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Abstract: The study of the metal oxides is a rapidly developing area of research. Below a theoretical

method based on the density functional theory, common in studying ceramics, is briefly presented.

Application of the theory to the surface and the bulk properties of alumina and magnetite are

presented. Relaxation mechanism of two different surfaces of alumina and the (100) surface of Fe3O4
are shown. The mutual stability of the α and θ phases of Al2O3 is calculated.
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1. Introduction

The electronic structure of metal oxides and metal oxide surfaces is usually well

less known than those of metals [1]. This is mainly due to the insulating properties

of many metal oxides and their more defective surface structures, which makes

experimental techniques more difficult to apply. Thus many basic problems related to

the properties of the ceramic surfaces still remain unanswered, despite the fact that

this knowledge is strongly desired in the areas of practical use, such as catalysis [2].

In catalysis, metal oxides serve as a support for catalytically active metals

(which are often very expensive), or they are catalysts by their own right [2]. These

facts reveal the importance of the theoretical description of the metal oxides, and

make nowadays theory a complementary method to the experimental techniques in

ceramic research.

There are many reasons why we care about a quantum description of ceramics,

but probably the most important is that in metal oxides the electronic properties are

strongly dependent on the local atomic configuration. Thus semi-empirical methods,

which are appropriate for a given atomic environment, often fail to describe properly

the structure of one compound in various surroundings, like a bulk and a surface.
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Advanced ab initio quantum mechanical methods, on the other hand, are computa-

tionally too demanding to provide correct structural properties of metal oxides.

Below we briefly illustrate the theoretical description of metal oxides, based

on density functional theory (DFT) and give some examples of DFT application to

describe the surface properties of aluminum oxide (Al2O3) and magnetite (Fe3O4).

Let’s start with a short introduction to problems related to these compounds.

Al2O3 is ionio-covalent crystal, which exists in a large variety of structures.

The ground state of alumina is known as α-alumina (corundum, sapphire) and it is

the second hardest mineral on Earth. It possesses a large band gap of 8eV. Beside

the most stable α-phase there exist so called transition phases like: γ, δ or θ alumina.

These phases are commonly used as a support material in catalytic industry due

to their excellent porosity, which is preserved up to 1300K [3–5]. At the same time

the atomic structure of the transition aluminas is very poorly known. The stability

of various alumina phases is determined experimentally, but details of the atomic

structure of the transition, porous phases is not fully known [6], with exception of

the θ-phase. Thus extensive research efforts are focused to elucidate the mechanism

governing the porosity and surface structure/properties of alumina. θ-Al2O3 is the

polymorph, which appears always prior to the transformation to corundum. The best

known example is a dehydration process: AlOOH (boehmite) → γ→ δ→ θ→ α. At

high temperatures (∼ 1000̊ C) spinel based polymorphs (γ, δ) always coexist with the
θ phase, still having good catalytic properties and preserving large surface areas. On

the contrary the stable α-phase of alumina is well known single crystal [7] and often

serves as a model structure of alumina [8].

In general there are two complex issues related to alumina. One is related to the

detailed atomic structure and chemical composition of the transition phases (γ, η, δ, θ

polymorphs), another problem is related to the composition and properties of porous

alumina surface. As there is no agreement about the bulk structure and composition

of porous aluminas, the problems related to the surface are even less understood.

Another problem is related to the metal/metal oxide interface, where properties

of such an interface are studied, not least due to their technological importance.

Magnetite Fe3O4, crystallizes in the inverse spinel structure with the lattice

constant 8.4Å, at room temperature. The Fe ions are localized in two distinct

interstitial sites, being octahedraly Fe(B) and tetrahedraly Fe(A) coordinated to

oxygen. Above T ∼ 125K, Fe3O4 undergoes an insulator metal transition, thus at room
temperature it shows minority spin conductance. The termination and reconstruction

of the (100) magnetite surface is still under dispute [9, 10]. This surface is usually

discussed in terms of atomic layers of the bulk unit cell. The bulk magnetite consists

of subsequent arrangement of the so-called A-layers containing only tetrahedral iron

and B-layers which contain oxygen and the octahedral Fe. The layers are separated

by about 1.1Å. None of the bulk terminated Fe3O4(100) surfaces (neither A nor B)

is charge compensated and the charge neutrality condition of the polar Fe3O4(100)

is quoted as the driving force of the reconstruction. The surface structure, although

intensively studied for single crystals [11] as well as for epitaxial films [9], is still not

fully understood and explained. The atomic structure of this surface can be probed

by scanning tunnelling microscopy [9] due to electric conductance of Fe3O4.

