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Abstract: The problem of locating mine tremors using P-wave arrival times is revisited in the paper.
A multidimensional, global, non-linear, constrained optimization method is used as a minimization
algorithm for tremor location.In order to see the general properties of the minimized function a few
images showing its basins of attractions have been constructed. These pictures enable us to choose
efficient algorithms needed to solve location problems. The classical genetic algorithm, pure random
search and the most efficient multistart algorithm have been tested. Local minimization methods
should be introduced to the location procedure to increase the efficiency of tremor location.
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1. Introduction: an overview of the P-wave location method

Tremor location in mines is an important and difficult task, especially when
the coordinates of the seismic source need to be determined with high accuracy. The
well-known and most common method of tremor location used in Polish mines is the
P-wave method, which uses P-wave first arrival times [1, 2]. The main problem of
the location procedure consists in the resolution of the algorithms. As a non-linear
optimization problem, it should be optimized with an appropriate algorithm.

After an earthquake or mine tremor, a lot of different waves are recorded by
geophone networks. It is most convenient to use a P-wave for source location, as it is
easy to find its exact first arrival time at the seismogram. As the fastest wave in the
rock mass, it reaches the geophones first. Therefore, the first part of the signal is not
disturbed by other waves and easy to extract.

The travel time of a P-wave depends on the location of its source (hypocenter),
the coordinates of the geophone and the P-wave velocity distribution in the rock mass.
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In the simplest case of a homogeneous and isotropic medium one can compute this
time using the following relation [1]:

Ti=

√

(x−xi)2+(y−yi)2+(z−zi)2

v
, (1)

where the symbols denote: Ti – the P-wave travel time from the hypocenter (x,y,z)
to the ith geophone; (x,y,z) – the coordinates of the hypocenter (source); (xi,yi,zi)
– the ith geophone’s coordinates; v – velocity of the P-wave in the homogeneous rock
mass.

In this paper, a simple, deterministic, homogeneous and isotropic rock mass is
assumed. This is the most common rock mass model used in Polish mines to locate
tremors, especially when distances between geophones are not very large. Its simplicity
also allows us to increase the number of evaluations of the target function.

Let us assume that the hypocenter has approximate coordinates (x,y,z;t)
(Figure 1). We can create an error function that tells us how much these coordinates
differ from the true and unknown coordinates (x0,y0,z0;t0). The non-linear function
is given by the following equation:

f(x,y,z;t)=
n
∑

i=1

[ti− t−Ti]
2
, (2)

where Ti denotes the evaluated travel time of the P-wave from point (x,y,z) to the
ith geophone and ti – the recorded P-wave arrival time detected at the ith geophone.
Therefore, in homogeneous medium, we obtain the following from Equations (1)
and (2):

f(x,y,z;t)=
n
∑

i=1

[

ti− t−

√

(x−xi)2+(y−yi)2+(z−zi)2

v

]2

. (3)

Function (3) has the following properties:

• the global minimum of f is equal to zero if there are no measurement errors of
P-wave arrival times, ti;

Figure 1. Location of the hypocenter using the P-wave arrival time: 1, 2, 3 – positions of the
geophones; t1, t2, t3 – measured first P-wave arrival times at seismometers 1, 2, 3; T1, T2, T3 –
evaluated first P-wave arrival times when the location of the hypocenter is at the (x,y,z,t) point;

x0, y0, z0, t0 – real (unknown) position of the hypocenter
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• there is a unique global minimum if the number of geophones is greater than
four;
• the global minimum indicates the real hypocenter’s coordinates (x0,y0,z0;t0).

The problem of finding the global minimum of f is usually solved by lineariza-
tion of function (3) [3]. As numerical evaluations have shown, f contains a number of
local minima and thus linearization is often incorrect.

2. Methodology

The following procedure is proposed in order to choose the best location
algorithm:

• example images are constructed demonstrating basins of attraction of the
minimized function f ;
• a few algorithms are selected for testing purposes regarding the function’s values
in minima, the geometry of the basins of attraction and the number of minima;
• each algorithm is tested by modeling many earthquakes and inverting their
location;
• the algorithm which has generated the smallest location error ∆x,∆y,∆z is
selected as the best location method.

Target function (3) is multidimensional. It depends on origin coordinates of the
hypocenter, x,y,z, origin time of the tremor, t, P-wave velocity, v, and 3n coordinates
of the geophones in the network. Thus, the multivariate target function is very
complicated and difficult to analyze comprehensively, but the algorithm design scheme
presented above allows us to deal with this complicated formula.

