
TASK QUARTERLY 8 No 4, 487–501

MONITORING GRID RESOURCES:

JMX IN ACTION

KAZIMIERZ BALOS, DOMINIK RADZISZOWSKI,
PAWEŁ RZEPA, KRZYSZTOF ZIELIŃSKI

AND SŁAWOMIR ZIELIŃSKI

Department of Computer Science, AGH-University of Science and Technology,

Al. Mickiewicza 30, 30-059 Cracow, Poland

{kbalos, radzisz, rzepa, kz, slawek}@ics.agh.edu.pl

(Received 6 June 2004)

Abstract: This paper summarizes research on monitoring GRID resources, which resulted in the
implementation of the JIMS system. It contains an overview of the most important architectural and
software concepts that make the constructed system flexible and user-friendly. The paper evaluates
JMX and Web Service technologies as foundations for implementing monitoring systems. Particular
attention has been paid to system adaptability, autoconfiguration and interoperability.

Keywords: JMX, Grid, Monitoring, Distributed System, SOA, Web Services

1. Introduction

Monitoring distributed computer system resources is an integral part of any
management activity. The grid computing concept [1] addresses issues related to ac-
cessibility and transparent sharing of distributed computational, storage and com-
munication resources among groups of users, putting the management aspects at the
forefront of grid research. Recently, the grid research community has been inspired
by a new approach based on SOA (Service Oriented Architecture) [2].The most pop-
ular way of implementing this type of systems is to use Web Services. Exposing the
system’s functionality, computation or visualization modules as services seems to be
a powerful and elegant approach. As services are going to be the components shared
among users, they should be monitored and managed similarly to the hardware in-
frastructure. This approach requires a uniform approach to the monitoring and man-
agement of hardware and software resources. The dynamic character of grid systems’
configuration requires searching for a system enabling instrumentation and activation
of monitoring on demand at runtime.

Taking these general trends and requirements into account, three years ago the
Distributed Systems Research Group, a group of scientists from the Department of
Computer Science at AGH-UST, started research on applying JMX [3–5] and Jiro [6]
technologies to monitor grid infrastructures. The research was carried out as a task of

tq408d-e/487 4XII2004 BOP s.c., http://www.bop.com.pl



488 K. Balos et al.

the CROSSGRID Project [7]. It resulted in the construction of a few prototype systems,
which have been reported in an MSc. thesis [8] and articles [9, 10]. The most advanced
monitoring system constructed so far is JIMS, which is deployed in the CROSSGRID
testbed system.

This paper summarizes the application of JMX in the context of monitoring grid
systems. It contains an overview of the most important architectural and software
concepts that make the constructed systems flexible and user-friendly.

The structure of the paper is as follows. Section 2 consists of an overview
of the constructed systems’ general architecture. It clarifies the multi-layer system
design and specifies the technology used to implement each layer. Section 3 presents
the deployment and configuration management aspects of the monitoring system. In
particular, dynamic discovery of the monitored resources and the monitoring system’s
auto-configuration features are presented. The concept of on-demand instrumentation
is discussed. Section 4 covers collection and distribution of the monitored data. Various
techniques for accessing the monitored resources are briefly described and compared.
In Section 5 the problem of storing the monitoring data is discussed in more detail. The
section also discusses the problem of designing a universal database schema in a way
flexible enough for adaptation to different requirements of monitoring applications.
Section 6 contains a description of requirements for and prototypes of user interfaces
for monitoring systems. The paper ends with conclusions.

2. The monitoring system’s architecture

The monitoring system presented in this paper has been constructed in ac-
cordance with contemporary trends in distributed systems’ architecture expressed
by Service Oriented Architecture (SOA) [2]. Systems of this class are decomposed
into smaller components responsible for providing functionality of particular services.
Because the adaptability and fault tolerance of large-scale networked distributed sys-
tems is of great importance, the components of a system can migrate or be duplicated.
Moreover, the environment in which a distributed system is run may have a fluctuat-
ing nature. Therefore, large distributed systems have to be able to adapt to changing
network conditions.

