
TASK QUARTERLY 8 No 4, 525–536

A MONITORING PLATFORM FOR

DISTRIBUTED JAVA APPLICATIONS

WŁODZIMIERZ FUNIKA1, MARIAN BUBAK1,2,
MARCIN SMĘTEK1 AND ROLAND WISMÜLLER3

1Institute of Computer Science, AGH University of Science and Technology,

Al. Mickiewicza 30, 30-059 Cracow, Poland

{funika, bubak}@uci.agh.edu.pl, smentos@icslab.agh.edu.pl

2Academic Computer Centre CYFRONET,

Nawojki 11, 30-950 Cracow, Poland

3Fachgruppe BVS – Universität Siegen,

Hölderlinstr. 3, D-57068, Siegen, Germany

roland.wismueller@uni-siegen.de

(Received 6 August 2004)

Abstract: This paper presents a new Java oriented monitoring infrastructure that enables tools

to observe, analyze and manipulate the execution of distributed Java applications independent of

implementation details like instrumentation of monitored entities, hardware platform and application

libraries. Tools can access the monitored application via a standardized interface defined by an On-

Line Monitoring Interface Specification (OMIS) and extended by a set of new Java-specific services

relating to garbage collection, class loading, remote method invocation, etc. The new monitoring

functionality can be applied for building various kinds of tools and for adapting the already existing

ones, such as performance analyzers, debuggers, etc., working in the on-line mode.

Keywords: Java, monitoring system, monitoring interface, distributed object system, OMIS

1. Introduction

Java, as a relatively simple, object-oriented, secure and portable language, is

also a flexible and powerful programming system for distributed computing. Program

development with Java results in software that is portable across multiple machine

architectures and operating systems. Distributed programming in Java is supported

by remote method invocation (RMI), object serialization, reflection, a Java security

manager and distributed garbage collection. Java RMI is designed to simplify the

communication between objects in different virtual machines allowing transparent

calls to methods in remote virtual machines.

A major disadvantage of Java is the speed of execution, especially in the case

of distributed applications, due to the limited bandwidth of the communication

channel and the added delay caused by the JVM translating the byte code and

tq408g-e/525 4XII2004 BOP s.c., http://www.bop.com.pl

526 W. Funika et al.

garbage collection. A developer of distributed systems faces various problems that

make developing such systems more difficult that expected. In a complex distributed

application, performance optimization of the code becomes much more important

and requires programmers’ close attention. Understanding the nature of Java-related

problems allows programmers to build large and scalable applications. However,

without a suitable performance analysis tool for Java programs, it is often difficult to

analyze a program for performance-tuning and bug detection. Thus, there is a need

for tools (performance analyzers, debuggers, etc.) that allow programmers to control

and improve their applications.

The goal of our research [1–5] is to elaborate a comprehensive tool support for

building distributed Java applications by providing uniform, extendable monitoring

facilities for communication between components, for analyzing an application’s

execution to understand system behaviour, and for detecting bugs.

In this paper, we focus on the issues of building a monitoring platform of

the above properties based on a well-defined interface between a monitoring system

organized as middleware and tools that use the monitoring facilities provided by the

monitoring middleware. The paper is organized as follows. A short overview of related

work in Section 2 is followed by considerations of Java tools’ functionality (Section 3).

An overview of OMIS and an OMIS-compliant monitoring system, OCM, and its Java-

oriented extension is presented in Section 4. Next, an outline of the Java-oriented

monitoring system’s architecture is given in Section 5, followed by an analysis of the

J-OCM infrastructure as a kind of middleware with its attributes (Section 6). The event

model in OMIS and its extension by Java-specific events are presented in Section 7.

An overview of the start-up procedure when using J-OCM is described in Section 8.

Work on performance analysis tools is briefly outlined in Section 9. Conclusions and

future work are summarised in Section 10.

2. Related work

The first version of JVMs had poor support for monitoring Java programs.

