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Abstract: The two-dimensional unsteady motion of viscous incompressible fluid around an aerofoil

at a large angle of attack has been computed. A modified velocity correction method splitting the

velocity field has been designed to solve this problem. First, a tentative velocity field is determined

from the equations of momentum conservation for explicit gradients of computational pressure. Then,

the Neumann problem for the Poisson equation is solved to estimate the computational pressure,

and velocity components are corrected. Test calculations have been made for the case of flow around

the NACA 0012 aerofoil with an incidence of 34◦. The domain outside the aerofoil was transformed

into a canonical one using conformal mapping. Computations were made on 100×100 and 100×200

grids for Reynolds numbers of Re=400, 600 and 1000. Comparison with numerical and experimental

data reported in the literature has shown that the method is suitable for simulating 2-D external

viscous flows.

Keywords: Navier-Stokes equation, incompressible viscous flows, velocity correction method, flows

over aerofoils

1. The problem

The problem consists in determination of an unsteady external viscous flow

around the NACA 0012 aerofoil with an incidence of 34◦ (Figure 1). Co-ordinates of

points specifying the NACA 0012 profile in a normalized system [−0.5,0.5], in which

the chord is assumed to be the unit of length, are given in [1].

The governing equations that describe unsteady incompressible flow of viscous

incompressible fluid are the continuity and Navier-Stokes equations. In two dimen-
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Figure 1. Definition of the computational domain

sions, these equations can be written in the dimensionless form without external forces

as [2–4]:
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where u, v are the velocity components, p is pressure, Re is the Reynolds number,

and ~∇2 is the Laplace operator.

The velocity components vanish at the profile surface. At an outer boundary

the velocity components are assumed to be equal to their values that correspond

to potential flow, and the values of pressure can be calculated from the Bernoulli

equation.

2. Modified velocity correction method

Velocity correction (splitting, projection, decomposition, Chorin’s) methods

have recently attracted considerable attention in the area of viscous incompressible

flow calculations (see for example [5–36]). These methods have gained popularity

over the past 30 years due to their relative ease of implementation and computational

performance. There have also been a number of attempts by the author to improve

these methods [37–39].

The proposed new version of the velocity correction method can be considered

to be a variation of the projection scheme originally proposed by Huser and Biringen

[12]. In the first step of this scheme for the solution of the Helmholtz equation,

temporal discretization is carried out with the Crank-Nicolson scheme on the viscous

terms and the Adams-Bashforth method on the convective terms. Accordingly, the

procedure is second-order-accurate in both time and space.
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Velocity correction schemes involve two stages. In the first stage of the modified

method, during the intermediate time step from tn to t̃, the simplified Navier-Stokes

equations (2) are solved, i.e.:
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where ũ = ũ(x, y, t), ṽ = ṽ(x, y, t) are the intermediate velocity components and

p̃n= p̃(x, y, tn) is a known computational pressure.

Let un, ũn, vn and ṽn denote discrete approximations to u, ũ, v and ṽ, so that:
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Equations (3) are to be solved subject to the initial and boundary conditions

taken from the assumption that, on the ∂Ω boundaries and at the time level

t= tn, the intermediate velocity components ũ, ṽ are equal to the physical velocity

components u, v:
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In the second stage, at every time step ∆t= tn+1− tn for the time step from t̃

to tn+1, we solve the following equations:
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obtained after integration of the equations coupling the velocity fields with the

derivatives of computational pressure:
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By differentiating Equations (6) with respect to x and y, respectively, adding

the resulting equations and making use of Equation (1), we can obtain the Poisson

equation for the computational pressure p̃ at the time level tn+1:
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subject to the Neumann boundary conditions:
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at all boundaries (resulting from relationships (6) provided that ∂p̃/∂~n vanishes at

the first time step), where ~n is a vector normal to the boundaries.
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Equation (9) is an artificial Neumann boundary condition not satisfied by

the exact pressure. This boundary condition will induce a numerical (spurious)

boundary layer [30], which will in turn result in a loss of accuracy (e.g. the calculated

computational pressure in [12] is a second-order approximation to the true pressure).

3. Transformation of the domain of solution

The considered domain of solution (Figure 1) is transformed into a simply

connected rectangle. The transformation is based on the theory of complex functions

[40, 41] and consists of two consecutive steps.

