
TASK QUARTERLY 8 No 4, 537–548

PERFORMANCE ASPECTS

OF DATA DELIVERY USING HIERARCHICAL

STORAGE MANAGEMENT SYSTEMS

IN THE GRID

DARIN NIKOLOW1, RENATA SŁOTA1

AND JACEK KITOWSKI1,2

1Institute of Computer Science, AGH University of Science and Technology,

Al. Mickiewicza 30, 30-059 Cracow, Poland

{darin, rena, kito}@uci.agh.edu.pl

2Academic Computer Center CYFRONET,

Nowojki 11, 30-950 Cracow, Poland

(Received 6 June 2004; revised manuscript received 29 July 2004)

Abstract: Grid computing has recently gained in popularity. Grid applications can be very

demanding of the data storage facilities in the Grid. The existing data grid services are often

insufficient and additional optimization of the data access is necessary. This paper presents research

concerning the optimization aspects of data management for Hierarchical Storage Management

(HSM) systems in the Grid.

Keywords: HSM, Grid, access time estimation

1. Introduction

Grid applications can be divided into two main categories: computationally

intensive applications and data intensive application. The first category has been

recognized as the main topic of interest of the early grid research [1]. With the

growing demand for grid applications concerning data storage and access to the

data distributed on the grid, particular methods and services are needed to meet

the requirements of data intensive grid applications [2]. The specific requirements

and characteristics of this kind of data are the following: the amount of data is huge

(tera- and peta-bytes), access to the data has to be secure and fast in terms of latency

and bandwidth, and data have to be protected against loss. In order to meet these

requirements the following methods are applied in the Grid middleware layers: data

encryption, parallel data transfer, and data replication.

The security of access to data is also an issue in the traditional computational

grids and has evolved into GSI (Grid Security Infrastructure) [3], based on public key

encryption algorithms. GSI allows authorized access to the distributed Grid resources

tq408h-e/537 4XII2004 BOP s.c., http://www.bop.com.pl



538 D. Nikolow et al.

with a single login. GridFTP addresses the fast file transfer problem by allowing

parallel data transfer for better utilization of the existing network bandwidth [4].

Data replication is the main method of assuring good level of data protection.

Examples of such usage are RAID systems. In data grids, data are replicated for

two main reasons: data protection and reduction of data access time. In the case

of replicated data sets the problem of replica selection arises [5]. The application

or rather the underlying grid middleware, has to decide which replica to choose so

that the application obtains its data as fast as possible. Another problem concerning

replication is automatic generation of new replicas and eventually deleting the unused

replicas [6, 7]. The decision about whether, where and when to create a new replica

is not trivial. Many parameters have to be taken into account, including frequency

of use, locations where the file has been requested from, load of the storage systems,

the available and future network bandwidths. Some of these parameters are static but

others are dynamic, which makes the solution even more complex. Some prediction

methods about the future resource utilization are necessary to properly create new

replicas. Yet another problem is keeping the data replicas consistent with the original

data. The replicas have to be updated in a non-disruptive and efficient way. Some

grid-related projects [8] assume that the data have aWORM (Write Once Read Many)

access pattern, which simplifies the process of keeping the data consistent.

In order to select the best replica (i.e. a replica which can be accessed the

fastest) information about the access time for a particular data set is needed [9]. The

access time depends mostly on the network’s bandwidth, but other factors matter as

well,such as system load and performance characteristic of the storage devices. This

information can be obtained from the Grid resources monitor services, part of almost

every grid project.

Because of the huge volume of data, TSS (Tertiary Storage Systems) are often

used to economically store this amount of data. Tapes are the usual choice of media.

Tertiary storage facilities (tape libraries, optical jukeboxes) are managed by HSM

(Hierarchical Storage Management) software. An HSM system uses various media with

different storage characteristics, organized in a hierarchy. The fast access devices such

as hard disks (or secondary storage) are used for the most wanted data, acting in the

same way as cache memory in computer systems. Data which has not been accessed

for a long period of time is kept in slower tertiary storage like tapes or magneto-

optical disks. The storage hierarchy in HSM systems introduces another problem: the

access time depends on the localization of the data. The time can vary greatly –

from mili-seconds to tens of minutes. This is why special care should be taken when

replicated data is stored in HSM systems and when best replica selection has to be

done. Adequate estimation of access time for data stored in HSM systems is of great

importance [10].