Initially there was a simple debugger, jde, attached to the Java Development Kit

(JDK). Then, there was an instrumented Java virtual machine build for JDK version

1.16 to support the collection of profiling data generated when executing a Java

program. This approach was developed until version 2 of the Java platform. All JVMs

for the new Java platform were equipped with interfaces for debugging (JVMDI) [6]

and profiling (JVMPI) [7]. A new release of Java 2 Platform version 1.5, called Tiger,

contains a new native profiling interface called JVMTI which is intended to replace

JVMPI and JVMDI. JVMTI aims to cover the full range of native in-process tools

access, which in addition to profiling, includes monitoring, debugging and, potentially,

a wide variety of other code analysis tools. Additionally, Tiger’s implementation

includes a mechanism for bytecode instrumentation, the Java Programming Language

Instrumentation Service (JPLIS). This enables performance analysis tools to execute

additional profiling only where needed. The advantage of this technique is that it

allows for more focused analysis and limits the interference of the profiling tools in

a running JVM. The instrumentation can even be dynamically generated at runtime,

as well as at class loading time, and pre-processed as class files.

tq408g-e/526 4XII2004 BOP s.c., http://www.bop.com.pl

A Monitoring Platform for Distributed Java Applications 527

Most of the tools for JVM versions from 1.2 to 1.4 are based on the Java Virtual

Machine Profiling Interface (JVMPI) [7]. Starting with JDK 1.2 SDK it also includes an

example profiler agent for efficiency examination called hprof [8], which can be used

to build professional profilers. A Heap Analysis Tool (Hat) [9] enables one to read and

analyze profile reports of the heap generated by the hprof tool and may be used e.g.

for debugging “memory leaks”. JTracer [10] is a debugger which provides traditional

features, e.g. a variable watcher, breakpoints and line-by-line execution. J-Sprint [11]

provides information about what parts of a program consume the most of execution

time and memory. JProfiler [12], targeted at JEE and JSE applications, provides

information on CPU and memory usage, thread profiling and VM. Its visualization

tool shows the object references chain, execution control flow, thread hierarchy and

general information about JVM using special displays. There is also a group of powerful

commercial tools with friendly graphical interfaces: OptimizeIt [13], Jtest [14] and

JProbe [15, 16], which enable identification of performance bottlenecks.

All these tools have similar features: memory, performance, code coverage

analysis, program debugging, thread deadlock detection and class instrumentation,

but many of them are designed to observe a single-process Java application and do

not support directly monitoring a distributed environment based on RMI middleware,

except for JaViz [17], which is intended to supplement the existing performance

analysis tools with tracing client/server activities to extend Java’s profiling support

for distributed environments.

The above mentioned tools provide a wide range of advanced functionalities, but

practically each of them only provides a subset of the desired functions. Distributed

systems are very complex and the best monitoring of such a system could be achieved

by using diverse observation/manipulation techniques and mechanisms. It is therefore

often desirable to have a suite of specialized tools such as debuggers and performance

analyzers, each of them addressing a different support issue and allowing developers to

explore the program’s behaviour from various viewpoints. Therefore, there is a need to

establish a more general approach to build flexible, portable and efficient monitoring-

based tools.

3. Building a monitoring system

In order to provide comprehensive support for distributed programming, the

tools need to be able to manipulate and observe the whole application distributed over

different machines on-line, in contrast to the off-line mode, which assumes collecting

information at runtime for later analysis (e.g. JaViz). To provide flexible functionality

of tools, the monitoring activities underlying access to the observed application should

be concentrated in a separate module, called the monitoring system. The monitoring

system should ideally provide a uniform on-line interface for different kinds of tools,

which allows to easily build tools without a need to understand the implementation

of monitoring.

Most tool environments consolidate tools with a monitoring facility into a single

monolithic system. However, there are some approaches which can underlie the con-

struction of particular types of tools. The Java Platform Debugger Architecture

(JPDA) [18] provides an infrastructure to build a debugger tool by allowing access to

tq408g-e/527 4XII2004 BOP s.c., http://www.bop.com.pl

528 W. Funika et al.

the internals of a program running on one JVM from within another. JPDA can be

a good platform for remote debugging, but it does not offer support for distributed

debugging and monitoring. Moreover, it only allows a single connection to the target

JVM at a time, which means that different tools cannot be used to monitor the same

JVM simultaneously.