First we tried to recognize the type of the target function. Was it smooth enough
to use local methods repeatedly? What was the range of the target function’s values?
Did it contain large peaks and deep valleys? That could be seen in the example images,
which presented only a particular case of the target function.

Then the chosen algorithms were tested. Many different geophone networks,
tremors and measurement errors were modeled. Tremors were inverted (located) after
each modeling.

The algorithm which generated the least location error was considered the best.
An example of parameters of the target function is presented in Table 1.

Eight geophones were chosen at random. Then, a tremor was modeled as presented
in Table 1.

First the figure of the target function was analysed. Time and the vertical
coordinate, z, were fixed as t=−500ms, z=−1000m, while the x, y variables could
change. Zero for the time variable denotes the least time recorded by geophones and
is equal to 01:00:00, 150.456ms. A contour map of the target function’s surface is
presented in Figure 2. The target function’s values are very large, which is typical for
a least square error function far from an exact solution.

In order to construct the map of basins of attraction, a local minimization
procedure was launched at various points. Powell’s conjugate directions algorithm [4]
was used as the local minimization method. The grid of starting points is given
in Table 1.
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Table 1. The parameters of the plotted example of the target function and the definition of the
grid of points while evaluating the basins of attraction; time τ(∗∗) is equal to the least
recorded value of the P-wave arrival time (01:00:00, 150.456ms)

P-wave velocity [m/s] v=1000

variables’ boundaries [m] 0≤x≤ 2000
0≤ y≤ 2000
−1000≤ z≤ 0

hypocenter coordinates of the modeled tremor [m] x=1000
y=1000
z=−500

t=00:01:00 000ms

The geophone network:

number coordinates P-wave arrival time and error

i x [m] y [m] z [m] t+N(0,1)∗σ

1 936.70 1071.16 −389.10 01:00:00, 150.456ms
2 508.57 1096.08 −474.68 01:00:00, 488.783ms
3 497.53 1248.34 −200.05 01:00:00, 642.642ms
4 1997.54 1953.66 −656.24 01:00:01, 391.757ms
5 1946.61 1965.80 −477.71 01:00:01, 337.296ms
6 382.03 282.08 −302.09 01:00:00, 952.877ms
7 416.47 1317.21 −819.08 01:00:00, 720.721ms
8 526.88 1959.66 −228.66 01:00:01, 119.099ms

σ of the modeled Gaussian error 3ms

Grid of points for the local minimization method:

variable bounds step

x [m] 0≤x< 2000 100
y [m] 0≤ y < 2000 100
z [m] −1000≤ z < 0 100
t [ms] −500≤ t< τ(∗∗) 10

3407 minima were evaluated. A particular minimum was separated if it differed
at least 20m in its x, y or z coordinates from other minima. The standard way of
presentation of basins of attraction assigns different color to each basin. Therefore,
an appropriate color is assigned to each starting point (x,y,z;t). Unfortunately, such
a large number of minima makes this approach inconvenient.

Instead of using colors, the value of the target function at the local minimum
was used. This minimum was returned by the local minimization method launched at
the starting point. It is represented by:

P −→ f(localMethod(P )), (4)

where the symbols denote: P – the point that belongs to the target function’s domain;
f – the target function; localMethod – Powell’s local minimization method.

For example, for the point at x = 100m, y = 0m, z = −1000m, t = −500ms,
Powell’s local method returns a minimum of x = 1002.04m, y = 985.40m, z =
−519.31m, t=−163.58ms with a target function value of f = 415.53. Relation (4)
assigns a target function value at the minimum (f =415.53 in the example) to each
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Figure 2. A contour plot of the target function; fixed variables: t=−500ms, z=−1000m

Figure 3. Values of the target function at minima obtained by Powell’s local method;
fixed variables: t=−1000ms, z=−500m; x and y vary in the (0,2000m) region
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starting point such as (x=100m, y=0m) (t, z were fixed). The results are presented
in Figure 3.

The most important result presented in Figure 3 is the area of the function’s
values below 1000. It represents the areas belonging to the basin of attraction of the
global minimum. By launching the local method from a point within this area, the
algorithm would find the proper global minimum. But the areas of other, local minima
cannot be neglected. Therefore, it is obvious that the local optimization method is
not sufficient.