First, the exterior of the rotated NACA 0012 profile in the complex plane

z=x+ iy (10)

is transformed into the exterior of a circle in the complex plane

λ=µ+ iν (11)

by using the mapping function assumed in the form of a series of rational fractions,

z=λ+
N
∑

n=1

cn

(

a

λ−λ0

)n

, (12)

wherein the symbols denote: cn (n= 1, 2,. . .,N) - complex coefficients, a, λ0 – the

radius and the centre of the circle.

Next, a corresponding flow of ideal fluid is generated by a vortex located in the

centre of the disc. The second mapping function is thus represented by the formula:

w(λ)=−i ln
λ−λ0
a

, (13)

where i is the imaginary unit. Consequently, the complex potential (13)

w= ξ+ iη (14)

transforms the original domain into a rectangle (Figure 2). The upper AB side of this

rectangle corresponds to the whole NACA 0012 profile, the lower CD side corresponds

to the outer boundary, the two remaining segments, AC and BD, represent the same

auxiliary cut in the z-plane, Equation (10), while the ε angle determines the image

of the trailing edge of the aerofoil on the circle.

Figure 2. Canonical domain in the ξ×η plane

tq109c-e/40 11V2005 BOP s.c., http://www.bop.com.pl



Calculation of Viscous Incompressible Flow Around an Aerofoil.. . 41

The substitution of the equation of circle written in polar co-ordinates r, ϑ in

the λ plane, Equation (11):

λ=λ0+re
iϑ, (15)

into Equation (13) yields equations of family lines in the w plane, Equation (14):

ξ=ϑ, ϑ∈ [0, 2π],

η=− ln
r

a
, r∈ [a, rmax].

(16)

Thus a rectangular grid, Nξ×Nη, in the w plane:

ξ= ε+ i∆ξ, ∆ξ=2π/Nξ, (i=0,1, .. .,Nξ),

η= j∆η, ∆η=−
1

Nη
ln
rmax
a

, (j=0,1,. .. ,Nη),
(17)

is transformed into an orthogonal and conformal O-type grid in the z plane, Equa-

tion (10). An example of this kind of grid is shown in Figure 3 (some knots in the

inner sub-domain are omitted for the sake of clarity).

Figure 3. A computational O-type grid in the whole domain and in the neighbourhood

of the trailing edge grid, generated for parameters: rmax=15a, Nξ =100, Nη =100

The transformation of the physical domain (Figure 1) into the canonical one

shown in Figure 2 is equivalent to the change of independent variables (x, y) to (ξ, η)

in the considered partial differential problem.

The necessary expressions for the derivatives in the canonical domain are as

follows (mapping functions (12) and (13) satisfy the Cauchy-Riemann conditions):
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It is worth mentioning that the accuracy of the transformation can be controlled

due to the analytically-numerical form of function (12) and that derivatives of the

mapping functions can be calculated exactly, without any computational errors.

4. The numerical approach and results

The solution algorithm for each the time step can be written as follows.

1. Solve the initial-boundary value problem (3)–(5) for the ũ and ṽ velocity

components. The method of lines is adopted for this purpose, and compact finite

differences schemes [42] of sixth-order accuracy are used to approximate derivatives

with respect to spatial independent variables. Thus the following system of ordinary

differential equations can be arrived at in all the internal k, l nodes of an assumed

computational grid (17):
dũk,l
dt
=F1(ũi,j , ṽi,j),

d ṽk,l
dt
=F2(ũi,j , ṽi,j),

(19)

where the right-hand sides F1(ũi,j , ṽi,j) and F2(ũi,j , ṽi,j) are spatially discretized

Equations (3) and (5) and indices i, j are identical with mesh points (17).

The initial value problem obtained in this way can be integrated by applying the

standard low-memory third-order Runge-Kutta method (Heun’s method) [43, 44]. The

preliminary numerical experiments conclusively demonstrate that integration over the

t̃− tn=∆t/2 half time step yields the best results and satisfactory numerical stability,

compared with other integration time steps.

