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Abstract: Selected results of mathematical modelling and computer simulation of fluid flow
and heat transfer processes in a glass furnace regenerator are reported. The conjugate heat
transfer problem is solved in 3D using the ANSYS 8.0 / FLOTRAN programme. The regenerator’s
geometry, finite element mesh, thermal loads and boundary conditions are presented. The momentum,

continuity and energy equations are solved.
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Nomenclature

Cp, C —

T —
Va;yvm‘/z -
p—

t —

K —

K -

specific heat, [kJ-.g=!-K~1]

temperature, [K]

velocity in the z, y, z directions, [m-s™!]

pressure, [Pal

time, [s], [min]

conductivity, [W-m=1-K~!]

“artificial” conductivity, [W-m™!- K1

turbulent kinetic energy, [J-kg™?]

radiation heat transfer (film) coefficient, [W-m=2.K~!]
convection heat transfer (film) coefficient, [W-m~=2.K~!
total heat transfer (film) coefficient, [W-m=2.K~!]
reference temperature, Tp =273.15K

average temperature, [K]

width of a checker block channel, [m]

height of a checker block, [m]

height of a checker, [m]

outer boundary of the laminar sublayer’s distance from the wall, dimensionless
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heat flux, [W-m~2]

g — gravity acceleration, [m-s™2]
Re — the Reynolds number, Re=V-d-py-u~
Nu — the Nusselt number, Nu= hc~d~KJf1
Gr - the Grasshof number, Gr=d®-g-3-p?- (To—T)-p 2,
the Prandtl number, Pr=p-cy -K;l

LS
|

1

T
.,
|

Greek symbols
p — density, [kg-m~?]
¢ — turbulent kinetic energy dissipation rate, [W-kg™!]
€4 — gas emissivity, dimensionless
ew — gas absorptivity, dimensionless
p — laminar viscosity, [Pa-s]
ok — the Schmidt number of turbulent kinetic energy, dimensionless
0. — the Schmidt number of turbulent kinetic energy dissipation rate, dimensionless
6 — width of a checker block wall, [m]
Ty — shear stress, [N-m™2]
B — coefficient of volume expansion, [K~!]
o — the Stefan-Boltzmann constant, [W-m™2.K~4]

Subscripts
i — node number, i =1, 2,..., 28236
1, 2, 3 — material number
z=1, 2,... — period number
¢ — checker blocks
f — fluid
in — inlet
g — gas

w — wall
out — outlet

Superscripts

¢ — cooling period
h — heating period

1. Introduction

The processes taking place in regenerative heat exchangers have significant
effect on glass furnaces’ thermal work. Mathematical modelling and computer sim-
ulation enable us to analyse the heat transfer and fluid flow processes in different
kinds of regenerators. Model equations for regenerator heat transfer processes and
their analytical and numerical solutions have already been reported [1-6]. They are
based on Fourier’s law, energy balance equations and Newton’s law of cooling. How-
ever, no results obtained from the solution of the conjugate heat transfer problem in
regenerators have been available published yet. This approach is successful in cases
of changing surface temperature during gas-solid heat transfer [7].

The aim of the present work is to analyse transient heat transfer in regenerator
and checker work efficiency rating by solving the conjugate transient heat transfer
problem. To achieve this aim, the following problems have been resolved:

1. to build a mathematical model of transient heat and fluid flow processes in the
investigated regenerator;
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2. to simulate the consecutive checker air cooling and flue-gas heating periods to
achieve a cyclic equilibrium of the regenerator;

3. to obtain and analyse the following transient fields for both the air cooling and
flue-gas heating periods at the regenerator’s cyclic equilibrium:

e local velocities of fluid flows in the checker,

e fluid pressure,

e local fluid and checker block (solid) temperatures,

e local heat fluxes and heat transfer (film) coefficients.

2. Regenerator parameters

The regenerator investigated in this work, is vertical and contraflow. Its checker
is composed of semicylindrical ceramic chimney blocks [8], shown in Figure 1a, made
of three materials, up to the height of the regenerator.

() (b)

Figure 1. Ceramic chimney blocks checker work:
(a) checker work; (b) object of modelling in the checker’s centre

The main checker geometry parameters are its height, H, = 5.5m, block
diameter, d = 120mm, specific heating surface, f = 18.25m?/m?3, free flow cross-
section, fr=>55.4%, and checker density, p. =1317kg/m3.

