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Abstract: Elastic or acoustic wave-field modeling is an important part of seismic exploration.

It can be used during the planning, processing and interpretation stages of seismic investigation.

First attempts of using wave-field modeling were undertaken in the seventies by Alford, Kelly and

others [1, 2]. These attempts were restricted by the limitations of computers at that time. Even

now, computation for models of the standard exploration scale could last many hours, and many

days in case of longer recording times. One of the best methods to overcome this disadvantage is

parallelization of computations [3, 4]. This paper presents the results of distributed parallelization

of elastic and acoustic wave-field modeling based on a Parallel Virtual Machine.
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1. Introduction

The advantages of using clusters of standard PC’s in mass calculation can

hardly be overestimated. Modern PC clusters are strong rivals of very expensive

multiprocessor supercomputers and can be an economical and reliable alternative

for time-consuming scientific calculations (incl. wave-field modeling), even if there

are bandwidth limitations of the computer network [5, 6]. Wave-field modeling is

a problem easy to parallelize. Its parallelization can be performed in a heterogenous

or a homogenous way [7]. Both of them can be easily coded in programs which use

a Parallel Virtual Machine as a background of parallelization.

A PVM package has been created at the Oak Ridge National Laboratory. It

can be used in heterogenous networks of machines form 386 to Cray, with various

operating systems. The PVM system has two parts. The first is a daemon which must

be started on all machines, while the second is a library of message passing and task

control routines in C and Fortran.
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2. Theoretical backgrounds of acoustic and elastic

wave-field modeling

An Acoustic wave equation for a two-dimensional isotropic medium can be

written as follows:

∂2p

∂t2
−c2
(

∂2p

∂x2
+
∂2p

∂z2

)

= f(x,z,t), (1)

where p(x,z) is pressure, c(x,z) is velocity of the acoustic wave, t is time, and f

denotes a function which describes pressure change at the source.

Adopting the finite difference to approximate the above equation without source

term we can obtain pressure results for each point i, j of the computation grid in time

k+1 through neighbouring points in time k and k−1 as follows [1]:

p(i,j,k+1)=2(1−2γ2)p(i,j,k)−p(i,j,k−1)

+γ2(p(i+1,j,k)+p(i−1,j,k)+p(i,j+1,k)+p(i,j−1,k)),
(2)

where γ = c∆t/δh, ∆t is the time sampling interval, ∆h is the distance between

grid points in the x and z directions. The stability criterion for the above scheme

is: γ≤ 1/
√
2.

To obtain final results, we also have to define proper schemes for border

conditions. To avoid reflections from model borders, we have decided to use absorbant

boundaries described by Reynolds [8]:

• the left border :

p(1,j,k+1)= p(1,j,k)+p(2,j,k)−p(2,j,k−1)+c(1,j)
∆t

∆x
(

p(2,j,k)−p(1,j,k)−(p(3,j,k−1)−p(2,j,k−1))
)

,
(3)

• the right border:

p(n+1,j,k+1)= p(n+1,j,k)+p(n,j,k)−p(n,j,k−1)+c(n+1,j)
∆t

∆x
(

p(n,j,k)−p(n+1,j,k)−(p(n−1,j,k−1)−p(n,j,k−1))
)

,
(4)

• the top border:

p(i,1,k+1)= p(i,1,k)+p(i,2,k)−p(i,2,k−1)+c(i,1)
∆t

∆x
(

p(i,2,k)−p(i,1,k)−(p(i,3,k−1)−p(i,2,k−1))
)

,
(5)

• the bottom border:

p(i,m+1,k+1)= p(i,m+1,k)+p(i,m,k)−p(i,m,k−1)+c(i,m+1)
∆t

∆x
(

p(i,m,k)−p(i,m+1,k)−(p(i,m−1,k−1)−p(i,m,k−1))
)

.
(6)

While an acoustic wave equation describes pressure changes and cannot offer

a solution for shear waves, an elastic wave equation describes displacements of medium
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particles and, therefore, can deal with shape changes. The elastic wave equation in

two dimensions is slightly more complicated then the acoustic one:

ρ
∂2u

∂t2
=
∂

∂x

[

λ

(

∂u

∂x
+
∂w

∂z

)

+2µ

(

∂u

∂x

)]

+
∂

∂z

[

µ

(

∂w

∂x
+
∂u

∂z

)]

,

ρ
∂2w

∂t2
=
∂

∂z

[

λ

(

∂u

∂x
+
∂w

∂z

)

+2µ

(

∂w

∂z

)]

+
∂

∂x

[

µ

(

∂w

∂x
+
∂u

∂z

)]

,

(7)

where u and w are the horizontal and vertical components of displacement, ρ is density,

while λ and µ stand for Lame’s constants.