tq408j-e/562 4XII2004 BOP s.c., http://www.bop.com.pl



Density Functional Simulation of Metal Oxides: Al2O3 and Fe3O4 563

The variety of the experimental observations is reflected in many different

reconstruction models based on the A- or B-type layer termination proposed and

discussed in the literature [9–11]. Two different methods to study this surface are

usually employed. One focuses on studies of cleaved bulk crystals [11], whereas another

approach relies on thin films grown on the substrate [9]. An observed (
√
2×
√
2)R45̊

surface reconstruction is common to both approaches, but it is explained in different

manners. The reconstruction is related either to the charge ordering within the B-

layer, observed mainly on the bulk magnetite [11], or to reconstruction involving

oxygen vacancies within the B-layer [9], nonstoichiometry of the surface termination

on the A-layer which is half empty [10] or various displacements of Fe(A) atoms on

the octahedral termination.

2. Density Functional Theory

The main problem in surface studies of metal oxides is to resolve the atomic and

the electronic structure of the surface. This knowledge provides insight into physico-

chemical properties of metal oxides. Theoretical studies of the metal oxides date from

the early 20th century, but models developed up to 20 years ago were based mainly on

methods where the atomic interaction was given by a set of phenomenological force

constants. Only in a recent years has the development of computational resources

given an impact to the so called ab initio methods, where the electronic structure is

accurately described without any assumed parameters. However, even for the fastest

computers, solution of the Schrödinger equation of a many electron system is not

possible now, and further simplifications are required. Very successful in the area of

ab initio calculations is the density functional theory, developed in the mid-sixties by

W. Kohn and collaborators [12, 13]. For development of this theory W. Kohn was

awarded a Nobel Prize in 1998.

The main idea beyond DFT is to replace N electron many-body problem by

the electronic density ρ(r). The self-consistent solution of the appropriate density

functional gives the ground state energy of the system.

The large mass difference of electrons and nuclei constituting matter is ex-

ploited in the Born-Oppenheimer approximation [14], according to which electrons

adiabatically follow the motion of the nuclei. Thus, at any given moment, electrons

are in the ground state corresponding to the instant nuclear configuration. The prob-

lem of finding the ground state energy of the many-electron system corresponds (in

the non-relativistic case) to the time-independent Schrödinger equation:

ĤΨ=





∑

i

−∇
2

i

2
+
∑

i 6=j

1

2|ri−rj |
−
∑

i,J

ZJ

|ri−RJ |



Ψ=EΨ. (1)

The Hamiltonian, Ĥ, includes the kinetic energy of electrons, the electron-electron

interactions and the interaction of electrons with the nuclei. The indices i,j run over

the electronic degrees of freedom, capital letters are for the nuclei, (atomic units are

used throughout). The heart of DFT is the electron density:

ρ(r)=

∫

dr1dr2 .. .drn|Ψ(r1,r2,. . .,rn)|2, (2)
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which is a much simpler quantity than the wave function Ψ, since it depends only on

one spatial parameter r. In the numerical representation, either in real or reciprocal

space the configuration is represented on a grid, and thus depends only linearly with

the system size. The Hohenberg and Kohn [12] theorem is central to DFT and it states

that the ground state density of the interacting electrons, which are subject to the

external potential V (r) (resulting from the nuclei framework), is a unique function of

the electron density. The ground state energy and density can be found by minimizing

the energy functional, E=minρ{EV [ρ]}:

EV [ρ] =

∫

drV (r)ρ(r)+
1

2

∫

drdr′
ρ(r)ρ(r′)

|r−r′| +F [ρ]. (3)

The appropriate energy functional can be written according to Ref. [12] and it

includes three terms: classical Coulomb energy of the electron density distribution

ρ, electron interaction with the external potential V (r), and the universal function