Data kept in an HSM system is available when it resides in the disk cache. If

the data is not there it has to be staged first. If the file is large, this could take a long

period of time. The estimation system has to be aware of the peculiarities of the

underlying storage system in order to estimate access time properly.

The following sections give a more detailed description of the research carried

out by the authors concerning data management for HSM systems in the Grid. The

tq408h-e/538 4XII2004 BOP s.c., http://www.bop.com.pl



Performance Aspects of Data Delivery Using Hierarchical Storage Management.. . 539

HSM systems discussed in this paper are storage systems each located at a particular

site, sharing their resources within the Grid. Nevertheless, the HSM system itself can

be locally distributed running on a few servers and managing one or more automated

media libraries. The main areas of the research have been access time estimation for

HSM systems (Section 2) and optimization of access to data in tertiary storage for

Grid environments (Section 3). Conclusions are presented in the final section.

2. Access time estimation for HSM systems

Access time, taccess, is considered in this study as the sum of start-up latency

time, tlatency, and transfer time, ttransfer:

taccess= tlatency+ ttransfer. (1)

The HSM system shares its resources in the Grid environment via a network. The

following equation presents the latency time which a client1 will experience:

tlatency= tlatency HSM+ tlatency network. (2)

In the above equation tlatency HSM is the latency time introduced by HSM itself and

tlatency network is the latency time introduced by the network. The next equation

expresses the transfer time measured on the client side:

ttransfer=
Sfile

min(Bnetwork,BHSM)
, (3)

where Sfile is the file size, Bnetwork is the available network bandwidth, and BHSM is

the available bandwidth of the HSM system itself.

With the incredible progress made in the field of network technologies (availabil-

ity of 10Gb networks) the network is no longer assumed to be the constant bottleneck

of the system. Instead, the storage devices like hard disks and removable media drives

can become the bottleneck. That is why research on the data access time estimation

is necessary.

In our study we concentrate on the access time of a “stand-alone” HSM system,

which means that the eventual overhead imposed by the network is not taken into

account.

Two approaches to estimating the access time for an HSM system have been

considered:

• a open HSM approach, in which the source code of the HSM system is available,

so that event reporting functions can be introduced, and

• a gray-box HSM approach, in which the essential HSM system information is

accessible via the system’s native tools only.

The next subsections describe in more detail the gray-box approach to data

access time estimation for HSM systems and our experimental results.

2.1. The gray-box approach to HSM access time estimation

The system can be considered as gray-box if at least partial knowledge of its

behavior is available and the information about the state of the system can be obtained

1. In this case a client can be a Grid application or a Grid middleware component such as

a replica manager.

tq408h-e/539 4XII2004 BOP s.c., http://www.bop.com.pl



540 D. Nikolow et al.

by using the native utilities provided with the system. This is the case with commercial

HSM systems where access to the source code and knowledge needed to change it are

not available. Knowledge about the system can be obtained by studying the system’s

documentation and appropriate testing.

Figure 1. Data access time estimation for an HSM system

The proposed HSM estimation system consists of two main modules: a Monitor

and a Simulator (Figure 1). The Monitor obtains essential information about the HSM

system and stores it in the model data structures (HSM model data). The Simulator

estimates the access times for the requested files using event-driven simulation. The

Simulator is supposed to be independent of the particular HSM system, while the

Monitor is a system-dependent module, which strongly relies on the HSM software for

gathering the essential data.

Figure 2. State transition diagram of a request processed by the TSS

Processing a request by the HSM system goes through its subsequent states,

triggered by the events shown in Figure 2. The most probable path is shown by

thicker lines. Table 1 briefly describes each state. The simulation algorithm for HSM

systems is based on this state transition diagram. The diversity of HSM systems

appears in the Simulator at two levels: the performance characteristics of the devices

and the behaviour of the HSM software. The performance parameters are specified

in a configuration file. However, the behavior of the HSM software impinges directly

on the simulator algorithm, which has to be designed to simulate various typical

behaviors. These typical behaviors concern the policy of request queue serving and

the policy of idle tape2 handling.

2. An idle tape is a tape which has just been used and is still in the drive but not actually used

at the moment.

tq408h-e/540 4XII2004 BOP s.c., http://www.bop.com.pl



Performance Aspects of Data Delivery Using Hierarchical Storage Management.. . 541

Table 1. States in serving a request by a HSM system

State Description

Waiting Waiting for resources (robot arm, drive or tape)

Unmounting idle Unmounting of an idle tape

Waiting before moving to slot This state will be visited if the robot arm is busy serving

another request

Waiting before moving to drive This state will be visited if the robot arm is busy serving

another request

Moving to slot Moving an idle tape from drive to slot

Moving to drive Moving the required tape from slot to drive

Loading Bringing the tape on-line

Positioning Positioning the tape to the first block of the file being accessed

In use Transferring data from the tape

Two different queue serving policies are possible: strict FIFO, where requests

are served according to their time of issue, and priority FIFO, where a request posted

later can be served earlier for better overall performance optimization, for instance

when the tape needed is already mounted.