3. Selected algorithms

Numerical experiments have shown that the target function contains a large
number of local minima. The target function’s values at these minima differ signifi-
cantly (Figure 3). Therefore the pure random search, multistart and classical genetic
algorithms were chosen for testing.

Pure random search (PRS) is the simplest Monte-Carlo algorithm. The domain
of possible solution is surveyed at random with uniform distribution. The point where
the function’s value is minimal is returned as a solution. After a given number of
samplings, the local method is launched at the solution point.

Multistart is similar to PRS, but the local method is launched after each
sampling.

The classical genetic algorithm [5] allows us to explore the domain in a different
way, imitating the biological process of evolution. A number of points (the population)
is processed. Each point is represented by a bit-string coding the x, y, z set of
variables. Two strings chosen at random can be divided into parts (each string into
two parts); when exchanged, they form two new points (offspring). One bit of the
newly created string can be changed at random. This is a very important process (viz.
mutation) that allows the algorithm to explore the function’s domain. Let the points
reproduce with probability proportional to the goodness of the solution that each
string represents. The point which returns the smaller target function is considered
better, in terms of goodness. A new population of points is formed (new generation)
after many reproduction processes. After many generations, the population splits into
groups which enclose deep minima. In the tested algorithm, the best point was chosen
from the population after a given number of evolutionary generations. Then the local
minimization method was launched.

4. Testing the algorithms

A scheme of the test is presented in Figure 4. The tremor phenomenon was
modeled many times for different networks of geophones. An error of Gaussian
distribution was added in order to imitate real measurement. After the modeling, the
coordinates of the earthquake hypocenter were inverted. The total error of location
was then evaluated. All the parameters of the test procedure and the tested algorithms
are shown in Table 2.

The question is whether it is possible to compare different global optimization
algorithms. The tested algorithms differ in the spirit of their optimization strategy,
depend on a number of different parameters, etc. The designed test first checked
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randomize the coordinates

of the hypocentre

randomize the location

of the geophones

in the network

model the tremor:

– P-wave arrival times

– simulate error

launch the tested algorithm

compare the result

with the modeled values,

evaluate error of location

repeat given

number of times

Figure 4. A scheme of the algorithms’ test

Table 2. The parameters of the test and of the tested algorithms

Parameters of the test

geological environment bounds of x [m] 0≤x≤ 2000
bounds of y [m] 0≤ y≤ 2000
bounds of z [m] −1000≤ z≤ 0
velocity [m/s] 1000

geophone network number of geophones: 8
geophone coordinates: chosen at random at each test’s iteration

tremor modeling hypocenter location: randomized at each test’s iteration
modeled value: first P-wave arrival times

modeled error P-wave arrival times Gaussian error, σ=3ms

test number of iterations 100

Parameters of the algorithms

Pure random search (PRS) number of iterations 1000000

Multistart number of iterations 100

Classical genetic algorithm population size 100
parent population size 100
number of bits/variable 10
probability of mutation 5%
number of generations 1000

whether the algorithms are able to locate tremors correctly. Secondly, the number
of iterations was experimentally adjusted for PRS and multistart so that the total
number of the target function evaluations were the same. The results of the test are
presented in Table 3.
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Table 3. The efficiency of the tested algorithms; the most efficient is that with the least location
error ∆x, ∆y, ∆z

algorithm total [m] ∆x [m] ∆y [m] ∆z [m]

Classical genetic algorithm 206 134 96 123
Pure random search 43 17 21 32
Multistart 13 7 7 7

5. Summary

The numerical experiments have shown multistart to be the best algorithm
for tremor location, as far as the location error is used as a measure of quality. It
has an acceptable location error. A linearized version of location is used in Polish
mines. If location is unsuccessful, the tremor is not processed. Incorrect location can
be a consequence of inappropriate global minimum recognition. A linearized version
may work fine, due to the target function’s property seen in Figures 2 and 3. The
basin of attraction of the global minimum is quite wide, and thus a linearized version
of the algorithm is a suitable solution. The global multistart method should be used
in order to improve efficiency.

The failure of the classical genetic algorithm in the test demonstrates that the
classical version of the genetic algorithm is insufficient. The weak location resolution
of the genetic algorithm may be due to the target function’s deep minima.

In the authors’ opinion, the multistart algorithm is capable of increasing the
number of successful tremor locations in mines and probably decreasing the total
error of location, usually equal to 30m.
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