A new release of Java 2 Platform version 1.5 introduces a new JVM Monitoring

and Management API, Java Management Extensions (JMX) [19] for Java Virtual

Machine which specifies a comprehensive set of JVM internals such as loaded classes

and threads, as well as runtime information about the virtual machine (uptime,

memory usage, garbage collection statistics, system properties) that can be monitored

from a running JVM. It provides information on low memory and monitor deadlock,

and details on the operating system on where the JVM is running. This information

is accessed through Java Management Extension MBeans and can also be accessed

remotely via the JMX remote interface and with industry standard SNMP tools. JMX

is a well designed and mature technology that results from research which started

in 1995, while the first release of the standard appeared four years ago, JMX is the

outgrowth of the pioneering Java Management API (JMAPI) technology (1995) and

the later Java Dynamic Management Kit.

4. From OMIS to J-OMIS

The work on building a versatile monitoring system followed the idea of

a monitor/tool interface specification, OMIS [20], and its implementation, OCM [21].

A tool contacts the monitoring system via a standardized interface. The cooperation

between the tool and the monitoring system is based on the service request/reply

mechanism. A tool sends a service request to the monitoring system, e.g. a coded

string which describes a condition (event) (if any) and activities (action list) which

have to be invoked (when the condition becomes true). In this way the tool programs

the monitoring system to listen for event occurrences, perform appropriate actions,

and transfer results to the tool. OMIS relies on a hierarchy of abstract objects:

nodes, processes, threads, messages and message queues. Each object is represented

by an abstract identifier (token) which can be converted into an other token type

by conversion functions localization and expansion, automatically applied to every

service definition that has a token that refer to an object type different from that for

which the service is defined. At each moment each tool has a well-defined scope, i.e. it

can observe and manipulate a specific set of objects attached on request from a tool.

OCM, the first OMIS-compliant monitoring system, has a distributed architecture:

local monitors, one per node (LM), and a Node Distribution Unit (NDU) that has to

analyze each request issued by a tool and split it into separate requests that can be

processed locally by LMs on the proper nodes.

By allowing the monitoring system to be expanded with a tool or monitor

extension, via adding new services and new types of objects to the basic monitoring

system, OMIS enables the provision of monitoring support for specific programming

environments. Java-bound OMIS (J-OMIS) is a monitor extension to OMIS for Java

applications intended to support the development of Java distributed applications

with on-line tools. J-OMIS introduces a range of new types of objects, new services

tq408g-e/528 4XII2004 BOP s.c., http://www.bop.com.pl

A Monitoring Platform for Distributed Java Applications 529

and conversion functions. The extension divides a new Java-bound object hierarchy

into two kinds of system objects: execution objects (i.e. nodes, JVMs and threads) and

application objects (i.e. interfaces, classes, objects and methods). J-OMIS defines a set

of services operating on each object. As in the original OMIS, J-OMIS specifies three

types of services: (i) information services, providing information about an object,

(ii) manipulation services, allowing to change the state of an object, and (iii) event

services to trigger arbitrary actions whenever a matching event takes place. J-OMIS

defines the relations between the objects of a running application, which are expressed

by conversion functions, e.g. implements or downcast/upcast. The idea of conversion

comes from OMIS 2.0, where the localization/expansion conversion is defined. J-OMIS

enlarges this ability by a few additional operations that result from the object-oriented

nature of Java, e.g. the request : method get info([class id], 1) relates to the

method information service to obtain information on all methods implemented in the

specified class. The class id token is expanded by the conversion mechanism into

a set of method objects [1]. Monitoring of distributed programs based on the RMI

mechanism requires the establishment of an additional set of services. They include

services relating to the RMI registry: rmiregistry get info() to obtain the names

of objects registered on a given machine and rmi registry object get info(),

to get the names of all methods of a given remote object. The RMI-related vent

services refer to the progress of remote method invocation in the client: start/end

of an RMI call, sending RMI call to/receiving results from the server, and in the

server: start/end of handling the request, start/end of calling the method (locally) of

a remote object.

