resonance reduction

The favoured method of suppressing dynamic effects in silos has been to increase

of the roughness of walls [7]. This method is effective both for cohesive and non-

cohesive bulk solids. The maximum registered wall accelerations in a cylindrical

silo with very rough walls and dry loose sand in all directions were smaller than

1m/s2 [5, 6]. The wall pressures in a cylindrical silo during emptying were smaller

than 1.8kPa. The basic frequency of pulsations was about 200Hz. A noticeable shear

zone with a thickness of about 20mm developed along very rough walls. Mass flow

still took place in the upper part of the silo but the material moved slightly faster

beyond the shear zone than along the walls. The formation of shear zone contributed to

a significant increase in the frequencies of pulsations, due to the presence of additional

horizontal and rotational stress waves [4]. The frequency of these waves was greater

than this of the longitudinal stress waves due to a shorter way of propagation. In this

way, the resultant frequency of pulsations was higher and the resonance range could

be avoided. Pulsations were additionally damped in the wall shear zone, where plastic

shear deformations prevailed.

In the case of a mixture of sand and water (c=0.18kPa), the reduction of wall

pressures in a silo with very rough walls was significant (by about 60%), compared

to those for smooth walls (Figure 6). When the silo contained a mixture of sand

and glycerine, the reduction was similar (Figure 7b). The amplitudes of vertical

accelerations on the wall were smaller than ±1m/s2 (Figure 7a).

In experiments with a mixture of sand and clay in a cylindrical silo with very

rough walls, the maximum wall stresses increased by 30% (from 1.2kPa up to 1.6kPa,

see Figure 8).

During tests in a cylindrical silo with controlled outlet velocity, very rough walls

and loose sand, the maximum wall pressures were higher by 10% when compared to

those of the silo with smooth walls (Figure 9).

In the case of a rectangular silo with loose sand and very rough walls, the

maximum wall pressures were higher by 20% when compared to those of the silo with

smooth walls (without resonance).
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Figure 6. Measured horizontal wall pressure, σn, at h=1.0m (cylindrical silo, mixture of sand

and water, d0=0.12m, very rough walls)

(a) (b)

Figure 7. Measured: (a) vertical acceleration, av , on the wall and (b) horizontal wall

pressure, σn, at h=1.0m (cylindrical silo, mixture of sand and glycerine, d0=0.07m,

very rough walls)

Figure 8. Measured horizontal wall pressure, σn, at h=1.0m (cylindrical silo, mixture of sand

and clay, d0=0.12m, very rough walls)

4. Polar elasto-plastic constitutive law

The resonance effects occurring during silo emptying of granular bulk solids

(non-cohesive sand) at the onset of flow were numerically analysed with an FEM

and a polar elasto-plastic constitutive relation with isotropic hardening and softening
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(a) (b)

Figure 9. Measured: (a) vertical acceleration, av , on the wall and (b) horizontal wall

pressure, σn, at h=1.0m (cylindrical silo, loose sand, d50=0.8mm, controlled

outlet velocity v=5mm/s, very rough walls)

(a) (b)

Figure 10. Plane strain Cosserat continuum: degrees of freedom (u1, u2 – horizontal and vertical

displacement, ωc – Cosserat rotation)

proposed by [4, 9, 10]. The constitutive law was formulated within a polar (Cosserat)

continuum. A Cosserat continuum differs from a classical (non-polar) continuum

in that an additional rotation, ωc, appears in its kinematics (Figure 10a). Thus,

each material point of the plane polar continuum has three degrees of freedom: two

translational degrees of freedom, u1 and u2, and a rotational degree of freedom, ω
c.