2. Solve Equation (8) for computational pressure p̃n+1 with the homogeneous

boundary conditions (9). The fourth-order accurate approximation to the Poisson

equation (8) requires additional numerical boundary conditions, the choice of which

is crucial for the creation of a stable and accurate scheme. An unsteady equation is

therefore considered instead of Equation (8) in the steady form:
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∂τ
= ~∇2p̃n+1− ~∇2p̃n−

2

∆t

(

∂ũ

∂x
+
∂ ṽ
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)

, (20)

where the time-like independent variable τ tends to infinity when the steady state is

achieved. In order to obtain numerical solutions of high accuracy, in the process of
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advancing from the initial condition p̃n+1
∣

∣

τ=0
= p̃n to the steady state, a modified

five-level Runge-Kutta integration scheme is employed [45, 46]. The spatial derivatives

and the boundary conditions are discretized by means of sixth-order tridiagonal

approximations [42] together with finite-difference schemes having a truncation error

of fourth-order accuracy [44].

3. Update physical velocity components un+1, vn+1 using Equations (6).

The initial and outer boundary conditions chosen for computation are the

solution of irrotational flow of inviscid and incompressible fluid. The well-known

complex potential describing this flow in a circular domain has the following form [2]:

W (λ)=V∞(λ−λ0)+
Γ

2πi
ln(λ−λ0)+

V∞a
2

λ−λ0
, (21)

in which V∞ denotes a free-stream velocity in infinity and the value of vortex

circulation:

Γ=4πaV∞ sinε, (22)

is taken from Joukowski’s condition. The correspondence of the complex potential

W (λ) to the original z plane, Equation (10), stems directly from the mapping function

(12), i.e. λ=λ(z).

For easier comparison of numerical results with those presented in the literature,

a stream-function field has been computed as a solution of the Poisson equation:
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for a known distribution of vorticity, ω= ∂v/∂x−∂u/∂y, with boundary conditions:
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Calculations on the 100× 100 grid (Figure 3) were made with the following

values of input data:

– time steps: ∆t=1 ·10−4, Re=400; ∆t=1 ·10−3, Re≥ 600;

– pseudo-time step: ∆τ =1 ·10−4;

– accuracy of the steady state solution of the system (19): 1 ·10−10≤ ε1≤ 1 ·10
−8

(Re=400, 600);

– accuracy of the steady state solution of Equation (20): ε2=1 ·10
−6.

The computations started for Re= 400 with the initial conditions assumed as

the potential flow solution. A steady state was reached in nearly 5000 iterations,

yielding the stream-function contours and velocity vectors which can be seen in

Figures 4 and 5. It turned out that the solution for Re= 600 with initial conditions

taken as the flow field for Re = 400 was also stable, and in this case 800 iterations

were necessary to converge the procedure (Figures 6 and 7).

Calculations for higher Reynolds numbers indicated that simulated flows be-

came unsteady and unstable. To illustrate the present method the unsteady flow

around the NACA 0012 aerofoil at the Reynolds number of 103 was computed, with

the start-up flow conditions set as the flow field for Re = 600. The reason for this
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Figure 4. Stream-function contours for Re=400 on the 100×100 grid

Figure 5. Velocity vectors for Re=400 on the 100×100 grid in the region near the profile

Figure 6. Stream-function contours for Re=600 on the 100×100 grid

choice was that there existed numerous numerical results and experimental visualiza-

tions of this case in the literature [47–50], necessary for comparison. Unsteady flows

for Re> 1000 were also studied by a few researches [47, 51, 52].

Figures 8–12 show the flow structure in five non-dimensionalized moments of

time with isolines for equidistant stream-function increments (not all of the small
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(a) (b)

Figure 7. (a) Stream-function contours and (b) velocity vectors

for Re=600 on the 100×100 grid in the region near the profile

Figure 8. Stream-function contours for Re=1000 on the 100×100 grid at t=1

Figure 9. Stream-function contours for Re=1000 on the 100×100 grid at t=2

vortices are shown). The time evolution of the flow field is correctly reproduced taking

into account the results reported in [47], which unfortunately display the flow field in

the neighbourhood of the profile only. All captured main and secondary vortices are

similar to those detected by experimental observations and numerical simulations.