The aforementioned issues impose new requirements on the underlying archi-
tecture. The most important of these are effective coupling of internal system services,
describing the information flow, implementing communication channels, maintaining
security, etc. The services an SOA-compliant distributed system is built from are
expected to support introspection, be discoverable, loosely coupled and platform-,
location- and transport-independent. There are a number of middleware platforms
that help to meet these requirements. A good example of such platform for imple-
menting a monitoring system are Web Services (WS) providing access to the system’s
functionality built with a Java Management Extension (JMX) support.

A system for monitoring grid resources should have a scalable and flexible
architecture, easy to develop and maintain. JIMS, the JMX-based Infrastructure
Monitoring System, developed by DSRG at AGH-UST, meets the requirements for
monitoring systems operating in distributed environments and supports resource
abstraction, dynamic system configuration and interoperability. Based on the SOA

tq408d-e/488 4XII2004 BOP s.c., http://www.bop.com.pl



Monitoring GRID Resources: JMX in Action 489

principles, it makes use of modern technologies and solutions, such as JMX, Web
Services, dynamic discovery and automatic configuration.

The JMX architecture consists of three levels: instrumentation, agent and
distributed services. The current version of the JMX specification [3, 4] addresses
the first two levels and provides only a brief overview of the latter. JMX provides
interfaces and services adequate to the requirements of monitoring and management
systems [9]. This functionality involves abstracting resources by using components
called MBeans (Managed Beans) and remote instrumented resource accessibility
through JMX connectors. The functionality developed in the JIMS project employs
dynamic discovery of the monitored resources. In order to achieve more flexibility
and interoperability, a Web Service provides monitored objects’ proxies that are used
to implement lightweight clients. The architecture of JIMS is shown in Figure 1. The
monitoring system is decomposed into the following layers:

1. the resource instrumentation layer (JMX MBean Servers, SNMP, RMI);
2. the interoperability layer (SOAP Gateways, Web Services);
3. an integration layer implemented with UDDI;
4. interface and presentation (GUI: web applications and stand-alone visualization
tools, CLI applications, Java API).

Figure 1. The modules of JIMS

The resource instrumentation layer is responsible for delivery and management
of information from the monitored resources. Its functionality includes reading and
writing attributes of the monitored components (MBeans), performing measurements
(e.g. network latency and throughput) and sending notifications triggered by pre-
programmed conditions.

The instrumentation layer obtains information from the monitored resources
using the following mechanisms:

• a Java Native Interface (JNI) for reading virtual file system (/proc);

tq408d-e/489 4XII2004 BOP s.c., http://www.bop.com.pl



490 K. Balos et al.

• an SNMP agent running locally on the monitored system, usually at each Worker
Node of a site (these agents communicate with the monitoring system through
an SNMP protocol using SNMP API [11] to be accessible from Java);
• a Network Metrics module, measuring network conditions using standard
protocols like ICMP and UDP.

The information from the instrumentation layer is made available for further
use by JMX RMI connectors, which connect Monitoring Agents with SOAP Gateways,
building up the interoperability layer of the proposed architecture.

SOAP Gateways act as translators between Java RMI and SOAP and are
implemented as AXIS-based Web Services, exposing all the monitored parameters
in a uniform way. It is important that all the monitored agents can be accessed
directly using RMI and SNMP protocols or, alternatively, through SOAP, which is
the preferred protocol for outer applications and visualization tools. SOAP Gateways
also play an important role in dynamic configuration of the system and discovery of
its entities. They are responsible for finding all currently running monitoring agents.
The integration layer performs global discovery and keeps track of all the currently
running SOAP Gateways. The proposed hierarchical architecture is suitable for large
distributed systems and offers the required scalability. JIMS layered architecture will
be further elaborated in the following sections.

3. Monitored data acquisition

Classical network monitoring systems are usually centralized applications that
monitor resources through direct management of associated agents acting as their
representatives. An agent executes commands, gathers data and reads the resources’
state. It is typically a plain entity without any intelligence that could allow making
decisions, placed close to the managed resource. An agent’s role is limited to tasks
delegated by a central management system.