The length of periods of heating the checker with flue gases and cooling it with
air is At =30min (1800s) each. The hot flue gases’ inlet temperature at the top of the
regenerator is 1300°C, while the air inlet temperature at the bottom of the regenerator
is 50°C.

3. Mathematical modelling with ANSYS 8.0 / FLOTRAN

The model has been solved three-dimensionally (3D) because of the complicated
geometry of the checker work. The object of modelling is a self-similar region in the
centre of the checker, with symmetry boundaries shown in Figure 1b. All of the checker
height is covered. Heat losses into the environment are not taken into account. The
flue-gas and air flows are assumed to be turbulent [9].

The thermal fluid flow problem in the Cartesian coordinate system is defined
by thefollowing equations (described in detail in the ANSYS Theory Reference [10]):

— the continuity equation,
— the momentum equations (in the x, y, z directions) for the turbulent case,
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— the uncompressible energy equation,

— the two-equation standard turbulent k-¢ model with the following constants:
C,=009, Ci =144, C2 =192, 0, =1, 0. =13, 0y, =1, C3=1, Cy =0,
and =0.

The boundary layer parameters are determined in terms of the Van Driest
conductivity model [11] with selected constants, A=26, E=9, x =0, 4.

The above equations are discretized by a finite elements-based technique, using
standard ANSYS elements of FLUID 142. In this case, Galerkin’s method of weighted
residuals is used to form element integrals. The main degrees of freedom (DOF) are
Dy Vi, Vi, Vo, T, k and ¢ for the fluid elements and T (solid temperature) for the
non-fluid elements. The output derived values include ¢, h, T, yT.

Since the ANSYS programme cannot make models and calculate the radiation
heat transfer between gas and solid directly, we have modelled the radiation heat
transfer between flue gases and checker bricks according to the following approach:

1. the radiation heat flux between flue gases and checker blocks and the radi-
ation heat transfer coefficient, h, = o (g4- T, — ey -Tyy)/(Ty —Tw), have been
determined using one of the well-known methods (described by Hausen [1]);

2. a suitable dimensionless equation has been chosen to calculate the convection
heat transfer coefficient, h..:

Nu=0.255-Gr% . Re%07. Pr0-37; (1)
3. flue gas conductivity, K’, referred to in the present work as “artificial”, has
been calculated on the basis of Equation (1), as follows:
e Equation (1) may be expressed as:

he-d

= =0.255-Cr%* RO (v-p-c-K1)"T

: 2)

e after introducing P = 0.255 - Gr’-?° -Re%07. (v-p-¢)®37.d~1 and rearranging
Equation (2) we have:

he=P-K*%, (3)

e the total heat transfer coefficient, h, is given by the sum of the radiation
coefficient, h,., and the convective coefficient, h. [1]:

h=he+hy, (4)

e by substituting the right-hand side of Equation (4) into Equation (3) we
obtain:

heth, =P K'"%, (5)

where K’ is the “artificial” flue gas conductivity,
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e after dividing Equation (5) by Equation (3), we obtain:
K 063
hC i hr =\ == ) (6)
he K

e the h. =n-h, correlation is determined by h. and h,. calculated in advance
for the concrete model. Its substitution in Equation (6) gives:

nohethe 5, 0.63
he K ’

(7)
Simplifying this, we obtain:
K/:K~(n+1)1'5873, (8)

e the “artificial” gas conductivity, K’, may be calculated from Equation (8).
For the investigated regenerator we have obtained n~1 (h. = h,.), so:

K/ K- 21‘5873 ~ 3K, (9)
4. the “artificial” conductivity, K’, is used to specify the flue gases properties in
ANSYS.

As information about local temperatures in different checker works at the
cyclic equilibrium of regenerators cannot be found in the literature, consecutive
cooling and heating periods must be simulated until achieving the regenerator cyclic
equilibrium [3].