The state of deformation within a polar continuum is described by six quantities:

ε11=u1,1, ε22=u2,2, (3)

ε12=u1,2+ω
c, ε21=u2,1−ω

c, (4)

κ1=ω
c
,1, κ2=ω

c
,2, (5)

where

(),i= ∂()/∂xi. (6)

εij are components of the deformation tensor, and κi are components of the curvature

vector. Normal deformations are defined similarly as in a non-polar continuum. The

shear deformations ε12 and ε21 can be viewed as relative deformations relating

the macro-displacement gradient and micro-rotation; in contrast to a non-polar

continuum, ε12 6= ε21. The curvatures κ1 and κ2 describe macro-deformation gradients
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of the micro-rotation. εij and κi are invariant with respect to rigid body motions. Six

deformation quantities are conjugate with respect to energy to six stress quantities

referred to the actual configuration. The four components of εij are associated with the

four components of the stress tensor σij which is generally non-symmetric (σ12 6=σ21).

The curvatures κi are associated with the couple stresses mi. Figure 10b shows the

stresses, couple stresses, volume body forces, fBi , volume body moment, m
B , volume

inertia forces, ρüi, and volume moment of spin inertia, θω̈
c, at an infinitesimal element

(dx1, dx2) of a plane Cosserat continuum. The force equilibrium and the moment

equilibrium give the following equations of motion:

σ11,1+σ12,2−f
B
1
+ρü1=0, (7)

σ21,1+σ22,2−f
B
2
+ρü2=0, (8)

m1,1+m2,2+σ21−σ12−m
B+θω̈c=0, (9)

where

(̈)= ∂2 ()/∂t2. (10)

ρ is the mass density, and θ denotes the volume moment of inertia. The equilibrium

conditions (Equations (7)–(9)) are equivalent to the virtual work principle:
∫

B

(σijδεij+miδκi)dV =

∫

B

[

(fBi −ρüi)δui+(m
B−θω̈)δωc

]

dV+

+

∫

∂1B

tiδuidA+

∫

∂2B

mδωcdA, (11)

where

σijnj = ti on ∂1B, mini=m on ∂2B. (12)

ti and m are prescribed boundary tractions and moment, respectively, δεij and

δκi denote virtual deformations and curvatures, δui is virtual displacement, δω
c is

the virtual Cosserat rotation, A is body surface, and V is body volume. Virtual

displacements and the virtual Cosserat rotations disappear on those parts of the

boundary where the kinematic boundary conditions are prescribed. The work principle

states that the fields σij , mi satisfying for arbitrary kinematically admissible virtual

δui, δωc also satisfy the equilibrium conditions (Equations (7)–(9)) and the boundary

conditions (Equation (12)). The virtual work principle is used to formulate an FEM

of motion. As a consequence of the presence of rotations and couple stresses, the

constitutive law for granular materials within a polar continuum is endowed with

a characteristic length corresponding to the mean grain diameter. Thus, the numerical

results are not sensitive to spatial discretisation and boundary value problems remain

mathematically well-posed when using softening constitutive laws. A polar approach

can model the thickness of shear zones and related grain size effects. In addition, the

effect of the pressure level can be also considered in the constitutive law (by a decrease

of both the internal friction angle and the dilatancy angle with increasing pressure

and by an increase of the elastic modulus with increasing pressure).

A Cosserat elasto-plastic constitutive model for granular materials with iso-

tropic hardening and softening has been proposed by Mühlhaus. It differs from the

conventional elasto-plastic law of Drucker-Prager in the presence of Cosserat rotations
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and couple stresses using the mean grain diameter as a characteristic length. It can

be summarised as follows:

ε̇ij = ε̇
e
ij+ ε̇

p
ij , κ̇i= κ̇

e
i + κ̇

p
i , (13)

ε̇eij =
1

E
[(1+v)σ̇ij−vσ̇kk], i= k, (14)

ε̇eij =
1

2G

∂τ̇2

∂σij
, κ̇ei =

1

2G

∂τ̇2

∂mi
, i 6= j, (15)

ε̇pij =λ
∂g

∂σij
, κ̇pi =λ

∂g

∂mi
, (16)

τ =(a1sijsij+a2sijsji+
a3
d2
50

mimi)
0.5, (17)

f = τ+µ(e0,γ
p)p−c, (18)

g= τ+α(e0,γ
p)p, (19)

wherein τ is the second invariant of the deviatoric stress tensor, sij – the non-symmet-

ric deviatoric stress tensor (sij = σij−pδij), p – mean stress, σij – the stress tensor,

mi – the couple stress vector, a1, a2, a3 – coefficients, d50 – mean grain diameter,

f – the yield function, g – the potential function, µ – the mobilised friction factor,