5. The architecture of the Java-oriented

monitoring system

Based on J-OMIS, a Java-oriented extension to OCM, J-OCM has been designed

through extending the functionality of OCM, adding new software components and

adapting the existing ones. This approach allows one to combine the existing func-

tionality of OCM with the Java platform to support Java homogeneous and het-

erogeneous computing in the future. Figure 1 shows which components have been

added or modified. The Node Distribution Unit (NDU) is an unchanged part of the

whole monitoring infrastructure, which is still responsible for distributing requests

and assembling replies; e.g. a tool may issue a request in order to run the Garbage

Collector on specified JVMs. Therefore NDU must determine the nodes executing the

JVMs and, if needed, to split the request into separate sub-requests to be sent to the

proper nodes. NDU’s aim is to make the whole system manageable, thus it has to

program the local monitors of all the currently observed nodes. As the set of mon-

itored nodes may change over time, NDU must properly react to these changes: to

create local monitors on newly added nodes or to re-arrange its list of objects in-

volved in the execution of requests that have been issued by tools when some nodes

are deleted.

The Local Monitor is a monitor process, independent from the whole global

monitoring infrastructure. Each monitor process provides an interface similar to that

of NDU, with the exception that it only accepts requests to operate on local objects.

tq408g-e/529 4XII2004 BOP s.c., http://www.bop.com.pl

530 W. Funika et al.

Figure 1. J-OCM architecture

To support the monitoring of Java applications, LM’s extension, JVMEXT, provides

new services defined by J-OMIS, which control JVM via agents. LM stores information

about the target Java application’s objects, such as JVMs, threads, classes, interfaces,

objects, methods, etc., referred to by tokens. Another monitor extension, RMIEXT, is

intended to notify J-OCM of RMI-related events and obtain information from the RMI

registry.

The most essential aspect of building J-OCM is the way in which monitoring

data about the application and JVM can be handled and delivered to the monitoring

system. JVM has the ability to load an additional native code in the form of a shared

library into its address space. We have used this feature and implemented the Java

Virtual Machine Local Monitor, an agent embedded into a JVM process (Figure 2)

which is responsible for the execution of requests received from LM. It provides

the same interface as the monitoring extensions to LM, implemented by its local

representations of JVMEXT and RMIEXT which operate on the objects local to a given

JVM. JVMLM uses JVM native interfaces such as JVMPI, JVMDI, JNI to access low-

level mechanisms for interactive monitoring of JVM.

The monitoring of RMI requires additional instrumentation based on modifica-

tions to Java RMI classes, sun.rmi.server.UnicastRef and sun.rmi.server.Uni-

castServerRef, to handle remote calls on the client and the server side, respectively.

An additional code notifies JVMLM of the path and time of RMI calls in particular

phases via the JNI mechanism [22].

The Shared Memory-based Local Agent Environment (SHMLAE) is a commu-

nication layer to support cooperation between agents and LM. It offers non-blocking

tq408g-e/530 4XII2004 BOP s.c., http://www.bop.com.pl

A Monitoring Platform for Distributed Java Applications 531

Figure 2. JVM agent

send and interrupt-driven receive operations to support monitoring techniques used

in OCM, based on the event-action paradigm.

6. J-OCM as middleware

Every distributed environment, such as CORBA, COM/DCOM or Java RMI,

provides mechanisms to simplify the process of developing a distributed application.

Similarly, the leading idea of building a Java-bound monitoring system is to provide

a system framework that allows new services to be added as monitoring extensions

(e.g. in the form of plugins for programming techniques like RMI, CORBA and Web

Services). J-OCM is more than a single distributed application; it provides a number

of utilities which can help tool developers extend the functionality of Local Monitors

and JVM agents (see Figure 3). In this way, the whole monitored system can be seen

as a set of distributed objects and the monitoring system – as a higher-level software

layer, middleware, that provides a standardized interface for the tool to access the

monitored objects, regardless of implementation details.

A distributed client-server system is based on the principle that the defini-

tion of behavior (a client’s concern) is separated from the behavior’s implementation

(a server’s concern). To meet the requirements of distributed computing, a distributed

system has to comprise additional architectural elements: an object interface specifi-

cation, an object stub and skeleton, an object manager, a registration/naming service

and a communication protocol. To deal with the distributed target system, we shall

consider the functioning of J-OCM as a distributed client-server system, focusing on

the functionality of its components.

tq408g-e/531 4XII2004 BOP s.c., http://www.bop.com.pl

532 W. Funika et al.

Interface definition. The first stage of the process of developing a distributed

application is to define the interface of a remote object (e.g. methods, data types),

written in an Interface Definition Language. Similarly, the leading idea of OMIS is to

provide support for building tools and monitoring systems for new environments by

extending its functionality. For each extension, an IDL file, called registry, has to be

provided, that specifies new objects, new services and their attributes.