JMX monitoring services are executed directly on the resource level. JMX agents
are autonomous entities equipped with a level of intelligence proper for performing
self-determined actions, thus relieving the management center of executing its usual
tasks such as querying the resources’ state. At the same time, it decreases network
load and increases scalability of the monitoring system. JMX standardizes interfaces
for monitoring resources that enable anyone to use an arbitrary technology to build
monitoring applications. These applications can easily access the monitored resources
communicating through a JMX agent. Furthermore, the environment provides a dis-
tributed management model independent of any communication protocol. Given that,
an application can rely on a particular API instead of the properties of a specific pro-
tocol [12].

3.1. The event distribution model

JMX delivers the three basic monitoring modes: sampling (the pull mode),
tracing (the push mode) and periodic notification on events. The user is able to choose
the most suitable mode of delivery of monitoring data that depends on the application.
The architecture of JMX permits an MBean to broadcast event notifications both to
other MBeans and to management applications acting as observers. In the simplest

tq408d-e/490 4XII2004 BOP s.c., http://www.bop.com.pl



Monitoring GRID Resources: JMX in Action 491

case, observers reside in the same Java Virtual Machine (JVM) as the MBean
generating events. This situation enables an observer to register for notification either
directly in the event-source MBean or through an MBean server. The way in which
registration is performed does not influence the path that an event traverses from
the event broadcaster to observers: they always go directly to the listener. In a more
complicated scenario, observers do not share a JVM with the event source and possibly
operate on a different host.

Fortunately, JMX architecture hides the fact of physical separation through
a connector mechanism and thus provides observers with transparent access to event
sources. The use of connectors reduces collaboration to transferring registration
requests from remote observers to the MBean representing the particular resource and
transferring notifications in the reverse direction. This notification model is based on
a Java event model constrained to a single virtual machine. Such construction requires
a local proxy mechanism: a connector server has to create local observers that store
the received notifications in a buffer. The connector server is expected to deliver the
messages to remote observers at a later time. At the same time, the proxy mechanism
has some advantages: it permits the introduction of a variety of event delivery policies
and a choice of the appropriate policy according to the adopted quality of service.

In JMX’s notification model, event reports can be emitted by MBean instances
and by the MBean Server, generally on specific changes of the MBean’s attributes
which are the fields or properties of the MBean’s management interface. The mech-
anism for detecting changes in attributes and triggering notification of events is not
a part of the JMX specification, at least in its current release. The attribute change
notification behavior is therefore generally dependent upon the implementation of
each MBean. The monitor MBeans are exceptional; they are in fact predefined sen-
sors performing periodic sampling of an attribute of the MBean they observe. The
three types of monitor MBeans that are provided in every JMX implementation are
CounterMonitor, GaugeMonitor and StringMonitor. If switched on, each of them au-
tomatically sends a relevant notification when a specific set of conditions concerning
the value of the observed attribute is satisfied.

A JMX-enabled client application may register as a notification listener with
a notification broadcaster MBean and receive notifications of all events that may occur
in the broadcaster, i.e. the listener’s handleNotification() method will be invoked when
any notification is issued by the MBean (an explicit implementation of the Observer
design pattern [13]).

3.2. Multiprotocol access interface

The JMX architecture solves the problem of communication with monitoring
systems by leveraging a variety of communication protocols. Monitoring applications
developed in Java perform operations on remote objects and receive notifications from
these objects through local representatives called proxies. The communication process
between a proxy and its relevant remote object is hidden from clients. It is carried
out by dedicated system components called a connector client and a connector server.
These components enable mutual communication over diverse protocols such as RMI,
HTTP/TCP or HTTP/SSL.

tq408d-e/491 4XII2004 BOP s.c., http://www.bop.com.pl



492 K. Balos et al.

Other monitoring systems that use different protocols, such as HTML or SNMP,
can connect to a JMX agent through a specific protocol adapter. The HTML adapter,
for example, rendersMBean interfaces as web pages. The SNMP adapter exposes SNMP
MIBs representing MBeans that respond to SNMP commands.

The JMX architecture allows enclosing vendor-specific connectors and adapters
that use arbitrary communication protocols. This proves that JMX is an open solution
that makes possible collaboration with any existing monitoring or managing system.