α – the mobilised dilatancy factor, c – cohesion, e0 – the initial void ratio, γ
p – plastic

shear deformation, εij – the deformation tensor, ε̇ij – the rate of deformation tensor,

κi – the curvature vector, κ̇i – the rate of curvature vector, λ – the proportional-

ity factor, E – the elastic modulus, G – the shear modulus, v – the Poisson ratio,

δij – the Kronecker delta. The superimposed indexes e and p designate the elastic and

the plastic strain or curvature, respectively. The factors µ in Equation (18) and α in

Equation (19), which are related to the angle of internal friction, φ, and the angle of

dilatancy, β, of granular materials, can be identified with the help of tests in a plane

strain or in a triaxial apparatus.

Figure 11 shows the evolution of the mobilised friction factor, µ, and the

mobilised dilatancy factor, α, for granular materials. The functions describing the

mobilised friction factor, µ, and mobilised dilatancy factor, α, versus plastic shear

deformation, γp, were proposed on the basis of biaxial tests.

Figure 11. Mobilised friction factor, µ, and mobilised dilatancy factor, α,

for dense granular materials (φ – angle of internal friction, β – dilatancy angle,

γp – plastic shear deformation); 1 – dense, 2 – medium dense, 3 – loose material
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5. FE input data

To simulate resonance effects during silo flow in a silo with parallel walls, a sys-

tem containing bulk solid (sand) and two walls was assumed. A total of 960 triangular

finite elements were applied (800 for the solid and 80 for each wall). The silo walls

of perspex (with a thickness of tw =5mm) were assumed to behave purely elastically

(elastic modulus of walls Ew =3300000kPa, Poisson’s ratio for walls (v = 0.3). For

the sake of simplicity, plane strain mass flow in a model silo was taken into account

with a controlled outlet velocity (vf = 5mm/s) along the bottom between two par-

allel smooth walls (silo height h= 2.0m, silo width b= 0.2m, see [6, 7]). This type

of flow has been observed in experiments in a cylindrical model in the upper part

of the silo.

Figure 12. System assumed for numerical simulations of resonance effects (PH,V – horizontal

and vertical nodal forces along walls)

Horizontal wall displacements and horizontal displacements in the bulk solid

along the contact surface were assumed to be equal (uw
1
=um
1
, see Figure 12). At the

interface, a polar wall boundary condition was introduced to describe wall roughness

of smooth walls (rw� d50): ω
c/u2= rw/d

2

50
with rw/d50=0.05, wherein ω

c is Cosserat

rotation, u2 – vertical displacement, d50 – mean grain diameter, and rw – wall

roughness. As an initial stress state, stresses after filling were assumed according

to the slice method proposed by Janssen. Along the entire bottom, constant vertical

displacements were prescribed (u1=0, ω
c=0, u2=n∆u), wherein u1 was horizontal

displacement, n – step number, ∆u – an increment of bottom displacement.

An updated Lagrangian approach was adopted in the formulation of the

incremental form of the governing equations. To solve the non-linear equation of

motion governing the response of a system of finite elements, an implicit integration

method proposed by Newmark was used with a modified Newton-Raphson scheme.

The calculations were performed using a symmetric, elastic global stiffness matrix.