4. Geometrical model and finite element mesh

The geometry of the model and the coordinate system (Cartesian) are shown
in Figure 2.

| /
™, e
z # y
— ., P
\\ “ P Ve
Y N/ #
A I :
A 1
“J
s .
s ~,
s TN ",
Y ey
-~ s
“
| I

Figure 2. Geometry and coordinate system of the model:
(a) isometric view (1 — fluid volume, 2 — non-fluid volume); (b) top view
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i

Figure 3. Finite element mesh: (a) fluid and non-fluid volumes; (b) non-fluid volumes

The fluid and non-fluid volumes (checker material) are marked with different
colours, as shown in Figure 2a.

An enlarged view of the finite element mesh of the model is shown in Figure 3. In
all, 142791 tetrahedral finite elements are generated: 78425 fluid and 64 366 non-fluid
elements. The number of nodes is 28 236.

5. Loads and boundary conditions
5.1. Fluid properties

Temperature variations of gas conductivity and viscosity are expressed and
specified by the relationships, proposed by Sutherland [7, 10]. The ideal gas equation is
used to specify density, while linear functions of temperature are used for specific heat.
The fluid property relationships for the cooling and heating periods are summarized
in Table 1.

Table 1. Fluid properties’ relationships

Air Flue gases
~ p 273.15 ~ p 273.15
P=1293 7 Tor325 P=1293 1 {01325
¢p=1006+0.18-T cp=104240.264-T
T\ (Ty+147.7 T\ (Ty+534.34
K =0.02454- | — N = K=0.0628-( — N
(z) (7er) () (75an)
(Correlation obtained using the “artificial”
conductivity, K’ =3-K)
T\ (Ty+89.77 T\ (T, +138
=171-107%. ( =) . ( =F—= —158.1076.( =) .(Z0oT°
a (To) <T+89.77> K (To) (T+138)
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Table 2. Material properties’ relationships

“Radex SG(D)” (material N2) ‘ “Radex GV” (material N3) ‘ “Radex GZ” (material N3) ‘
¢=913.3+0.208-T ¢=913.3+0.208-T ¢=3853.216+0.208 - T
Kio=Kyy=K,,= Kiw=Kyy=K,.= Kio=Kyy=K.,=
=10.15-0.0042-T =10.15-0.0042-T =9.655—-0.0042-T

p =3000kg/m> p=2950kg/m> p=3000kg/m>

5.2. Non-fluid material properties

Three kinds of checker materials are used, from top to bottom: “Radex SG(D)”,
“Radex GV” and “Radex GZ”. Temperature variations of the specified material
properties are given in Table 2.

5.3. Inatial conditions
Non-fluid element nodes

Consecutive cooling of the checker with air and heating it with flue gases is
simulated until achieving the regenerator’s cyclic equilibrium, determined by:

AT =Ty, . —Tp .1 =3K, (10)

where T, , is an average checker blocks (solid) temperature at the end of 2th cooling
period, T, .1 — average checker blocks (solid) temperature at the end of (z—1)th
cooling period.

To achieve this aim, the following initial conditions are specified:

— the first checker heating period: T{fi(x,y,z,O) =293K;
— for each next period, the previous period’s end temperature is given as initial
temperature of checker blocks:
T (2,y,2,0) =T (x,y,2,1800),
T3 (2,y,2,0) =T{ ;(2,y,2,1800),
Tj,i(%l/,zvo) =T7_1,(2,y,2,1800),
TS (2,y,2,0) =T (2,,2,1800).

Fluid element nodes
Va,i(2,9,2,0) =V, i(z,y,2,0) =V, ;(x,y,2,0) =0;
Pz,i(2,Y,2,0) =0, kyi(2,y,2,0)=0, ez:(x,y,2,0)=0;
Checker heating period: T:fi(x,y,z,O) =Ty, =1573K;
Checker cooling period: 1<2<10, T;,(7,y,2,0) =Ti, = 313K;
z2>10, T (v,y,2,0) = Tip = 323K.

5.4. Boundary conditions

Ve=0, V, =0, V., =0 for checker areas surrounded by fluids. The surrounded
areas are of four types, expressed by the following equations:

1. z+a+ %\/ﬁd: 0, bounded in the z direction z1 ;(d,d) <x2;(d,?),
2. z24x— %\/i(d—I— 26) =0, bounded in the z direction x4 ;(d,d) <x2,(d,9),
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3. z=2(d,d) = const, bounded in the x direction x4 ;(d,d) <z ,(d,9),

4. z=x(d,d) = const, bounded in the z direction z1 ;(d,d) < z2;(d,?)