Figure 3. The development process of J-OCM

The stub and the skeleton enable transparent communication between the

client and the remote object. They are based on the Proxy Design Pattern [23],

wherein an object is represented by another object (a proxy) in order to control

access to the object. In distributed computing, the role of the proxy is played by the

stub, which allows making a local call on a remote object. The skeleton on the server

side receives an incoming call and invokes it on the real object. The Proxy pattern is

used by J-OCM to provide the tool with transparent access to the monitored objects.

The monitored objects are identified by tokens which refer to the proxy object. The

proxy is a representation of the real object in the monitoring system. The object’s

proxy contains all information that is needed to deliver the tool’s requests to the JVM

agent (JVMLM) which directly accesses JVM. The JVM agent acts as a skeleton, while

the remote proxy which is embedded into JVM is a platform-dependent native library.

The agent transforms a call and its parameters received from LM into the format

required by one of the interfaces used to interact with JVM.

The object manager and the registration/naming service. Remote-

method calls issued by the client are routed through the object manager to the proper

object on the server. The object manager also routes the results back to the client. The

registration/naming service acts as an intermediary layer between the object client

and the object manager. Once an interface to the object is defined, an implementation

of the interface needs to be registered with the naming service so that the object can be

accessed by clients using the object’s name. The main components of the J-OCM – NDU

tq408g-e/532 4XII2004 BOP s.c., http://www.bop.com.pl

A Monitoring Platform for Distributed Java Applications 533

and LMs – can be classified as object managers and provide operations similar to the

naming service in distributed systems. Any object that can be observed/manipulated

by tools is represented by a token, which is a globally unique name of the monitored

object.

The tokens and proxies of the relevant monitored objects are created when:

(1) the JVMLM is started and notifies the node’s LM of its existence (e.g. jvm j 1),

(2) events referring to the creation of threads, classes, objects, interfaces, etc. are raised

and the tool is interested in them, or (3) the tool issues information requests of the

syntax: {jvm, thread, class, etc.} get tokens() to obtain a list of tokens of all

the monitored objects of a given class.

7. Handling of events

In an event-based monitoring system, basic events are captured by sensors which

are inserted into target systems and notify the monitoring system whenever an event

occurs. The monitoring system takes some action(s) associated with the event. These

actions can either carry out data collection or manipulate the running program. In

J-OCM, event notification is supported both by LMs and JVMLMs.

Java-oriented techniques for event-based monitoring. JVM notifies

JVMLM about several internal events, using JVMPI and JVMDI. These events are

fired by changes in the state of Java threads like (started, ended, blocked on a locked

monitor), the beginning/ending of an invoked method, class loading operations, object

allocation/de-allocation, and the beginning/ending of garbage collection, exception

throwing, etc.

To support interactive observation of the target system, all events must be

processed by the JVM agent, while the agent sends the events to LM selectively, to

avoid too much overhead on LM. This is based on a filtering mechanism introduced into

the JVM agent to select events that should be sent to LM. To control the forwarding

of events, the agent uses a filter in the form of a table, in which it stores information

about what events LM is interested in. LM can stop or resume notification of specific

events sent from its agents.

The OMIS event model, along with the event term, additionally defines the

event class predicate, specifying a set of event occurrences, a pattern defining the

events of interest. In OCM, event classes are represented by an event service with its

parameters. The event processing in OCM is based on the idea that event classes form

a tree hierarchy, where the root is the universal class containing all the detectable

events. New event classes are derived from the existing ones with filters that allow

only certain events to pass. Each class in the event class tree may be associated with

a set of filters, each of which is used to derive a more specific event class from a more

general one. In addition, some event classes may have their associated action lists.

When an event is detected by OCM, it is matched against all the event classes in

the tree by performing a tree traversal starting with the tree’s root which matches

all events. At each traversed node, the filters associated with the node are evaluated.