3.3. Additional JMX services

The JMX architecture introduces the powerful concept of a service agent that
facilitates process of management and creation of monitoring application. The basic
functionalities of service agents can be described as follows:

• Querying and filtering – provides clients with the possibility of searching for
MBeans. The search criteria include full or partial MBean name as well as
expressions based on the current MBean attribute values. A query results
in a list of managed resources that can be subsequently used to invoke the
elements’ operations.
• Dynamic loading – the service supports uploading a Java class from any
network location and using it to construct an MBean object that can be
later registered in an MBean server. This feature establishes a mechanism for
enhancing agent functionality and introducing new resources to a continuously
operating environment.
• The monitoring service – supplies a mechanism for polling MBean attribute
values. It is possible to observe numerical attributes, floating point attributes
that fit a specified range, and character string attributes in the terms of pattern
matching.
• Timer service – brings a mechanism for triggering notifications to registered
listeners at a specified time enabling them to run a particular action at that
moment. The service makes it possible to define single or periodic notifications
and manages a list of dated notifications that determine the launch of an actual
action sequence.

The aforementioned aspects make the JMX architecture a leading technology
integrating management and monitoring in the data collection layer.

4. The system’s deployment and configuration

Deployment and configuration of the JIMS system is based on standard tech-
niques taken from the reference implementation of JMX built by SUN Microsystems
(dynamic on-demand instrumentation layer and M-Let service), while some mecha-
nisms, like discovery and dynamic auto-configuration, are being developed by the
DSRG group.

4.1. The system’s installation and start-up

The JIMS system’s start-up process relies on mechanisms for loading software on
demand to dedicated system modules. The JMX technology supports such functional-
ity with its M-Let (dynaMic appLet) Service. The service provides online loading and
installation of Java classes. The usage of the service in JIMS is depicted in Figure 2.

tq408d-e/492 4XII2004 BOP s.c., http://www.bop.com.pl



Monitoring GRID Resources: JMX in Action 493

Figure 2. JIMS components’ download and installation [14]

Using the service, monitoring agents are automatically installed and run in
a cluster. A management station starts all pre-installed monitoring agents, which then
download and install monitoring modules, being components of the instrumentation
layer. It is important that these modules can be deployed (downloaded, installed and
started) automatically at start time or at any later time. It is possible to upgrade or
install newly developed modules, as well as remove existing ones without restarting
the whole monitoring system.

4.2. The interoperability issue

The SOAP Gateway (SG) concept is based on the general approach described in
the OGSI (Open Grid Services Infrastructure) specification [15], where grid service is
exposed as aWS defined using aWSDL (Web Service Definition Language), conforming
to a set of conventions (interfaces and behaviours) that specify how clients and services
interact. The SG concept is also based on the architectural approach taken from OGSA
(Open Grid Services Architecture) [16].

Just like with other grid services, the layer of interoperability for an infras-
tructure monitoring system should support transient service instances, created and
destroyed dynamically, and offer a unified way to access all the monitored resources.
SG allows hiding the complexity of managing the monitored stations and exposes
interfaces consistent with other grid services. As clusters in grids consist of many
monitored computing elements, the interoperability layer should also perform the
role of a router, forwarding requests from an outer point of communication to a spec-
ified node. To achieve this, it should store addresses of all the available monitored
stations. In large installations with hundreds of nodes, administratively assigning the
RMI address of each monitored station in SG would clearly be ineffective. To solve the
problem of registering new stations appearing in a cluster with SG, as well as deleting
inactive ones from the registry, a mechanism of active stations’ discovery is used. The
proposed interoperability layer assumes one SOAP Gateway per cluster. In some cases
SG’s can be doubled for the purpose of fail-over.

SG resides in a multiprotocol environment, i.e. with SOAP on the external
system side and Java RMI on the side of monitored stations. Therefore, it should

tq408d-e/493 4XII2004 BOP s.c., http://www.bop.com.pl



494 K. Balos et al.

perform the role of translator, connecting itself to the monitored nodes through RMI
connectors and to client applications through WS.