Three different policies of handling an idle tape are possible: immediate eject,

non-forceable lazy eject and forceable lazy eject. With the immediate eject policy the

tape gets unmounted as soon as it becomes idle. With the non-forceable lazy eject

policy the tape is unmounted only after it has been idle for a certain period of time,

tlazy eject. With the forceable lazy eject policy the tape remains in the drive for at

most a tlazy eject time interval and for at least an aggressive eject, taggressive eject, time

interval. If a request needs the tape to be unmounted, it can become unmounted before

the tlazy eject time has elapsed, but not before the taggressive eject time has elapsed.

The Monitor is running all the time and is constantly monitoring the HSM

system. In this way the data in the model is kept up to date as much as possible.

Since the monitoring of an HSM system depends strongly on vendor-provided utilities,

the Monitor is HSM system-dependent and has to be ported for a particular system.

For example, in order to gather the necessary data the Monitor can fork HSM-specific

tools, scan logs (having different formats), parse the configuration files, check the disk

cache and database files.

The accuracy of estimation depends on many factors, so it is not easy to obtain

estimation times with small errors. The factors are as follows: the exact HSM algorithm

is not known or is too complicated, the positioning and transfer times of the storage

devices vary widely even for the same request sequence, and non-fatal read errors

occur which increase access time. The following section presents our experimental

results concerning the accuracy of estimation.

2.2. Experimental results

The experiments described below were conducted at the CYFRONET-AGH

Academic Computer Center in Cracow. This site is equipped with two tape libraries

with DLT7000 tape drives and a magneto-optical jukebox.

tq408h-e/541 4XII2004 BOP s.c., http://www.bop.com.pl



542 D. Nikolow et al.

The tertiary storage hardware is managed by the DiskXtender HSM software.

The system runs on two HP9000 servers.

Two types of tests have been made: single request tests and multiple request

tests. The latter case is more realistic for standard HSM operations. For a more detailed

description of the experiments, see our paper [11].

In these tests estimated taccess (Equation (1)) were compared with measured

(real) taccess for given requests and errors were calculated. In Table 2 the single request

tests results are presented for files residing on tapes. We can see that for some cases

the relative error is significant. The average relative error is 19%, while the average

absolute error is 50s.

Table 2. Single request test results for tapes

Measured Estimated Absolute Relative
No

taccess [s] taccess [s] error [s] error [%]

0 180 264 84 46

1 365 203 162 44

2 253 234 19 8

3 181 203 22 12

4 283 279 4 1

5 256 204 52 20

6 286 203 83 29

7 237 238 1 0

8 278 254 24 9

Table 3. Multiple request test results for tapes

Measured Estimated Absolute Relative
No

taccess [s] taccess [s] error [s] error [%]

0 202 180 22 11

1 207 180 27 13

2 430 310 120 28

3 524 410 114 22

4 576 360 216 38

5 541 470 71 13

6 842 550 292 35

7 800 560 240 30

8 909 670 239 26

9 991 960 31 3

The results from the multiple request tests are shown in Table 3. In this case,

relative errors are also significant for some requests. The average relative error is 21%,

while the average absolute error is 138s.

The main source of inaccuracy is the problem of modelling the positioning

and transfer time for the tape drives, especially for compressed data. If data are

well-compressed the transfer rates are higher by a factor of two compared with non-

tq408h-e/542 4XII2004 BOP s.c., http://www.bop.com.pl



Performance Aspects of Data Delivery Using Hierarchical Storage Management.. . 543

compressible data. The serpentine recording of the most modern drives results in

another source of complication.

3. Data access optimization for data kept in TSS

Tertiary storage devices, especially tapes, have high access times. This is due

to the sequential nature of tape drives, in which the positioning of the head takes

much longer than in direct-access devices. The transfer rates are also lower, but here

the difference is less significant. Two methods have been used in our work in order

to make the access to tape-resident data more efficient: direct fragment access and

subfiling. These methods are described in detail in the following subsections.