The finite difference scheme for the above equation can be written for a ho-

mogenous medium as [2]:

u(i,j,k+1)=2u(i,j,k)−u(i,j,k−1)+F 2[u(i+1,j,k)−2u(i,j,k)+u(i−1,j,k)]

+F 2(1−γ2)[w(i+1,j+1,k)−w(i+1,j−1,k)−w(i−1,j+1,k)

+w(i−1,j−1,k)]/4+F 2γ2[u(i,j+1,k)−2u(i,j,k)+u(i,j−1,k)],

w(i,j,k+1)=2w(i,j,k)−w(i,j,k−1)+F 2[w(i+1,j,k)−2w(i,j,k)+w(i,j−1,k)]

+F 2(1−γ2)[w(i+1,j+1,k)−u(i+1,j−1,k)−u(i−1,j+1,k)

+u(i−1,j−1,k)]/4+F 2γ2[w(i+1,j,k)−2w(i,j,k)+w(i−1,j,k)],

(8)

where γ = α/β, F = α∆t/h, α and β are velocities of compressional (P ) and shear

(S) waves, h is distance between grid points.

The stability criterion for this scheme is as follows:

∆t≤
h

√

α2+β2
. (9)

In an inhomogenous medium (i.e. on borders between geological layers) the finite

difference schemes for elastic wave Equation (7) are even more complicated:
u(i,j,k+1)−2u(i,j,k)+u(i,j,k−1)

∆t2 =

1
h

{[

α2i+1,j+α
2
i,j

2

][

u(i+1,j,k)−u(i,j,k)
h

]

−
[

α2i,j+α
2
i−1,j

2

][

u(i,j,k)−u(i−1,j,k)
h

]}

+ 12h

{

α2i+1,j

[

w(i+1,j+1,k)−w(i+1,j−1,k)
2h

]

−α2i−1,j
[

w(i−1,j+1,k)−w(i−1,j−1,k)
2h

]}

− 12h
{

β2i+1,j

[

w(i+1,j+1,k)−w(i+1,j−1,k)
2h

]

−β2i−1,j
[

w(i−1,j+1,k)−w(i−1,j−1,k)
2h

]}

+ 12h

{

β2i,j+1

[

w(i+1,j+1,k)−w(i−1,j+1,k)
2h

]

−β2i,j−1
[

w(i+1,j−1,k)−w(i−1,j−1,k)
2h

]}

+ 1
h

{[

β2i,j+1+β
2
i,j

2

][

u(i,j+1,k)−u(i,j,k)
h

]

−
[

β2i,j+β
2
i,j−1

2

][

u(i,j,k)−u(i,j−1,k)
h

]}

,

w(i,j,k+1)−2w(i,j,k)+w(i,j,k−1)
∆t2 =

1
2h

{

α2i,j+1

[

u(i+1,j+1,k)−u(i+1,j−1,k)
2h

]

−α2i,j−1
[

u(i+1,j−1,k)−w(i−1,j−1,k)
2h

]}

+ 1
h

{[

α2i+1,j+α
2
i,j

2

][

w(i,j+1,k)−u(i,j,k)
h

]

−
[

α2i,j+α
2
i,j−1

2

][

w(i,j,k)−w(i,j−1,k)
h

]}

− 12h
{

β2i,j+1

[

u(i+1,j+1,k)−u(i−1,j+1,k)
2h

]

−β2i,j−1
[

u(i+1,j−1,k)−u(i−1,j−1,k)
2h

]}

+ 1
h

{[

β2i+1,j+β
2
i,j

2

][

w(i+1,j,k)−w(i,j,k)
h

]

−
[

β2i,j+β
2
i−1,j

2

][

w(i,j,k)−w(i−1,j,k)
h

]}

+ 12h

{

β2i+1,j

[

u(i+1,j+1,k)−u(i+1,j−1,k)
2h

]

−β2i−1,j
[

u(i−1,j+1,k)−u(i−1,j−1,k)
2h

]}

,

(10)

we have decided to use the absorbant boundaries model also in this case.
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3. Decomposition of computations

A standard serial wave-field modeling algorithm can be accelerated by par-

allelization, which here means using many computers for one computational task,

with different data processed at the same time. This operation is called decomposi-

tion. There are two kinds of decomposition which are useful in wave-field modeling:

homogenous (when computations are performed on different computers without com-

munication between them) and heterogenous (when communication between cluster

nodes is necessary).

Both methods were used in parallelization of wave-field modeling. In the

homogenous splitting case (which we called one PC-one shoot point decomposition),

we calculated a wave field for the whole model on one PC. The only difference between

data on every computer in the cluster was in localization of the source point along

the seismic profile. In the heterogenous case, we divided the calculation grid into

as many subsections as we had computers in the cluster. Calculations were made

separately for each section, but values for border grid points were exchanged. In this

case, all computers in the cluster were involved in modeling for the same source point

at the same time. This type of heterogenous parallelization is often called domain

decomposition.