In summary, the proposed interoperability layer supports:

• automatic installation to facilitate management of numerous nodes in clusters;
• automatic configuration with dynamic discovery mechanisms for finding mon-
itored stations that are currently available and a heartbeat mechanism for re-
moving stations that do not operate properly and are not responding for a cer-
tain period of time;
• a self-adaptation mechanism (dynamic discovery and heartbeat) from the user;
• exposing one point of communication through one – due to firewalling – well
defined application address and port, with WSDL describing its functionality;
• forwarding requests from WS clients to specified monitored stations [10].

4.3. Automatic and dynamic configuration

SG autoconfiguration is based on two mechanisms: dynamic discovery and
heartbeat. The former uses Discovery Monitors on the side of SG and Discovery
Responders in the monitored stations in order to provide Active Discovery in much
the same way as in JDMK [17]. SG periodically sends multicast requests to all the
monitored stations, and they respond with their RMI addresses of JMX connectors.
The latter mechanism, heartbeat, is a process complementary to the discovery
mechanism and is used for finding monitored stations that do not respond for some
reasons. If a station is not responding repeatedly for a certain number of times, it is
removed from the SG registry and is no longer available. For this purpose each station
registered in SG has its own counter of retries which is started after the first access
failure.

As can be expected, SG requires very little logic on the client side of the
application, as the whole logic can be hidden behind the interoperability layer. It
encapsulates the complexity of discovery and heartbeat mechanisms. The advantage
of using SG as the point of access to monitoring data is location transparency of the
monitored resources. Each change of the monitoring station (vanishing or changing
the JMX RMI address due to an MBean server’s restart or physical crash) is handled
by a SOAP Gateway, so that the client application each time obtains a proper list of
valid and active monitored resources.

5. Monitored data warehouse

The key point of the data warehouse module in an open monitoring system is
to create a universal database for storing data obtained from the monitored resources.
Such a database should support heterogeneity of resources as well as dynamic setup
of attributes, and provide a uniform access interface for all kinds of monitoring data.
There are many important factors that have to be taken into account while creating
such model; the most crucial are as follows:

• dynamic attribute definition: the list of attributes describing a monitored
resource has to be easily extendable;

tq408d-e/494 4XII2004 BOP s.c., http://www.bop.com.pl



Monitoring GRID Resources: JMX in Action 495

• fine-grained data support: the ability to store each monitored attribute data
item separately; data that are more interesting or change more frequently may
be logged more often independently of other data from the resource;
• support for heterogeneous resources: the possibility to store data from com-
pletely different areas of interest, e.g. host, network and storage;
• uniform access: a common interface has to be created to access heterogeneous
dynamic data stored in a system.

As the whole model built to meet these general requirements is quite complex,
we shall restrict ourselves to describing the most important aspects of the proposed
solution.

5.1. The data model

The types of data stored in the system may be divided into two groups; one –
metadata – describes an environment (resources and attributes), while the other is
formed by monitoring data values themselves.

Metadata specify:

• site – which has the same meaning as in the grid terminology and is used for
narrowing resources in different geographical locations;
• kind – is a group of homogenous resources of common attributes (e.g. computer,
network device);
• resource – is a group of simple (String) data describing a source of monitoring
data (having a name, description and a unique identification string);
• attribute – which represents an attribute exposed by the resource for monitoring
(There are two types of attributes: simple for simple attributes and compound
for attributes that have sub-attributes, e.g. a location attribute may have street
and city sub-attributes. Both of them may be vector or scalar, depending on
the values they represent).

The values of monitored attributes may have different types. The system
supports the following primitive types:

• String – for textual data;
• Long – for all Integer values;
• Float – for floating point values.

These three types are sufficient to represent a variety of commonly used simple
data and are successfully used in SNMP [18]. More complex data, like structures and
vectors, are specified by an appropriate definition of the metadata layer.

5.2. Data warehouse access

The system will expose three independent interfaces: a data store interface,
enabling the data collection layer to store data; a data access interface, that makes
querying and data access possible, and an administration interface, designed for
administrative purposes. Each of the system’s interfaces will be accessible remotely
and, if desired, it will be possible to make use of the business delegates pattern [19, 20].