3.1. Fragment access

One of the possible optimizations of data access for HSM systems is direct

fragment access (DFA). By this method we can access a file fragment without staging

the whole file. Since only the necessary fragment is staged, less space is used in the

disk cache and the tape-to-disk transfer time is shorter. DFA has been implemented

in MMSRS (Multimedia Storage and Retrieval System) [12] and VTSS (Video Tertiary

Storage System) [13] enabling efficient access to video sequences.

3.1.1. MMSRS

MMSRS is a system for efficient access to video fragments, which was essential

in the development of a medical video database system in the PARMED project [14].

The architecture of MMSRS based on HSM software is shown in Figure 3. The

system consists of an Automated Media Library (AML) and the following software

components: an AML managing system (DiskXtender, comercial HSM software), an

MPEG Extension for HSM (MEH) and a public-domainWWW server. TheMEH consists

of an MPEG Store Application (MSA) and an MPEG Retrieve Application (MRA). The

MMSRS is implemented as a middleware layer between the client application and the

HSM system based on the Legato commercial DiskXtender software.

Figure 3. The architecture of MMSRS (Multimedia Storage and Retrieval System)

Because of the features imposed by the DiskXtender software and our require-

ments for the MMSRS it was necessary to carefully design the way in which videos

are written to the DiskXtender filesystem. If videos were stored in whole as usual

tq408h-e/543 4XII2004 BOP s.c., http://www.bop.com.pl



544 D. Nikolow et al.

files, a user requesting a file that existed only in the tertiary storage would experience

start-up delay, as the whole file must first be staged. When the file is large the delay

may be unacceptable.

In order to apply the DFA technique we decided to cut the videos into pieces

of similar size and store them as different files. The cutting substantially reduces the

start-up delay. Each piece starts with an I-frame. We called the application splitting

and storing the videos into DXFS an MPEG Store Application (MSA). Due to the

chosen method of storing the videos, another application for retrieving them is needed.

We called it an MPEG Retrieve Application (MRA). MRA is executed whenever there

are client requests waiting to be served, while MSA is used by the administrator when

a new video is to be stored.

In order to keep the MPEG stream as smooth as possible (when the pieces reside

on tapes), a simple prefetching technique is used. It is based on staging the next file

to be transmitted while transferring the current one.

3.1.2. VTSS

VTSS is the second system in which we have applied the DFA technique. It

has been designed from scratch and does not rely on any other tertiary storage

management software. VTSS is capable of accessing a fragment of a video or normal

file by directly addressing the blocks on the tape where the requested fragment resides.

The architecture of VTSS is shown in Figure 4. The core of the system capable

of storing arbitrary files is called a FiFra TSS (File Fragmentation TSS). FiFra TSS

features file fragment access by directly accessing the file blocks from tape. The system

consists of two main daemons: a Repository Daemon (REPD) and a Tertiary File

Manager Daemon (TFMD). REPD controls the Automated Media Libraries (AML)

and is responsible for mounting and dismounting the required tapes. TFMD manages

the files filedb and tapedb (in which the information about files stored on VTSS and the

tape usage is kept) and transfers files from the removable media devices to a Client.

In order to have fragment access to video files (a video fragment is specified in

frame units), two interface modules were added to the FiFra TSS.

The first module, called VSI (Video Storage Interface), is responsible for storing

video files in the VTSS. It stripes the header out of the MPEG file and stores it on the

hard disk. The rest of the MPEG file (without the header) is then stored on a tape

and the index file for that video is stored on a disk. A record describing the video is

put into the namedb file. The index file contains the time stamp and offset for each

GOP (Group Of Pictures) of the MPEG file. VSI has to be run on the host where the

namedb file resides and itself starts two external programs: splitter, which stripes

the MPEG file and produces the index and clnnew, which stores the MPEG body into

the FiFra TSS.

The second interface module, called VRI (Video Retrieval Interface), is respon-

sible for retrieving fragments of videos. It constructs the requested video fragment by

concatenating the header of the video with the appropriate file fragment of the body

of the MPEG file. The file fragment range is obtained by searching the index file of

that video for start offset and end offset matching the requested time range.

tq408h-e/544 4XII2004 BOP s.c., http://www.bop.com.pl



Performance Aspects of Data Delivery Using Hierarchical Storage Management.. . 545

Figure 4. the architecture of the Video Tertiary Storage System

3.2. Fast access to large files on tapes

When a file residing on tapes is being accessed, it is usually first copied to the

disk cache and only after that it is available for reading. If the file is large the transfer

from tape to disk can take a long time. During that time the file is inaccessible, even

the part that is already on disk and could be accessed. In order to accelerate access

to large files the subfiling technique can be used. The technique is based on splitting

a large file into smaller ones (subfiles), which can be accessed faster. From the user’s

point of view the file is still large and in one piece, but internally it is represented by

a set of smaller physical files.