F [ρ] of the density (independent of V (r)) containing all necessary quantities to make

the energy equal to the expectation value. F [ρ] include many-body kinetic energy,

quantum exchange and correlation effects of the many-electron wave function. The

approach formulated in a such way is not very useful, since the explicit expression

of F [ρ] is not known. This problem was solved by Kohn and Sham [13], where the

concept of the fictitious non-interacting system of electrons having the same density

as the real electron gas is introduced. The non-interacting system is described by

the orthogonal single particle wave functions ψi(r), and the charge density is given

by ρ(r) =
∑

i |ψi(r)|2, where summation runs over all occupied states. Within this
framework the energy functional can be written as:

EV [ρ] =

∫

drV (r)ρ(r)+
1

2

∫

drdr′
ρ(r)ρ(r′)

|r−r′| +
∑

i

〈

ψi

∣

∣

∣

∣

−∇2
2

ψi

∣

∣

∣

∣

〉

+EXC [ρ]. (4)

The term which explicitly includes the wave function ψ is the single particle kinetic

energy of non interacting electron gas. The last term, EXC [ρ], of the equation is called

the exchange-correlation functional, and it contains all contributions (from quantum

and kinetic effects) to make it equivalent to the Hohenberg approach. The fact that in

the last equation the wave functions are present explicitly is not a real complication,

as the appropriate Euler-Lagrange equation can be solved to minimize the energy

functional.

DFT theory is in principle exact, but since the form of the exchange-correlation

(EXC [ρ]) functional is not known, various approximations are used. Historically the

first and surprisingly accurate approach is called the local density approximation

(LDA). The idea behind it is to replace the non-local functional by a functional

that depends only locally on the electronic density of the uniform electron gas:

EXC [ρ] =
∫

drρ(r)εXC (r) =
∫

drρ(r)εXC (ρhom(r)). The exchange and correlation en-

ergy of the homogenous electron gas is well known [15]. The LDA approximation gives

the structural parameters within 1–2% for ceramics, but the cohesive or atomization

energies are usually much worse (around 20–30%) [16]. The logical extension of the

LDA is to include variation of the electron density in the exchange-correlation func-

tional EXC [ρ] =
∫

drρ(r)εXC (ρ(r),∇ρ(r)). This is known as the generalized gradient
approximation (GGA) [17]. When GGA approximation is formulated in a way to fulfill
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general limit requirements for the electron gas, the accuracy of DFT improves sig-

nificantly. The gradient corrected approach is still semi-local and does not include

any kinetic effects. Development of the theory nowadays aims toward more accurate

exchange-correlation functionals, which also include many body kinetic effects [18].

Another approach, very popular in a chemistry community, is to resign from rigorous

limit conditions for the electron gas and construct exchange-correlation functionals

by fitting their properties to the experiments (on light noble gas atoms). In that way

new functionals might be constructed, which can also include exact exchange energy.

From a practical point of view the wave functions have to be expanded in an

appropriate basis set. Two types of basis sets are the most popular: the localized basis

(with gaussian type orbitals), and the plane wave expansion, where basis set consists

of the plane waves in a periodic unit cell. The later approach is very appropriate for

crystalline materials, where periodic boundary conditions are natural. Delocalization

of the electrons is very easily obtained within this approach. A localized basis set,

on the other hand, is more appropriate for molecular systems (it can be also more

accurate), however structural relaxation cannot be easily described in this formalism.

More details about the method can be found in the excellent review paper [19]

or monograph [20].

2.1. Beyond the lattice ground state

DFT calculations provide information about the ground state properties of

matter, while one is often interested in the thermodynamic functions at finite

temperatures. This can be obtained by calculations of the free energy, based on the

quasiharmonic approximation [21].

Among many methods to calculate lattice vibrations, one was developed in the

group of Prof. K. Parliński in Cracow. The so called direct method [22] is fully based

on DFT calculations of the atomic forces in a real space. The dynamical matrix is

constructed for the supercell, consisting of multiple unit cells of the structure under

investigation. The method utilizes the Hellman-Feynmann forces acting on atoms in

the supercell, which are determined by a series of independent displacements along

x, y, z directions for every symmetry nonequivalent atom. Next, the symmetry of the

force constants, following from the particular space group of the investigated material

is established. The force constants are fitted to the collected Hellmann-Feynman forces

by the singular value decomposition method. When at a given distance the largest

element of the force constant is more than three orders of magnitude smaller than

the corresponding one from the first shell the size of the supercell is sufficient for

the reliable results. The diagonalization of the dynamical matrix provides the phonon

frequencies.