5.2.1. The data store interface

The key role of this interface is to accept data coming from the data collection
layer. This process will consist of two basic parts: metadata layer configuration and

tq408d-e/495 4XII2004 BOP s.c., http://www.bop.com.pl



496 K. Balos et al.

storage of attributes’ values. Because the values of the monitoring attributes need
a semantic context, appropriate configuration of the metadata layer is a key point for
further data processing. The configuration process starts with registration of a new
resource, following which all the monitored attributes of this resource are registered.
Please note that an attribute set may be extended at any time if the resources agent
decides to monitor additional attributes. After the initial configuration phase, the
values of resource attributes may be stored. The interface will support both individual
values and packets containing sets of values. Because the lower layer (built upon
JMX) supports all basic monitoring models, only the push model is required for this
interface.

5.2.2. The data access interface

Access to the monitoring data is based on a dialog between a client and the
system. A client will specify in more and more detail which data it is interested in.
First of all, it will be required to select sites, kinds of resources and resources by
choosing from the list of all monitored resources or by specifying names of resources.
As a response, it will receive a list of each resource’s monitored attributes. It will have
access to all the additional data that are stored together with attributes, incl. name,
description and unit. Next, it will have to point out which attributes it is interested
in (simple attributes or compound attributes with scalar or vector values) and set
time clauses (e.g. from-to, all up to now, all older than). Finally, it will receive the
desired data according to the selection made. The entire dialog will be kept opaque
by appropriate classes according to the common OOP directives.

Like the data store interface, the data access interface will expose a program-
mer interface according to the business delegate pattern and, additionally, will be
accessible from a web browser.

5.2.3. The administrative interface

As the volume of collected data will grow very quickly, a mechanism is required
for maintaining and especially removing useless data. The administrative interface
will also allow for setting or changing descriptions and units in metadata. It will be
based on a web interface and will be accessible form a web browser.

5.3. Implementation and efficiency issues

Because the system is designed as a multi-tier, distributed application, the
proposed platform for the system’s implementation is J2EE. This environment offers
EJB as the standard mechanism for implementation of database access. This solution
could be enhanced further with load balancing, fail-over and security mechanisms.
Another key implementation issue is the efficiency of the proposed solution. The usage
of scalable application servers is very helpful but an adequate design of the system and
its configuration is even more important. The current project stage assumes the usage
of the J2EE persistence concept (CMP, DAO or JDO) for the meta-data layer, mainly
because meta-data management is quite complicated. Its object-oriented structure
suits this concept perfectly and efficiency is not crucial. The tests performed so far
have shown that this approach is not useful for collecting the monitored attributes’
values. These data are supposed to be processed much more efficiently by direct JDBC
calls that ensure a minimal time overhead.

tq408d-e/496 4XII2004 BOP s.c., http://www.bop.com.pl



Monitoring GRID Resources: JMX in Action 497

6. User interface construction

The grid environment is set up by a substantial number of objects that can be
and actually are monitored. The monitored objects usually have numerous attributes
that define their state. This implies the existence of an almost unlimited quantity of
information that can be presented to an end user in order to let him monitor grid
activity. The amount of data provided by JIMS and the diversity of data sources make
the problem of providing user-friendly access to grid state a challenging one. In order
to be useful, the system modules dedicated to collaboration with the end user should
meet the following requirements:

• allow reviewing all the monitored objects and their attributes;
• support efficient, scalable selection of specific grid components;
• allow examination of values of selected attributes;
• allow concurrent examination of values of several attributes;
• allow viewing values in various formats, e.g. text-based, graphic charts, XML;
• provide means for inspecting the history of the monitored object’s attributes;
• have flexible graphic interfaces adjustable to various end-devices;
• provide authorized access to monitored values on the per user or role basis.

The implemented system introduces several client applications for different
levels of grid state examination:

• a text-based, stand-alone Java application that accesses the system through
web services;
• HTTP access based on a built-in html adapter;
• a stand-alone Java application acting as an SNMP client;
• a web application accessing the monitored data warehouse.

6.1. Web services-based clients

The system implements two types of clients based on web service access that
exhibit grid state to the user: a text-based application and a stand-alone Java
application. The former is merely an example of using a web service interface in text-
based clients and it exposes latency and throughput among the monitored objects in
a cluster (see Figure 3). The latter is a powerful application that enables users to select
an appropriate cluster, monitored object, object’s attribute and to view its value (see
Figure 4). A user can launch multiple applications in parallel in order to monitor
many attribute values at the same time. The application is equipped with advanced
features allowing e.g. to constantly monitor a selected attribute. This permits to
exhibit a sequence of attribute values in the near history as a graphic chart.