This technique has been used in MMSRS to make the access to fragments of

video files more efficient. At the same time, VTSS can access fragments by directly

accessing the tape blocks containing the required fragment. Additionally, VTSS allows

access to the portion of the file that has already been staged. However, VTSS is

a prototype system used mainly for testing the performance of such approach and

is far from a full production system. When a general purpose HSM system with no

direct file fragment access feature is used, middleware is needed to transparently split

the files on writing and concatenate on reading.

3.2.1. Implementation of the subfiling technique for HSM systems in the Grid

The subfiling technique can be implemented for the Grid environment in many

ways. For the case when there is a dedicated Data Archiving System (DAS) in the

grid [15] it is implemented as an FTP server with fragment access capabilities. For

the Crossgrid project [16], where the data management system relies on the Globus

toolkit [17], it is implemented as a wrapper to the existing GridFTP server. In both

cases the application can benefit from this implementation by making faster its access

to large data files residing on tapes. The implementation of the FTP server for the

DAS is described below as an example.

The code of a normal FTP server has been appropriately modified to transpar-

ently split and concatenate the requested files. The server can access segmented files

tq408h-e/545 4XII2004 BOP s.c., http://www.bop.com.pl



546 D. Nikolow et al.

(which are internally stored as a set of subfiles) and non-segmented, normal files. The

client (which can be a user or an application) can decide if the file to be written has

to be segmented or not. Since no changes in the FTP protocol are allowed, the follow-

ing method to choose between the segmented mode and the non-segmented mode has

been proposed: if the file is stored under certain directory path (specified in the config

files) it has to be segmented, otherwise it is a normal file. For example, if we have

specified the directory path as SegmentedFiles/ and if we issue the ftp command

put myBigFile SegmentedFiles/myBigFile, then this file will be segmented.

Segmented files are written as follows:

• a directory having the same name as the file to be written is created;

• the subfiles of the file being written are put into that directory.

3.3. Experimental results

The goal of these experiments has been to compare the performance for

large file transfers for three different systems: DiskXtender, MMSRS and VTSS (see

Subsections 3.1.1 and 3.1.2).

The experimental results for whole video file transfer are shown in Table 4. The

parameters presented in the table are local, which means that the network overhead

is neglected. Consequently, the start-up latency corresponds to the latency of the

HSM itself, tlatency= tlatency HSM (see Equation (2)) and the transfer time is the time

necessary to send the data assuming that the network has a greater bandwidth than

the bandwidth of the system, ttransfer =
Sfile

BHSM
(see Equation (3)). The average rate,

ravg, and the total throughput, thtotal, are defined by:

ravg=
Sfile

ttransfer
, (4)

thtotal=
Sfile

taccess
, (5)

where Sfile=790MB.

Table 4. System performance for whole video file transfer

DiskXtender MMSRS VTSS

DLT2000 DLT7000 DLT2000 DLT7000 DLT2000 DLT7000

tlatency [s] 718 610 90 110 70 55

ttransfer [s] 135 164 710 615 677 160

taccess [s] 853 774 800 775 747 215

ravg [MB/s] 5.85 4.82 1.11 1.28 1.17 4.94

thtotal [MB/s] 0.93 1.02 0.99 1.02 1.06 3.67

We can see that VTSS outperforms the other two systems, especially when the

start-up latency is considered. DiskXtender stages the file into the disk cache before

actually transfering it, which manifests itself in low transfer times and high start-up

latencies. That is why DiskXtender has the highest average rate. Nevertheless, the

total throughput (in which latency is taken into account) is much lower (0.93MB/s).

In spite of the fact that MMSRS relies on DiskXtender for managing the tertiary

storage hardware, it was possible to significantly decrease start-up latency by using

tq408h-e/546 4XII2004 BOP s.c., http://www.bop.com.pl



Performance Aspects of Data Delivery Using Hierarchical Storage Management.. . 547

the subfiling technique. DiskXtender and MMSRS performance with DLT7000 drives

is only slightly better than that with the DLT2000 drives, despite the transfer rate

of the DLT7000 tape drive being four times higher than that of DLT20003. VTSS

has achieved average transfer rates of 1.17MB/s and 4.94MB/s (for DLT2000 and

DLT7000, respectively), which are close to the hardware-imposed limit, thanks to its

better utilization of the tape drives.