The time increment dt was chosen as 0.0005s. In this range, the effect of dt was found

to be insignificant.
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6. Numerical results

First, FE calculations of solid flow without walls were performed (model silo:

h= 2.0m, d= 0.2m, and large silo: h= 20.0m, d= 2.0m), assuming that horizontal

displacements along the vertical boundaries of the material were equal to zero. For the

sand in silo model, the following material parameters were assumed: γd=17.0kN/m
3

(initial density), Em =50000kPa (elastic modulus), K = 0.22 (pressure coefficient

at filling), ϕw = 15̊ (wall friction angle at filling), v = 0.3 (Poisson’s ratio), φmax =

40̊ (maximum internal friction angle), φcr = 35̊ (residual internal friction angle),

βmax=28.3̊ (maximum dilatancy angle), βcr= 0̊ (residual dilatancy angle), γ
p
p =0.05

(maximum plastic shear deformation), γp
cr
=0.20 (residual plastic shear deformation),

a1 = 0.375, a2 = 0.125 and a3 = 0.25 (micro-polar coefficients). For sand in a large

silo, the parameters were: γd = 17.00kN/m
3, Em =100000kPa, K = 0.22, ϕw = 15̊ ,

v = 0.3, φmax = 37̊ , φcr = 35̊ , βmax = 19̊ , βcr = 0̊ , γ
p
p = 0.10, γ

p
cr
= 0.20, a1 = 0.375,

a2=0.125, a3=0.25.

The results of numerical simulations indicate that the amplitudes of the

normalised horizontal wall stress are similar in large and small silos (Figure 13).

The calculated basic frequency of pulsations was 25Hz (model silo) and 3.75Hz (large

silo). The same frequencies can also be obtained with Equation (2).

(a) (b)

Figure 13. Calculated horizontal normal stresses along the wall, σ11, during flow in a model silo

with controlled outlet velocity: (a) model silo v=5mm/s, h=2.0m, b=0.2m, d50=0.5mm;

(b) large silo v=50mm/s, h=20.0m, b=2.0m, d50=0.5mm

Since it is difficult to adjust the natural frequencies of bulk solid to the natural

frequencies of the entire system (bulk solid and walls), the bulk solid along the wall

contact line was additionally excited with small harmonic vertical and horizontal

dynamic forces to investigate the effect of resonance on wall stresses (Figure 12). The

harmonic forces were equal to:

PH,V =P
H,V
0
(sin2πfextt), (20)

where PH,V
0
was amplitude of vibrations, fext – frequency of excitation, and t – time.

The vibration amplitude of the forces was assumed to be one-tenth of forces calculated

for the filling state according to Janssen. Thus, these forces were small enough not

to influence the wall stresses beyond the resonance region. The excitation frequencies
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Figure 14. Calculated horizontal normal stresses along the wall, σ11, during flow

in a model silo with controlled outlet velocity (v=5mm/s, Ew =3300000kPa,

h=2.0m, b=0.2m, tw =5mm, fext=25Hz)

(a) (b)

(c) (d)

Figure 15. Calculated horizontal normal stresses along the wall, σ11, during flow in a model silo

with controlled outlet velocity for various excitation frequencies:

(a) fext=180Hz; (b) fext=200Hz; (c) fext=206Hz; (d) fext=222Hz

(v=5mm/s, Ew =3300000kPa, h=2.0m, b=0.2m, tw =5mm)

of the forces, fext, were assumed to be equal to frequencies of natural vibrations of

a single silo wall (case 1), of the bulk solid (case 2) and of the whole system consisting

of a bulk solid between two silo walls (case 3), Table 1. The natural frequencies were

determined twofold: by eigen-value analysis of the matrix [A] = [K]−1[M ] ([K] – global
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(a) (b)

Figure 16. Calculated horizontal normal stresses along the wall, σ11, during flow in a model silo

with controlled outlet velocity: (a) wall damping coefficient α=200s−1; (b) wall damping

coefficient α=300s−1 (v=5mm/s, Ew =3300000kPa,

h=2.0m, b=0.2m, tw =5mm, fext=206Hz)

stiffness matrix, [M ] – global mass matrix) and by spectral analysis of displacements,

velocities, accelerations and stresses obtained by the excitation of the wall, the bulk

solid and the entire system with a single vertical and horizontal force. For the first

two cases, no increase of horizontal normal wall stresses took place.