The method is correct for the analytical part of the dynamical matrix only,

as periodic boundary conditions are imposed on the supercell. The large band gap of

most oxides causes incomplete screening, reflected by the Born effective charges carried

by ions. Thus, the nonanalytical part of the dynamical matrix, which describes the

effects of this macroscopic electrostatic field for certain infrared (IR) modes in the

long wavelength limit (q→ 0) has to be taken into account. A Coulomb interaction
splits these modes into longitudinal (LO) and transversal (TO) parts, lifting the LO-

TO degeneracy. The method accounts for the nonanalytical part of dynamical matrix
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by introducing the effective charges of the ions. They can be calculated separately

or a special technique with elongated supercells need to be applied. The independent

elements of the dielectric tensor must also be known. More details of this method are

presented elsewhere [23].

2.2. Implementation of DFT

Numerical implementation of DFT is a complex issue that requires coding of

more than 20000 lines. At present there exist many excellent realizations of DFT, which

provide easy, ready to use tools to study the electronic and structural properties of

the metal oxides. To mention only some the interested reader may refer to the GPL

codes like: DACAPO [24], ABINIT [25], SIESTA [26]. Some other excellent codes are

unfortunately not free: VASP [27], WIEN2K [28]. Most implementations are done in

the plane wave formalism [24, 25, 27].

Efficiency is an important factor to determine whether DFT code is applicable

to a given problem. In general plane wave representation of the wave functions

scales as O(M3), where M is the number of points of the grid (proportional to the

number of electrons or size of the system). Accurate calculations can be carried up to

several hundred light atoms on parallel platforms. There are implementations, with

localized basis sets, which allows linear scaling O(M) [26]. With rapid expansion of

the parallel computing approach based on the real space representation of the wave

function is a very promising alternative to the methods based on the reciprocal space

representation.

2.3. Important points for calculations of metal oxides

Despite the broad code availability, the simulations of the metal oxides require

some caution. Below some crucial aspects that have to be considered prior to the

interpretation of the results are listed.

The choice of the exchange-correlation functional is crucial for the final results.

If one is interested in a crude structural properties, the LDA approximation is often

sufficient. In most other cases the functionals that go beyond LDA are required. For

description of the chemical processes at the surfaces LDA is inappropriate, since it

poorly describes the atomic bonding.

The all-electron wave functions of atoms are usually replaced by the so-

called, pseudopotentials. The pseudopotential replaces the inert core electrons, so

only chemically active valence electrons are explicitly represented. This approach has

proven to be accurate in the description of the ceramics [6]; some care must be taken,

however, to assure that the appropriate pseudopotential is chosen. In general ultrasoft

pseudopotentials [29] are appropriate for metal oxides because only valence electrons

contribute to the ionic bonding. For systems which include transition metals, the

projector augmented-wave [30] (PAW) potentials might be a better choice, because

the charge density in the core region is described more precisely in this formalism.

The core-valence coupling can also be important for transition metal oxides. PAW

potentials are also necessary for calculations employing sophisticated exchange-

correlation functionals, or systems with strong correlations of the electron gas.

For the systems containing strongly correlated electrons, like NiO, the DFT

method needs to be extended, and Hubbard-like models must be added to the
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formalism [31]. An alternative approach is to use self-interaction corrections [32]

in the DFT formalism. Both approaches improve calculated band gap and electron

localization, although advanced Hartree-Fock methods are sometimes more versatile

in this case.

Weak interactions, especially Van der Waals type, are not properly described

within the present quantum theories. This is due to strongly non-local character of

the EXC functional, which is responsible for this type of interactions [33]. For that

reason special precautions have to be taken for systems where this type of interaction

is important, like V2O3.

The atomic structure observed experimentally by scanning tunnelling mi-

croscopy (STM) can also be described within the DFT formalism. Theoretical analysis

of the STM topographs are based on Tersoff-Hamann formalism [34]. Within this for-

malism the tunneling current simply reflects the iso-surface of the local density of

states at the Fermi level ρ(R,εF ), where R is a position of the tip. To account for

the final sampling of the Brillouin zone the energy levels are replaced by Gaussians

with a finite width. In many cases calculations are crucial for proper interpretation of

the observed atomic patterns on metal oxides. Unlike metals for ceramics increased

charge density is not always related to the presence of atoms.