4. Conclusions

In this paper we have presented our latest research concerning data manage-

ment for HSM systems in the grid environments. Optimization of access to data dis-

tributed in the Grid is not a trivial task. Many aspects have to be considered to solve

this problem like replication methods, data access time estimation techniques, and

grid monitoring. An access time estimation system based on the gray-box simulation

approach has been described and experimental results for the DiskXtender imple-

mentation have been presented. The estimation accuracy is sufficient for most cases

of best replica selection. We have also presented an implementation of the subfiling

technique to speed up access to large files residing on tapes in HSM systems. The

experiments have shown a significant drop in the latency time for this technique.

The developed systems are also useful for the development of strategies for

automatic data replication, now in progress.

Acknowledgements

The work described in this paper was supported in part by the European

Union through the IST-2001-32243 “CrossGrid” project and by the Polish Committee

for Scientific Research (KBN), grant no. 4 T11C 028 24. AGH-UST grant is also

acknowledged.

References

[1] Foster I and Kesselman C 1999 The Grid: Blueprint for a New Computing Infrastructure,

Morgan-Kaufman

[2] Chervenak A, Foster I, Kesselman C, Salisbury C and Tuecke S 2001 J. Network and Computer

Applications 23 187

[3] Foster I, Kesselman C, Tsudik G and Tuecke S 1998 Proc. 5 th ACM Conf. on Computer and

Communications Security, San Francisco, California, USA, pp. 83–92

[4] Allcock W (Ed.) 2003 GridFTP Protocol Specification (Global Grid Forum Recommendation

GFD.20), http://www.globus.org/research/papers/GFD-R.0201.pdf

[5] Vazhkudai S, Tuecke S and Foster I 2001 Proc. of the IEEE Int. Conf. on Cluster Computing

and the Grid (CCGRID 2001), Brisbane, Australia, pp. 106–113

[6] Bell W, Cameron D, Capozza L, Millar P, Stockinger K and Zini F 2002 Proc. 3 rd Int.

Workshop, Grid Computing GRID, Baltimore, USA, LNCS 2536 46

[7] Lamehamedi H, Shentu Z, Szymański B and Deelman E 2003 Proc. 12 th Heterogeneous

Computing Workshop (HCW2003), Nice, France, IEEE Computer Science Press, p. 100b

[8] DataGrid – Research and Technological Development for an International Data Grid, EU

Project IST-2000-25182

[9] Stockinger K, Stockinger H, Dutka L, Słota R, Nikolow D and Kitowski J 2003 Proc. 4 th Int.

Workshop on Grid Computing (Grid2003), Phoenix Arizona, IEEE Computer Society Press,

pp. 149–157

3. DLT2000 transfer rate= 1.25MB/s, DLT7000 transfer rate= 5MB/s

tq408h-e/547 4XII2004 BOP s.c., http://www.bop.com.pl



548 D. Nikolow et al.

[10] Nikolow D, Słota R and Kitowski J 2004 Proc. 5 th Int. Conf. Parallel Processing and Applied

Mathematics, Czestochowa, Poland, LNCS 3019 182

[11] Nikolow D, Słota R and Kitowski J 2002 Proc. of the Cracow Grid Workshop, Cracow, Poland,

pp. 209–216

[12] Słota R, Kosch H, Nikolow D, Pogoda M, Breidler K and Podlipnig S 2000 Proc. Int. Conf.

High Performance Computing and Networking, Amsterdam, The Netherlands, LNCS 1823 517

[13] Nikolow D, Słota R, Kitowski J, Nyczyk P and Otfinowski J 2001 Lecture Notes in Computer

Science (LNCS) 2110 435

[14] Kosch H, Słota R, Boszormenyi L, Kitowski J, Otfinowski J and Wojcik P 2000 Proc.

Int. Conf. High Performance Computing and Networking, Amsterdam, The Netherlands,

LNCS 1823 543

[15] SGIgrid: Large-scale Computing and Visualization for Virtual Laboratory Using SGI Cluster

(in Polish), KBN Project, http://www.wcss.wroc.pl/pb/sgigrid/

[16] CROSSGRID – Development of Grid Environment for Interactive Applications, EU Project

IST-2001-32243

[17] The Globus Project, http://www.globus.org/

tq408h-e/548 4XII2004 BOP s.c., http://www.bop.com.pl