If a filter is evaluated to true, the event matches the derived event class, which is

therefore traversed as well. During this tree traversal, the action lists associated with

the event classes matched by the event are scheduled for execution.

tq408g-e/533 4XII2004 BOP s.c., http://www.bop.com.pl

534 W. Funika et al.

Event-based interaction. Interactions between the Local Monitor and its

Java agents (JVMLMs) are the most critical part of the J-OCM event system. The

Java agents use SHMLAE to notify LM about event occurrence and to transfer event-

specific parameters. Before being handled by LM, an event must be enabled in the

specific JVMLM. This is done when a tool enables the previously defined event service

request by issuing a csr enable service. Once the JVM agent has received the request

from LM, it starts passing events to LM which must take care of handling them.

OCM uses signals as asynchronous mechanism to notify about message arrival

and defines a special event class, called mon received signal(integer sig no),

triggered when the monitor process receives the specified signal. The use of this

event class is a solution to handle events from JVM agents and then process them

according to the OMIS event model. The root of a Java-specific event tree derives

from the mon receive signal event class. Events generated by JVMs are captured

whenever a proper Local Monitor gets a signal sent by an agent. Then LM uses

a non-blocking receive call to receive the messages containing information about an

event that has occurred in a monitored JVM and process it according to the OMIS

event model.

8. Start-up procedure

To start monitoring a Java application, we should bear in mind a number of

issues. First, it is necessary to replace the original standard Java core classes (known

as bootstrap classes) with the instrumented ones provided by J-OCM by passing the

path to the modified classes at the start-up of JVM. This can be accomplished with

the -Xbootclasspath option, which permits to specify an alternative location for

a code which, for instance, overrides the standard RMI libraries.

The path to the modified classes must be placed at the beginning of the lists of

directories where the classes reside. This can be achieved by adding /p to the above

option. The next change to the start-up of JVM is an additional option, -Xdebug,

necessary when debugging applications within JVM. It is needed when the JVMDI

interface is used. The third change is loading the agent to JVM, which can be done

with the -Xrunjvmlm option, which loads and initializes agents. The start-up of an

exemplary RMI application with enabled RMI monitoring may look like this:

java -Xbootclasspath/p:$INSTRUMENTED CLASS DIR -Xdebug

-Xrunjvmlm RMIExampleServer

java -Xbootclasspath/p:$INSTRUMENTED CLASS DIR -Xdebug

-Xrunjvmlm RMIExampleClient

The $INSTRUMENTED CLASS DIR environment variable expands to the directory where

the instrumented classes’ package is located. Once the above commands are per-

formed, monitoring agents (JVMLM) will register the launched Java virtual machines

in their LM to make them visible for tools. After attaching to the node where the

launched JVMs are running the tools are able to get tokens (references) to these vir-

tual machines. When the tokens are obtained, the tools can perform any of the services

defined in J-OMIS.

tq408g-e/534 4XII2004 BOP s.c., http://www.bop.com.pl

A Monitoring Platform for Distributed Java Applications 535

9. Performance tool

Once the needed functionality of J-OCM had been achieved, we started the

design and implementation work on performance analysis tools. One direction was

connected with on-line profiling of Java applications, while another aimed at moni-

toring RMI calls, especially with respect to their progress.

Figure 4. A prototype OMIS-based tool’s diagram for monitoring remote-method calls

An example of a RMI monitoring session is shown in Figure 4. The tool uses

raw monitoring data supplied by J-OCM to visualize interactions between clients and

servers when performing RMI calls with a space-time diagram. The captured RMI-

bound events are mapped into relevant time intervals, which enable observation of

time spent in the execution phases of RMI.

10. Conclusions

The work on building Java-oriented tools followed the idea of separating the

layer of tools from a monitoring system’s functionality. We extended the On-line

Monitoring Interface Specification by a Java-specific hierarchy of objects and a set

of relevant services. The work on a Java-oriented monitoring system, J-OCM, was

focused on extending the functionality of Local Monitors, which are the distributed

part of the system, and introducing new software levels interfacing J-OCM to JVM

and providing a communication mechanism for the low-level layers.