[kbalos@galaxy kbalos]$ cg-jims-cli
JIMS Interactive CLI v. 1.4.0, type ’help’ for help
JIMS>configure
JIMS-SOAP Gateway HOST>ce010.fzk.de
JIMS-SOAP Gateway PORT>7702
JIMS>netstats 141.52.160.36
[00] 141.52.160.36: ICMP: 0.063 [ms], UDP: 0.15 [ms], Throughput: 5.62E7 [bit/s]
[01] 141.52.160.33: ICMP: 0.359 [ms], UDP: 0.3 [ms], Throughput: 2.81E7 [bit/s]
[02] 141.52.160.34: ICMP: 0.493 [ms], UDP: 0.35 [ms], Throughput: 2.81E7 [bit/s]
[03] 141.52.160.35: ICMP: 0.425 [ms], UDP: 0.35 [ms], Throughput: 2.81E7 [bit/s]
JIMS>

Figure 3. The command line of a web service-based client

tq408d-e/497 4XII2004 BOP s.c., http://www.bop.com.pl



498 K. Balos et al.

Figure 4. A stand-alone Java client using web services

6.2. HTTP clients

The JIMS system also offers HTTP-based access to all the monitored resources
that are equipped with a JMX HTTP adapter (see Figure 5). It is a simple but powerful
way of accessing monitored objects that gives full access to their functionality. The
user must know the URI of a monitored object as a prerequisite. After providing the
URI he is able to view a list of the monitored object’s attributes, read the attribute
value and, if the monitored object allows that, to set the value. When an object
exposes operations that can be called upon it, the HTTP interface enables users to
invoke them. A user is able to supply the operation with a suitable argument list,
invoke it on an object and view the results. This client is able to present the last
known value of an attribute. In order to see how the attribute value fluctuates one
should make use of either the web service-based stand-alone Java application or a data
warehouse client described in this section.

6.3. SNMP clients

The system introduces a stand-alone Java client application that utilizes SNMP
to connect to the monitored resources. An SNMP client (depicted in Figure 6) provides
users with access to any monitored resource equipped with a JMX SNMP adapter. The
user must specify an IP address of a resource to access the standardized management
information base. It is possible to review all attributes of a monitored object and
get a textual attribute value. When a managed object exposes an interface making it
possible to invoke an operation on this object, it is impossible to do so through an
SNMP client. This is not a limitation of the SNMP client, but of the SNMP protocol
itself, which restricts the interaction with a managed object to getting or setting
values of its attributes.

6.4. Data warehouse clients

The last client category interacts not with the active grid itself, but with the
grid image stored in the monitored data warehouse. This is not a weakness of a client
or a solution, however. The warehouse keeps an up-to-date view of a grid state as
well as a history of the grid’s activity and thus exposes grid resources with a broader

tq408d-e/498 4XII2004 BOP s.c., http://www.bop.com.pl



Monitoring GRID Resources: JMX in Action 499

Figure 5. HTTP-based access to MBean functionality

Figure 6. SNMP-based client application

characteristic than just the most recent state, as is the case with other clients. With
the data warehouse, the client is a user able to select a proper attribute or resource
to view its state it two different ways. It can walk through the hierarchy of grid
components selecting a site, then a kind, next a resource, after that an attribute and,

tq408d-e/499 4XII2004 BOP s.c., http://www.bop.com.pl



500 K. Balos et al.

recursively, an attribute’s sub-attribute. The other method is more scalable: a user is
capable of selecting proper components relying on a component state, fixed in time
constraints. The client application uses a query language specified by a monitored
data warehouse interface. As an example of such query, let us consider: Select all
computers that CPU load has been greater than 80% during last hour. After selecting
proper components the user is able to specify time constraints in which the client wants
to review the components’ state. The subsequent action is to determine the way in
which the results should be presented. The user can choose text-based documents,
html pages, XML documents and, finally, graphic charts to review the values of the
selected attributes.