In the y direction, the above areas are bounded:
14+2nh. <y <1+h.(2n+1) — even checker rows,
1+he(2n+1) <y <1+4h.(2n+2) — uneven checker rows.

Symmetry boundary
2(d+06) <z <3v2(d+6), 0.8<y<1+37h.+0.2, 2=0, 2L =0,V,=0;
2(d+6) <z <1v2(d+9), 0.8<y<1+437h.+0.2, z=/2(d+0), 4£=0, V,=0;
0<2<V2(d+6), 0.8<y<1+37h.+0.2, z=1v2(d+6), 2L=0, V,=0;
0<2<V2(d+0), 0.8<y<1+37h.+0.2, 2=3v2(d+6), 9t =0, V,=0.

Fluid velocity, turbulent kinetic energy and turbulent kinetic energy dissipation
rate are specified at the regenerator’s inlet, pressure is specified at the regenerator’s
outlet:

Checker heating period
2(d+0) <z <iV2(d+6), y=1437h.+0.2, 0<2<V2(d+6),

Vo=0, V,=-2.09m-s7!, V. =0, ki, =6.55-10"4J-kg~!, £, =7.7-10"4W-kg!;
2(d+06) <z < 3V2(d+0), y=0.8, 0<2<V2(d+6), pout =100Pa.

Checker cooling period
2(d+6) <z < 1v2(d+9), y=0.8, 0<2<V2(d+9);

V,=0, V,=0.35m-s7!, V,=0, ki, =1.88-10"5J-kg™!, £;,=3.74-107SW kg~ 1;
2(d+6) <z <ivV2(d+0), y=1+3Th.+0.2, 0<2<V2(d+0), pou =25Pa.

Checker blocks’ contact surfaces

As checker blocks are of the same material, ideal contact is assumed. The blocks’
volumes are added and three solid blocks are thus formed (see Figure 2).
Various materials of checker blocks are assumed:

y=1412h., —3V2(d+08) <z <1vV2(d+9), 3vV2d—2<2<3\/2(d+25)—

Kat —

2ﬁ :t‘
Loy y=1+12h, 9y

) t’ ;
y=—(1+12h.) y=1+12h, y=—(1+12h.)

y=1+12h,, —2V2(d+0) <z <iV2(d+6), 1vV2d+a<2<1\/2(d+20)+x,

K% =—Kyot , t =t ;
Yly=1+12h. Y ly=—(1+12h.) y=14+12h. ly=—(1+12h.)

y=1+24h,, —2V2(d+0) <z <iV2(d+6), 1vV2d—a<2<1\/2(d+20)—

~K, 2 =—K3ot , t =t ;
Yly=1+24h. Y ly=—(1+24h.) y=1424h. ly=—(1+24h.)

y=1+24h,, —3V2(d+0) <z <iV2(d+6), 1vV2d+a<2<1,/2(d+26)+

— Kot =Kt
| y=1424h, 9y

t =t .
y=—(1+24h,)’ y=1+24h. ly=—(1+24h.)

tq109u-e/140 11V 2005 BOP s.c., http://www.bop.com.pl



Modelling and Simulation of Fluid Flow and Heat Processes... 141

6. Results

Figure 4 shows the temperature changes in the regenerator until attaining

a cyclic equilibrium. The equilibrium was obtained after 17 cycles of checker heating
and cooling.
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Figure 4. Change of the average temperatures of air, flue gases and checker blocks
until the regenerator’s cyclic equilibrium is obtained

The local DOF for every step in time of the periods (p, V, Vi, V2, T, k, € and
solid temperature) and the output derived values (g, h, T, y¥T) have been saved in
x.rfl files. The data are available upon request.

7. Conclusion

1. According to the present study, the following average temperature differences
have been observed in the cyclic equilibrium of the regenerator:
(i) checker blocks—flue gases: AT =T, ; —T), .~ 60K and,
(ii) checker blocks—air: AT, =T, c — T, r = 265K.
It has been established that AT" < AT¢  because of radiation and convection
heat transfer between flue gases and checker blocks in the heating period. There
is only convection heat transfer between air and checker blocks in the cooling
period.
2. The obtained results make possible a future thermal analysis of regenerator’s
cyclic equilibrium according to the aims of our work.
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