To deal with the target Java system we considered it in terms of the distributed

system architecture, which allowed to separate the work on the definition of services on

the tool side from their implementation on the server side provided by the monitoring

system. We extended the original event model provided in OCM by a Java-specific

event sub-model which covers the functioning of the basic application- and execution-

related entities of the Java distributed application. In order to enable the monitoring

of RMI calls with the J-OCM system, we used the possibility to replace classes,

characteristic for the Java platform. These changes have enabled notification of events

which reflect the course of an RMI call, as well as obtaining information needed for

the implementation of information services.

Our on-going work is focused on completing the implementation work on J-OCM

and, at the same time, on implementing a set of Java-oriented tools for performance

analysis. Our future plans are connected with moving to a new monitoring mechanism

tq408g-e/535 4XII2004 BOP s.c., http://www.bop.com.pl

536 W. Funika et al.

in a new release of the Java platform and building J-OMIS-based debugger for

distributed Java applications.

Acknowledgements

This research was carried out as a Polish-German collaboration project and

was partially supported with KBN grant no. 4 T11C 032 23.

References

[1] Bubak M, Funika W, Mętel P, Orłowski R and Wismüller R 2002 Proc. 4 th Int. Conf. PPAM

2001, Naleczow, Poland, LNCS 2328 315

[2] Bubak M, Funika W, Smętek M, Kiliański Z and Wismüller R 2003 Proc. 10 th European

PVM/MPI Users’ Group Meeting, Venice, Italy, LNCS 2840 447

[3] Bubak M, Funika W, Wismüller R, Mętel P and Orłowski R 2003 Future Generation

Computer Systems 19 651

[4] Bubak M, Funika W, Smętek M, Kiliański Z and Wismüller R 2004 Proc. 5 th Int. Conf.

PPAM, Czestochowa, Poland, LNCS 3019 352

[5] Funika W, Bubak M, Smętek M and Wismüller R 2004 Proc. Int. Conf. on Computational

Science, Cracow, Poland, LNCS 3038 472

[6] Sun Microsystems: Java Virtual Machine Profiler Interface (JVMDI),

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jvmdi-spec.html

[7] Sun Microsystems: Java Virtual Machine Profiler Interface (JVMPI),

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

[8] The SDK Profiler, http://www.javaworld.com/javaworld/jw-12-2001/jw-1207-hprof.html

[9] Sun’s Heap Analysis Tool (HAT) for Analysing Output from hprof,

http://java.sun.com/developer/onlineTraining/Programming/JDCBook/hat bin.zip

[10] JTracer Tool, http://amslib.free.fr/

[11] Java Profiler J-Sprint, http://www.j-sprint.com/

[12] JProfiler, http://www.ej-technologies.com/jprofiler/overview.html

[13] The OptimizeIt! Performance Profiler, http://www.optimizeit.com/

[14] JTest, http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

[15] JProbe, http://java.quest.com/jprobe/jprobe.shtml

[16] JView, http://www.devstream.com/

[17] Kazi I H, Jose D P, Ben-Hamida B, Hescott C J, Kwok C, Konstan J, Lilja D J and Yew P-C

2000 IBM Systems Journal 39 (1) 96;

http://www.research.ibm.com/journal/sj/391/kazi.html

[18] Sun Microsystems: Java Platform Debug Architecture (JPDA),

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/

[19] Java Management Extensions, http://java.sun.com/products/JavaManagement

http://java.sun.com/j2se/1.5.0/docs/guide/management/

[20] Ludwig T, Wismüller R, Sunderam V and Bode A 1997 OMIS – On-line Monitoring Interface

Specification (Version 2.0), Shaker Verlag, Aachen, LRR-TUM Research Report Series 9,

http://wwwbode.in.tum.de/˜omis/OMIS/Version-2.0/-version-2.0.ps.gz

[21] Wismüller R Trinitis J and Ludwig T 1998 Proc. Euro-Par’98, Parallel Processing, Southamp-

ton, UK, LNCS 1470 173

[22] Sun Microsystems: Java Native Interface (JNI),

http://java.sun.com/j2se/1.4.2/docs/guide/jni/

[23] Gamma E, Helm R, Johnson R and Vlissides J 1995 Design Patterns, Addison-Wesley

tq408g-e/536 4XII2004 BOP s.c., http://www.bop.com.pl