The most important difference between homo- and heterogenous decomposition

is their granularity [7]. This parameter is defined as a relation between computational

complexity and communicational complexity. In the one PC-one shoot point case

we have an ultra coarse-grained situation, where each sub-problem is completely

independent from all others. Domain decomposition is fine-grained because it needs

to exchange information between subsections after each time step.

4. Implementation

Both approaches were tested on a PC cluster of 20 computers with AMD Duron

900MHz processors and 256MB memory. All computers belonged to the Faculty of

Geology, Geophysics and Environmental Protection’s 100Mb peer-to-peer network

and were localized in computer laboratory 8. All machines were working under the

Linux operating system. Computations were performed for a two-layer medium. The

values of geophysical parameters used are typical for shallow sedimentary rocks. The

modeling parameters are shown in Table 1.

During the experiment we measured the relation between the time of compu-

tation and the number of computers in the cluster. PVM clusters are easily scalable,

which means that a user can add or delete computers thus increasing or decreasing

the computational power of the virtual machine. Results of modeling for a shoot point

localized in the central part of the model are shown in Figure 1.

5. Results and discussion

In the experiment we compared computational time needed by both of the

analyzed methods of decomposition for modeling a wave field for 20 shoot points.

The relation between this time in the acoustic case and the number of computers in

the cluster is shown in Figure 2a. The same relation in the case of elastic modeling

is shown in Figure 2b. The difference between times for one-processor computations
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Table 1. Model parameters

Parameters Values

Model dimensions [m] 500×500

Spatial grid step [m] 1

Depth to layer border [m] 250

Velocity of acoustic waves in the upper layer α1 [m/s] 1000

Velocity of acoustic waves in the bottom layer α2 [m/s] 2000

Localization of the first shoot point [m] x=200, z=20

Distance between shoot points [m] ∆x=10, ∆z=0

Number of shoot points 20

End time [s] 0.5

Time step [s] 0.002

α/β relation (elastic variant only) 2.0

Figure 1. Results of acoustic wave-field modeling:

(a) after 0.2s; (b) after 0.3s; (c) after 0.4s; (d) after 0.5s

is due to using different compilers. In other cases (from 2 to 20 processors), we used

the same compiler.
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Figure 2. Relation between the computation time and the number of computers in:

(a) the acoustic case; (b) the elastic case. White bars represent domain decomposition,

black bars represent one PC-one shoot point decomposition

A good measure of the advantages of parallelization is acceleration [7] defined

as the relation between the time needed by one processor and the time needed by P

processors to perform the same computations:

S(P )=
T (1)

T (P )
, (11)

where S is acceleration and T is time.

Acceleration increases monotonically for domain decomposition, while it does

so suddenly for one PC-one shoot point acceleration when the number of computa-

tional cycles changes. When we have 20 shoot points and 20 processors, we have 1
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Figure 3. Relation between acceleration and the number of computers in:

(a) the acoustic case; (b) the elastic case. White bars represent domain decomposition,

black bars represent one PC-one shoot point decomposition

computational cycle. When we have 10 processors, we have 2 cycles. But when we have

11 to 19 processors, we still have 2 cycles. Figures 3a and 3b show the acceleration of

acoustic and elastic wave-field modeling.

Another useful parameter describing the advantages of parallelization is effec-

tivity [7] (see Figures 4a and 4b). This parameter is defined similarly to acceleration,

but T (P ) is additionally multiplied by the number of processors, P :

e(P )=
T (1)

P ·T (P )
. (12)
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Figure 4. Relation between effectivity and the number of computers in:

(a) the acoustic case; (b) the elastic case. White bars represent domain decomposition,

black bars represent one PC-one shoot point decomposition

All charts for acoustic wave-field modeling in the case of domain decomposition

are affected by a phenomenon which we have called the modulo effect. This effect is

visible as an unexpected increase of computational time (or decreasing acceleration)

for certain numbers of processors. It happens when the number of grid points is

not divisible by the number of computers and one of the computers has to perform

computations for a few more grid points than the others. This situation results in

slowing down the whole cluster, as all the other processors have to wait for their

border information. This example shows how a repetition of one little slow-down can

affect global efficiency. In the case of elastic modeling the modulo effect was eliminated

by even distribution of grid points among the computers.
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6. Summary

In this paper we have presented two kinds of parallelization of wave-field

modeling. In both cases a decrease of computation time with increasing of number of

processors was observed. The differences between the obtained results were small. The

computational time of domain decomposition decreased exponentially as the number

of processors increased. Increasing the computational power of the virtual machine

decreases its granulation, as the number of grid points calculated at each node of

the cluster is smaller, while the number of gird points which have to be exchanged is

greater.

Domain decomposition is much more error-prone, because problems with one

computer slow down the whole cluster, while during one PC-one shoot point decom-

position even a shutdown of some of the computers does not stop the others. Of course

the advantages of one PC-one shoot point decomposition are relevant only when we

have to calculate many shoot points along a seismic profile. When we want to model

one wave-field, domain decomposition is a better solution.
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