Another interesting feature of this client is its built-in internationalization
support. It is so far possible to customize the user interface to work in English or
Polish. An example of such client is presented in Figure 7.

Figure 7. Data warehouse client

7. Conclusions

The presented paper summarizes research on monitoring systems for grid
infrastructures. This class of systems is characterized by a multi-layer structure and
a wide spectrum of technologies that should be carefully selected for implementation.
The adaptability and configurability requirements make the JMX technology the
most suitable for the implementation of instrumentation and agent layers. The
interoperability issues make Web Services the best of technologies offering support
for SOA implementation. This technology is also going to be the most suitable when
integration problems have to be resolved.

tq408d-e/500 4XII2004 BOP s.c., http://www.bop.com.pl



Monitoring GRID Resources: JMX in Action 501

Considering the storage and accessibility of monitoring data, the EJB technol-
ogy seems to be a very natural choice. Efficient use of this technology requires great
care, especially when persistency mechanisms are implemented. Direct JDBC-based
access to the database seems to be the most appropriate for monitoring data storage.
The different technologies employed result in different client applications offering ac-
cess to monitoring data collected by JIMS. An advantage of the proposed solution is
that it is based on open standards, which makes JIMS easier to extend and deploy in
any environment.

Acknowledgements

We would like to thank our students, L. Bizon, B. Lawniczek, G. Majka,
J. Midura, M. Rozenau, T. Sekman and M. Smet, for their valuable contribution
to the development of JIMS.

References

[1] Global Grid Forum, http://www.gridforum.org/
[2] McGovern J, Ambler S W, Stevens M E, Linn J, Jo E K and Sharan V 2003 A Practical
Guide to Enterprise Architecture, Prentice Hall PTR

[3] Sun Microsystems JavaTM Management ExtensionsTM,
http://java.sun.com/products/JavaManagement/

[4] Sun Microsystems JavaTM Management ExtensionsTM Remote API 1.0,
http://developer.java.sun.com/developer/earlyAccess/jmx/

[5] Jasnowski M 2002 JMX Programming, John Wiley&Sons Inc.
[6] Sun Microsystems JiroTM Technology, http://www.jiro.org/
[7] EU CrossGrid Project, http://www.crossgrid.org
[8] Sekman T and Smet M 2004Dynamically Configurable System for Grid Resources Monitoring,
MSc. Thesis, AGH-UST Cracow (in Polish)

[9] Midura J, Balos K and Zieliński K 2004 Global Discovery Service for JMX Architecture, ICCS
Cracow

[10] Balos K, Bizon L, Rozenau M and Zieliński K 2003 Proc. CGW’03 Workshop, Cracow, Poland,
pp. 245–253

[11] Westhawks Java SNMP v4.13, http://snmp.westhawk.co.uk/
[12] Laurentowski A and Zieliński K 2002 Integracja systemow B2B: JMX, TeleNetForum
[13] Gamma E, Helm R, Johnson R and Vlissides J 1994 Design Patterns, Addison-Wesley
[14] Balos K and Zieliński S JIMS the JMX Infrastructure Monitoring System,
http://www.eu-crossgrid.org/Seminars-INP/JIMS monitoring system.pdf

[15] The Open Grid Services Infrastructure Working Group (OGSIWG), Specification,
http://www.ggf.org/ogsi-wg/

[16] The Open Grid Services Architecture Working Group (OGSAWG), Globus Tutorial,
http://www.globus.org/ogsa/

[17] Sun Microsystems Java Dynamic Management Kit,
http://java.sun.com/products/jdmk/

[18] Stallings W 1993 SNMP, SNMP v2 and CMIP The Practical Guide to Network Management
Standards, Addison-Wesley

[19] Marinescu F 2002 EJB Design Patterns, John Wiley&Sons Inc.
[20] Roman E and Ambler S W 2002 Mastering Enterprise JavaBeans, John Wiley&Sons Inc.

tq408d-e/501 4XII2004 BOP s.c., http://www.bop.com.pl



502 TASK QUARTERLY 8 No 4

tq408d-e/502 4XII2004 BOP s.c., http://www.bop.com.pl