Increasing the number of time steps leads to numerical instabilities and spurious

results.
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Figure 10. Stream-function contours for Re=1000 on the 100×100 grid at t=3

Figure 11. Stream-function contours for Re=1000 on the 100×100 grid at t=4

Figure 12. Stream-function contours for Re=1000 on the 100×100 grid at t=5.5

The influence of the outflow boundary conditions was studied by investigating

the effect of size of the computational domain. For this purpose a 100×200 compu-

tational grid with rmax=30a (Equation (17)) was generated. Nearly 9000 iterations

were done for Re=400 (a steady state solution, see Figures 13 and 14) and the initial

data distributions given by the potential flow field with the time step of ∆t=1 ·10−4,

while the remaining parameters of the calculation were the same as in the previous

case of the 100×100 grid. Afterwards, a converged solution (2000 time steps) for the
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Figure 13. Stream-function contours for Re=400 on the 100×200 grid

Figure 14. Velocity vectors for Re=400 on the 100×200 grid in the region near the profile

Figure 15. Stream-function contours for Re=600 on the 100×200 grid

(a) (b)

Figure 16. (a) Stream-function contours and (b) velocity vectors

for Re=600 on the 100×200 grid in the region near the profile
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Figure 17. Stream-function contours for Re=1000 on the 100×200 grid at t=0.5

Re = 600 was obtained with these initial conditions, ∆t= 2 ·10−4 and ε1 = 1 ·10
−7,

(Figures 15 and 16); the time step on the 100× 200 grid was changed due to the

stability criterion. The results for Re = 400 (Figures 4, 5, 13 and 14) and Re = 600

(Figures 6, 7, 15 and 16) on two different grids show a certain discrepancy in the

images of the corresponding stream-function contours. It has been confirmed that the

computation requires suitable variation and control of all input data.

The solution computed for Re = 400 with 1 ·10−4 ≤∆t ≤ 5 ·10−4 was subse-

quently used as the initial guess for the case of Re= 1000; the results are plotted in

Figures 17–26. Numerical simulations of vortex shedding on the larger 100×200 grid

were continued for almost twice the time interval of the 100×100 grid.

5. Concluding remarks

A modified velocity correction method of simulation of two-dimensional un-

steady external incompressible viscous flows has been presented in this paper. The

method can be easily extended to three-dimensional non-stationary flows. New algo-

rithms with fourth- and sixth-order accuracy in time and space for provisional velocity

field have been developed. The proposed method seems to be promising considering

the computational effort involved and the achieved agreement of numerical results

with solutions reported in the literature. As expected, the re-circulation regions in-

Figure 18. Stream-function contours for Re=1000 on the 100×200 grid at t=1
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Figure 19. Stream-function contours for Re=1000 on the 100×200 grid at t=2

Figure 20. Stream-function contours for Re=1000 on the 100×200 grid at t=3

Figure 21. Stream-function contours for Re=1000 on the 100×200 grid at t=4

crease in size with time until the system becomes unstable and vortices vanish in

an oscillatory manner. It should be recalled that the imposed velocity components

at the outer boundary, obtained from the potential flow solution, tend to uniform
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Figure 22. Stream-function contours for Re=1000 on the 100×200 grid at t=5

Figure 23. Stream-function contours for Re=1000 on the 100×200 grid at t=6

Figure 24. Stream-function contours for Re=1000 on the 100×200 grid at t=7

incompressible flow (uinv., vinv.)→ (1, 0), while the size of the computational region

increases. Besides, these boundary conditions can also be normalized, as has been

confirmed by numerical experiments

The aim of future research will be detailed examination of the flow for higher

Reynolds numbers. At the same time, some improvements need to be introduced to
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Figure 25. Stream-function contours for Re=1000 on the 100×200 grid at t=8

Figure 26. Stream-function contours for Re=1000 on the 100×200 grid at t=9.5

increase the efficiency of the method. It is also necessary to consider other algorithms

to solve the Poisson equation for computational pressure. Furthermore, a currently

investigated aspect of this problem are attempts to establish the correct outflow

boundary conditions required to generate a vortex sheet in the region outside the

profile. Another important problem is the choice of a suitable computational grid.

In order to compute the flow accurately in multiple regions of vortices, the grid

distribution requires particular refinements. Producing two overlapping grids should

be the most suitable: one in the neighbourhood of the profile, the other containing

a region with a predicting vortex sheet.
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