3. The model and calculation setup

Application of DFT to study properties of the metal oxides is illustrated below

by a set of results, which provide explanation of some problems related to both the

bulk and the surface. The following model was used.

The structures and the dynamics of Al2O3 and Fe3O4 were calculated within

DFT approach [24, 27]. The ionic cores are represented by ultra soft pseudopotentials.

The electronic density is determined by iterative diagonalization of the Kohn-Sham

Hamiltonian and the resulting Kohn-Sham eigenstates are populated according to the

Fermi statistics with finite temperature smearing of kT =0.02eV. For magnetite the

smearing temperature was kT = 0.005eV. Pulay mixing of the resulting densities is

applied and the procedure is repeated until a self-consistency of electronic density

is achieved. Then the total energy is extrapolated to T =0K. The calculations were

carried within GGA PW91 [17] approximation of the exchange correlation functional.

Very restrictive accuracy was applied to compare the relative stability of α and

θ phases of alumina at T = 0K. The wave function was sampled according to

a Monkhorst-Pack scheme with k-point density of 0.05Å−1 to 0.02Å−1. For the

calculations of the lattice dynamics, larger supercells were used to assure the force

constants fell sufficiently with distance. The calculations were performed on systems

of up to 120 atoms. The cutoff of the kinetic energy was 490eV. The structure

was optimized according to the calculated Hellmann-Feynman forces. Both internal

positions of atoms and the unit cell parameters were optimized.

The surface calculations were performed in a slab geometry for both Al2O3
and Fe3O4. The vacuum region extends from 12Å, to 20Å. The middle atomic layer

of the slab was fixed in the bulk configuration, and both surfaces of the slab were

relaxed. The binding energy of Pd on alumina is calculated with respect to the gas

phase of palladium.
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4. Applications

Below we present examples from our own studies for both the bulk metal oxide

and the surfaces.

The first example of DFT application concerns the interaction of palladium

atoms with the (0001) surface of corundum. There are two objectives of this research:

to describe properly the surface structure of α-alumina and to determine the mech-

anism and energy of metal/surface interaction [35]. The (0001) surface of corundum

consists of layers of cations and anions aligned in the planes parallel to the surface. It

undergoes very large relaxation, that requires careful choice of the model. The ideal

surface is terminated by a single Al layer, although other terminations were also re-

ported in the literature [8]. They consist of various degrees of surface hydroxylation,

or under very low oxygen pressure, termination by the oxygen layer.

Figure 1. The charge density difference Pd/corundum interface; the dark negative values indicate

charge depletion, positive values are for the charge accumulation

In Figure 1, a map of charge density is presented, which shows polarization of

the Pd orbitals. One monolayer of palladium is put on the stoichiometric surface of

corundum and the interface is fully relaxed. The polarization of Pd orbitals indicate

that the interaction of the Pd monolayer with the relaxed surface of corundum is

mainly of the electrostatic nature; no charge transfer is observed. The adsorption

energy, for Pd monolayer is of the order 1J/m2. The interaction of Pd with other

surface terminations is significantly stronger [35] (up to 5J/m2), thus indicating that

metal atoms would bind preferentially to defects on the surface.

The surface relaxation (and the surface energy) is related to charge transfer

between the ions and the oxide structure extending from the surface deep into the

bulk. Alumina, which possesses a large variety of structures, is a good example to

study charge transfer related to the coordination change of the ion at the surface [8].

Trigonal α and monoclinic θ-phases have different distribution and coordination of Al

cations, and substantial differences in the surface relaxation mechanisms are expected.

In corundum only octahedrally coordianted Al cations are present, while in θ-alumina

50% of Al cations have tetrahedral coordination. It is presented in Figure 2, that

despite very different bulk atomic structures in the surfaces of considered phases of
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alumina, the mechanism of the charge transfer is very similar. The charge transfer

is related to the substantial relaxation of the surface, where the surface atoms can

be displaced by 0.07nm. This relaxation extends deep into the bulk, so the proper

description of the surface requires rather large systems often containing ∼100 atoms.