Table 1. Calculated natural frequencies in a model silo

Component Natural frequencies [Hz]

11, 67, 184,. . . (horizontal excitation)
single wall

200, 367, .. . (vertical excitation)

bulk solid 25, 75, 125, 175, 225, .. . (vertical excitation)

system: bulk solid + walls 1.32, 6.33, 22.00, 44.93, 45.63, 77.68, 89.80, 116.60, 134.70, 160.40,

179.80, 206.20, 222.00, 225.60, 250.00, 289.90, 410.10, 486.60, .. .

Figure 14 presents the evolution of horizontal normal stresses at various points

along the wall during flow with a frequency of excitation equal to 25Hz (the basic

natural frequency of the bulk solid in the vertical direction, Equation (2)). In the case

of excitation with frequencies corresponding to the frequencies of natural vertical

vibrations under vertical excitation of the whole system (case 3), an infinitely large

increase of wall stresses was obtained due to resonance. The increase of wall stresses

occurred at frequencies of excitation fext≥ 180Hz (Figure 15).

The rate of increase of the wall stresses diminished with an increase of the

damping coefficient of the silo walls, α. The α coefficient was calculated according to

the following formula:

α=2ωD=4πfD, (21)

where f is the frequency of vibrations and D denotes the damping ratio. Assuming

that f =206Hz andD=0.08 (perspex), the damping coefficient is equal to α∼=200s−1.

In this case, an increase in wall stresses due to resonance was significantly limited

(Figure 16a). When the damping coefficient was larger, α = 300s−1, the resonance

effect was completely suppressed (Figure 16b).
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Figure 17. Calculated horizontal normal stresses along the wall, σ11, during flow in a large silo

with controlled outlet velocity (v=50mm/s, Ew =3300000kPa,

h=20.0m, b=2.0m, tw =5mm, fext=3.75Hz)

(a) (b)

Figure 18. Calculated horizontal normal stresses along the wall, σ11, during flow in a large silo

with controlled outlet velocity for various excitation frequencies: (a) fext=35Hz; (b) fext=186Hz

(v=50mm/s, Ew =3300000kPa, h=20.0m, b=2.0m, tw =5mm)

FE calculations were also carried out for a large plane strain silo (h= 20.0m,

b=2.0m, tw =5mm, v=50mm/s, medium dense sand). The effect of higher pressure

on the internal friction angle, the dilatancy angle and the elastic modulus of the bulk

solid was taken into account (Em=100000kPa, φmax=37̊ , φcr=35̊ , βmax= 4̊ ). As

in the case of the model silo, the amplitude of forces PH,V (Equation (20)) was one-

tenth of the forces calculated for the filling state. The excitation frequencies were

assumed again to be equal to the natural frequencies of a single wall, the bulk solid

and the entire system of the bulk solid and the silo walls. Figure 17 presents the

evolution of horizontal normal stresses at various points along the wall during flow

with the frequency of excitation equal to 3.75Hz (the basic natural frequency of the

bulk solid in the vertical direction according to Equation (2)). Figure 18a presents the

results obtained for the frequency of excitation equal to 35Hz (the natural frequency

of the whole system in the horizontal direction), and Figure 18b – for the frequency

of excitation of 186Hz (the natural frequency of the entire system in the vertical

excitation direction). The increase of wall stresses in the large silo due to resonance

was significantly smaller than in the model silo (only by about 10%).
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7. Conclusions

During the process of silo emptying, strong dynamic effects can be created due

to resonance between the bulk solid and the silo structure. The resonance effects occur

in silos with thin, smooth walls containing both cohesive and non-cohesive bulk solids

during mass flow and channel flow at the wall.

The resonance effects can considerably increase wall pressures in small silos.

Their increase is influenced by the type and velocity of flow, material cohesion, grain

stiffness and wall roughness.

The most reliable and practical method of reducing the dynamic phenomena in

cohesive and non-cohesive bulk solids during silo flow and to suppress the resonance

effects is to increase wall roughness above the transition between mass and channel

flow.

The frequency of resonance effects is related to the frequency of natural vertical

vibrations of the entire silo structure containing the silo fill.

The effect of resonance on wall pressures diminishes with increasing size of silos

and damping properties of silo walls.
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