Figure 2. The change of the valence electronic charge of Al cations with respect to the bulk

charge of the (0001) surface of α-Al2O3 and (201) face of θ-Al2O3; the vertical axis represents the

direction perpendicular to the surface, such that the top and the bottom bars are for the surface

atoms; the center of the slab is in the middle of the vertical axis; light bars are for octahedral

cations, dark bars represent tetrahedrally coordinated cations in θ-Al2O3;

positive values indicate charge accumulation

Knowledge of the electronic and the structural properties of the surface allows

calculation of topographic effects like STM images. This is shown in Figure 3, where

theoretical STM image of B-layer terminated (100) surface of magnetite is presented.

Figure 3. The calculated STM topograph of the (100) surface of magnetite; bright colors

correspond to larger electronic density (higher tunnelling current); the square in the middle

represents the reconstructed (
√
2×
√
2)R45̊ surface unit cell; large circles are for surface iron

cations, small represent surface oxygen; dark and light Fe are structurally equivalent, but charge

ordering at the surface is clearly visible distinguishing two types of Fe

The DFT calculations reveal only minor structural rearrangements of the B-

plane termination, however, leading to the significant changes in the electronic

structure of the surface. The generally ionic, high spin character of the bulk is
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preserved at the surface. The most important change is differentiation of the local

spin moments on Fe(B) giving rise to ordering of the octahedral cations at the surface.

Pairs of cations with µB1 = 3.50µB and µB2 = 2.74µB are formed. The changes of

the magnetic moments on Fe(B) cations are related to the ordering of electrons on

atomic orbitals. Strong interaction between the oxygen p-band, which approaches

iron, and d-electrons of Fe(B) repulses them away from the top of the valence band

into conduction band above the Fermi level. The calculated electronic structure of

the octahedral termination of the (100)-Fe3O4 indicates a charge ordering and allows

association of the observed surface (
√
2×
√
2)R45̊ reconstruction to the ordering of

the Fe charges, rather than to the structural relaxation of the surface. Theoretical

STM images can be directly compared to the experimental ones and the agreement

is very good [36]. Theoretical calculations allow study of the real underlying atomic

structure of the surface.

The final example shows the comparison of the bulk free energy for the α

and θ-phases phases of alumina at finite temperature. This requires calculations

of the lattice dynamics and comparison of the free energy contributions resulting

from the phonons. The vibrational density of states was determined by a direct

method [22] for both phases of alumina and the free energy was calculated according

to the quasiharmonic approximation. The difference of the free energy is presented

in Figure 4. In agreement with the experiment α-alumina is a ground state at low

temperatures [37]. With increasing temperature this phase is destabilized in favor

of θ-alumina, but the vibrational contribution alone is too weak to drive the phase

transformation below the melting point of Al2O3. The result indicates that there

must exist an additional mechanism, which stabilizes porous form of θ-alumina below

1300K. It was suggested that this mechanism can be related to the lower surface

energy of the transition phases [4]. The surface energy of θ-phase is indeed lower than

those of corundum (0.8J/m2 vs. 1.8J/m2, respectively), but this does not explain

thermal stability of the porous alumina phases. It was shown recently, that the surface

of porous θ-alumina can have negative surface energy, while it stays hydroxylated [5].

In this perspective the porous phase is nothing unusual and shall be stable as long as

the surface is hydroxylated.

5. Summary

Theoretical aspects of density functional theory are briefly presented with a few

examples of its practical implementation. Some important issues related to DFT

modelling of the metal oxides are stressed. Application of the theory to modelling

of the metal oxides is illustrated with four examples. Two examples concern the

surface properties of alumina, and binding energy of Pd/corundum (0001) facet. It

is shown that the electrostatic polarization is the main mechanism of the interaction

between palladium monolayer and (0001) surface of corundum. The surface relaxation

mechanism is very similar for different structural forms of alumina. The next example

shows theoretical STM image of the octahedral termination of the (100) face of

magnetite. This can be compared directly to the experiment and reveal the charge

ordering as a main mechanism of the surface reconstruction. The last example

concerns mutual stability of the α and θ phases of alumina. The difference of the bulk
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Figure 4. The difference of the free energy ∆F =∆E0−T∆S, between α and θ phases of Al2O3

free energy between these phases of alumina is calculated and it indicates that the

α-phase always possesses lower free energy up to the melting point when crystalline

bulk material is considered.
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